
Approximation Algorithms Scribe: Matt Drescher
Instructor: Adrian Vetta Fall, 2006

Contents

1 intro 3

2 TSP 3
2.1 Aside . 3
2.2 Alg I . 3
2.3 Analysis . 4
2.4 Christofides . 4

3 Vertex Cover 5
3.1 Alg . 5

4 Max Clique 5
4.1 Algorithm . 5

5 Cut problems 6
5.1 Multiway cut Algorithm . 6
5.2 k-Cut problem . 6
5.3 Alg . 7

6 Background 8

7 Set Cover 8
7.1 Greedy Algorithm . 8
7.2 Randomized Rounding . 9

8 Max Sat 11
8.1 Randomized Rounding Alg . 11
8.2 LP rounding . 11

8.2.1 R3 . 12
8.3 non-linear randomized rounding . 13

9 Min Congestion Flow 14

10 Shortest Superstring 16
10.1 Applications . 16

11 The k- center problem 18
11.1 Asymmetric k-center . 19

11.1.1 Phase 1 . 19

12 The Knapsack Problem 20
12.1 Approximation Schemes . 20

12.1.1 FPTAS . 21

13 Bin Packing 22
13.1 2 Approx Algo . 22

14 Unsplittable Flow Problem 24
14.1 Algorithm(single source) . 24

15 Confluent Flows 26
15.1 Algorithm . 26

16 Semi Definite Programming 28
16.1 Linear Algebra . 28

17 Max Cut 29
17.1 Goemans , Williamson . 29

18 Applications 30
18.1 Vertex Coloring . 30

19 LP Duality 32
19.1 Complimentary Slackness . 33

20 Linear Programming and Approximation Algorithms 33
20.1 Meta Method . 33

20.1.1 Set Cover . 33

21 The Primal Dual Method 35
21.1 Primal Dual Method for Approximation Algorithms 37

21.1.1 The Primal Dual Algorithm . 38
21.1.2 Multi commodity Flows and Multicuts . 38

22 The Steiner Forest Problem 40

23 Facility Location Problem 42

24 Euclidian TSP 44

25 2 Connectivity 46
25.1 Iterative Rounding . 47
25.2 SVNP cont . 48
25.3 Iterative Rounding . 48
25.4 Vertex Connectivity . 50

26 Minimum Degree Constrained Spanning Tree Problem 52

27 2 Edge connected 53

28 Multicut and Sum Multicommodity flow 54

1 intro

An approximation algorithm A for an optimisation problem P has the following properties when
run on any instance I of P .

1. it runs in polynomial time in input size. i.e. poly(|I|)

2. It always produces a feasible output S.

3. • value(S) ≥ α · opt for maximization problem α ≤ 1

• value(S) ≤ α · opt for minimization problem α ≥ 1

4. α is the performance guarantee of the algorithm.

5. NB if α = 1 the algorithm always gives an optimal solution.

Approximation algorithms are particularly useful for the class of NP Hard problems. (no poly-
time algorithm exists unless P = NP) Open P 6= NP ...

2 TSP

Given a complete graph G := (V,E) with edge lengths dij for e = ij. Find min length tour in G.
We shall assume that dijs form a metric. i.e.

dij ≤ dik + dkj∀k

. this is the triangle inequality.

Problem 1 (TSP) Find min length Hamelton cycle in G mentioned above.

2.1 Aside

Without the triangle inequality things are hopeless. Take any G, put weight 1 on edges, n · l on
non edges. If G has a Ham cycle then there is a tour of cost n. If G does not have a Hamelton
cycle then any tour is atleast (n− 1)1 + nl > nl. Pick l > α this shows there is no approximation
algorithm with factor α.

2.2 Alg I

1. find M.S.T

2. Double the edges of T

3. the degree of all vertices is now even ⇒ Eulerian ⇒ circuit that uses every edge
exactly once.

4. Shortcut the circuit to give tour. (uses 4)

cost(S) ≤ 2cost(MST)

Lower Bound on opt: S∗ − e is a spanning tree. Thus

cost(S∗) ≥ cost(S∗ − e) ≥ cost(MST)

Key Point: We don’t know the optimal value so we can only compare a solution to an estimate
bound on the optimal.

cost(S) ≤ 2 · cost(MST) ≤ 2opt

i.e. this is a 2 approximation algorithm.

From now on: When not specified non edges are shortest path costs.

2.3 Analysis

We have several questions to ask:

• Is our analysis tight w.r.t. our lower bound ? Are there examples where opt is α from lower
bound? The above is tight. Let G be a path with dij = 1 ∀ij ∈ E. cost(S∗) = 2(n − 1) =
2cost(MST).

• Is the lower bound any good? Want it as close to opt as possible.

• How does it compare to the lower bound? example shows we are 2 · LB

• Is the algorithm better than the proof says?(compare solution to Opt) in our case: Take a G
that is two ladders each of size n/2 where each edge has cost 1. Opt = n Our algorithm gives
cost 2(n− 1). i.e. solution is factor 2 from opt.

• Is there another algorithm? In our case yes. Christofides.

2.4 Christofides

Observe that a minimum cost tour can be partitioned into 2 perfect matchings(if even). i.e. a
minimum cost perfect matching has cost at most 1

2opt. i.e. Opt ≥ 2cost(min(PM)). Any minimum
cost perfect matching on an even number of vertices has cost ≤ opt by 4 inequality.

1. Find MST

2. Find min cost PM on odd degree vertices.

3. Find Euler circuit and shortcut it.

1. Polytime

2. produces feasible solution

3. cost(S) ≤ cost(MST) + cost(Matching) ≤ opt + 1
2opt = 3

2opt

Open:Beat 3
2 we are hopeful there is a 4

3 solution.
Algorithm can give solution 3

2 from opt. Again take a ladder we get c(S) = 3
2n. LB =

2
3(cost(MST) + cost(matching))

3 Vertex Cover

Problem 2 (Vertex Cover) Given G := (V,E) find minimum number of vertices that intersect
every edge.

3.1 Alg

1. Find any maximal matching M

2. Pick both end points of each edge in M

Notice that for any maximal matching opt ≥ |M | as we must pick one vertex for each edge in
the matching. So 2|M | ≤ 2opt.

• How good is LB? can be factor 2 off.

• How good is alg? Factor 2 off. Take Kn,n = (A,B) |M | = n |S| = 2n, opt = n.

• Open: Beat 2 Hardness 1.36

4 Max Clique

Problem 3 (Max Clique) Given G := (V,E) find max size clique

This is NP hard. It solves vertex cover.

4.1 Algorithm

1. Pick 1 vertex

Factor 1
n approximation. n− approximation.

Open: Beat 1
n Our algorithm is almost as good as it gets.

Theorem 1 No O(n1−ε) approx algorithm exists unless NP = ZPP

5 Cut problems

Given a graph G := (V,E) with edge weights (capacities) we ≥ 0 we have to classical combinatorial
optimization problems:

Problem 4 (min s-t cut) minimum t1, t2 cut. Given t1, t2 ∈ V , find a cut δ(S) of minimum
weight

∑
e∈δ(S) we s.t. t1 ∈ S, t2 ∈ V − S

Problem 5 (min cut) Find any cut of min weight.

Note that min s− t cut ⇒ min cut (try all pairs). These problems can be generalized:

Problem 6 (Multiway Cut) Given T := {t1, ..., tk} a multiway cut is an edge set F ⊆ E that
disconnects all the ti. Find a min weight multiway cut.

This is NP hard for k ≥ 3.

Problem 7 (k-Cut) A k-cut is a set of edges whose removal leaves k components. Find min
k-cut.

Polytime for fixed k, NP hard for general k.

5.1 Multiway cut Algorithm

We give a 2 approximation algorithm.

1. For each ti find a min weight cut separating ti from all the other terminals T−
ti

2. Output ∪k−1
i=1 δ(Si) where δ(Sk) is the heaviest of δ(Si)

As usual we need to show

• Feasibility: Can not walk from ti to tj for any pair. Since WLOG ti 6= tk so δ(Si) separates
ti from tj .

• Polytime: Contract T − ti into 1 vertex t̂2, find a min t1 − t̂2 cut.

• approx guarantee: Let F ∗ be an optimal solution. So G−F ∗ leaves k components T1, ..., Tk,
ti ∈ Ti. w(F ∗) =

∑
e∈F ∗ we = 1

2

∑k
i=1 w(δ(Ti)). But δ(Ti) separates ti from the other

terminals, so w(δ(Ti)) ≥ w(δ(Si)) . So w(F) ≤
∑k−1

i=1 w(δ(Si)) ≤
∑k−1

i=1 w(δ(Ti)) ≤ (1 −
1
k)
∑k

i=1 w(δ(Ti)) = 2(1− 1
k)w(F ∗)

5.2 k-Cut problem

We give an approximation algorithm based on Gomory-Hu trees.

Definition 1 (Gomory-Hu) Given G = (V,E) with weights we ≥ 0, a G−H tree TGH is a tree
on V such that (T does not need to use edges in E)

• For e = (u, v) ∈ TGH we have that δ(Se) is a min u− v cut in G.

It can be shown that

Property 1 (*) For any s, t ∈ V the min s − t cut is the smallest weight cut given by the s − t
path in TGH i.e. min w(δ(Se))e ∈ Pst

Note:this is the fastest way to find all min t1 − t2 cuts ∀ pairs t1, t2
for our purposes we only care that:

Theorem 2 G-H trees exist and can be found in polytime!

and shall not spend time proving it.

5.3 Alg

1. compute TGH for G

2. let e1, ..., ek−1 ∈ TGH give the k − 1 cheapest cuts in the tree: δ(Sei) which we
write as δ(Si)

3. Output: F = ∪k−1
i=1 δ(Si)

Theorem 3 This is a 2 approximation algorithm

Proof. Again let F ∗ be an optimal solution with components T1, ..., Tk. Let δ(Ti) be the heaviest
of these. So

w(F ∗) =
1
2

k∑
i=1

w(δ(Ti))

Claim: w(δ(Si)) ≤ w(δ(Ti)) if cuts ordered by cost 1 ≤ i ≤ k − 1 Contract the Ti, we have
at least k − 1 GH edges between these k vertices. Pick a tree R from this contracted graph with
respect to the GH edges. R ⊆ TGH So by definition

k∑
i=1

w(δ(Si)) ≤
∑
e∈R

w(δ(Se))

Given R orient the edges toward Tk. Let rj ∈ R be the edge leaving Tj . Let rj = (uj , vj) ∈ TGH

so δ(Srj) is a min uj − vj cut in G. So w(δ(Srj)) ≤ w(δ(Tj)) as Tj separate vi − vj too. So

k−1∑
i=1

w(δ(Si)) ≤
∑
e∈R

w(δ(Se)) =
k−1∑
j=1

w(δ(Srj))

≤
k−1∑
j=1

w(δ(Tj)) ≤ (1− 1
k
)

k∑
j=1

w(δ(Tj)) ≤ 2(1− 1
k
)opt

The analysis for both cut algorithms are tight. There are better algorithms: 3
2 for both.

6 Background

• Decision problems: yes, no

• in P if there is a polytime algorithm to solve it

• in NP if a solution can be polynomialy certified that it is valid.

• A problem is in CO−NP : I is NO instance iff I has polylength no certificate. e.g. validity:
A boolean formula is valid if it is satisfied by all possible assignments. No certificate = an
assignment for which formula is not valid.

We say a problem is well characterized if it has both yes and no certificates. Typically problems
in NP ∩ CO − NP are in P . For example the matching problem: Yes → PM , NO ⇒ Tutte
f − factor, odd components. Open:Prime FActorization (is there a prime factor ≤ t)

1. Yes prime ≤ t with t|n

2. the prime factorization(in P)

7 Set Cover

We are given n items V := {v1, ..., vk}, and t sets S1, ..., St ⊆ V with cost c(Si).

Problem 8 (Set Cover) Find min cost collection of sets X that cover every item. i.e. min c(X) =∑
Sj∈X cj

7.1 Greedy Algorithm

1. X = ∅

2. Pick set Sj that covers uncovered items for the lowest average cost

• avg cost: cj/S′
j

• S′
j = Sj −X

3. X := X ∪ Sj

4. Repeat until X covers all items

Theorem 4 Greedy is a Olog(n) approximation algorithm.

Proof. Let X∗ := {S∗
1 ...S∗

i Greedy := {S1, ..., Sr} Label elements v1, ..., vn according to the order
they are first covered by greedy. Consider vi There are at least n− i+1 uncovered items just before
vi is covered. Let opt :=

∑
Sj∈X∗ c(S∗)j so some set in X∗ has average cost at this point of at most

opt
n−i+1 . Greedy is cheaper than this.

c(Greedy) =
r∑

j=1

c(Sj) =
n∑

i=1

(avg cost to cover item vi by greedy)

≤
n∑

i=1

opt

n− i + 1
= opt

n∑
i=1

1
n− i + 1

= opt
n∑

i=1

1
i

= Hn · opt

Observe:lg(n) ≤ Hn ≤ lg(n) + 1 (
∫ 1

xdx = log(x))
How bad is Greedy really? Basically this analysis is tight.

Problem 9 (hitting set) We have a set of elements {e1, ..., ek} and a collection of sets {T1, ..., Tn}.
Each element ei has a cost ci and we want a min cost set of elements that intersects(hits) all the
sets

Examples

• minimum spanning tree picks edges that hits all cuts δ(S).

• Shortest s− t path , edges, hit all s− t cuts.

• Graph bipartization. Pick edges that intersect every odd cycle. Solves MAX-CUT which is
NP hard.

• Multicut {t1, ..., tk} edges, all paths from ti to tj∀i, j

• vertex cover

Set cover = Hitting set.

7.2 Randomized Rounding

We have the following IP for H.S.

min
t∑

i=1

cixi

s.t.
∑

i:ei∈Tj

xi ≥ 1∀Tj

xi ∈ {0, 1} i = 1...t

Take the LP relaxation

min
t∑

i=1

cixi

s.t.
∑

i:ei∈Tj

xi ≥ 1∀Tj

0 ≤ xi ≤ 1 i = 1...t

Linear programming is polytime in the number of constraints and the number of variables,
poly(t, n). So we get a fractional solution. ‘Round’ to integral solution. Suppose maxj |Tj | = k So
there exists ei ∈ Tj with xi ≥ 1

k . Round all xi ≥ 1
k to 1, xi < 1

k to 0. Worst case cost increases by
factor k. Then we have a hitting set. This is an O(k) approximation algorithm. e.g. vertex cover

has k = 2.

Let x be an optimal solution to LP we set ei = 1 with probability xi, P (ei = 0) = 1 − xi.
Expected cost of chosen set is

∑t
i=1 cixi = LP (opt) ≤ opt. But our output may not be a hitting

set.

Lemma 1 (Arithmetic-geometric means ineq)

(
∑n

i=1 xi

n
)n ≥

n∏
i=1

xi

Proof. WLOG x1 ≤ ... ≤ xn if x1 <
∑

xi

n , xn >
∑

xi

n x1+ε)(xn−ε) = x1xn+ε(xn−x1)+ε2 > x1xn

Lemma 2 Probability that Tj is hit is at least 1− 1
e

Proof. ∑
ei∈Tj

xi ≥ 1

P (we miss Tj) =
∏

i:ei∈Tj

(1− xi)

≤ (1− 1
|Tj |

)|Tj |

≤ e−1

Idea Repeat the algorithm p · logn times. Take the union. By independence the probability we
miss

Tj ≤
1
e

p lg(n)

=
1
np

the probability we miss any set is at most n · 1
np = 1

np−1 . So with high probability we find a hitting
set of expected cost O(opt · lg(n))

Back to set cover. We can tighten the analysis a bit. Set k = max|Sj |

Theorem 5 Greedy is O(log(k)) approximation algorithm for set cover

Proof. e∗ = (S∗
1 , ..., S∗

i) order v1, ..., vn according to order covered by greedy. When vj ∈ S∗
i was

first covered by Sm say we could have chose S∗
i . So

c(Sm)
|S′

m|
≤ c(S∗

i)
ni + 1− j

ni size |S∗
i |

c(X) ≤
l∑

i=1

∑
vj∈S∗i

c(S∗
i)

ni + 1− j

≤
l∑

i=1

c(S∗
i)

n∑
j=1

1
ni + 1− j

(1 + Hk)
l∑

i=1

c(S∗
i)

≤ (1 + Hk)opt

Theorem 6 There exists ccl such that i and P 6= NP there is no approximation algorithm better
then c lg(n).

8 Max Sat

Have a set x1, ..., xn of boolean variables and clauses C1, ..., Ck or the form C1 = (x1 ∨ x̄2 ∨ x̄7)

Problem 10 SAT IS there a T/F assignment of the variables such that all clauses are satisfied?

Problem 11 Max SAT how many clauses can we satisfy?

8.1 Randomized Rounding Alg

1. for each xi set xi := T with probability 1
2

If Cj has k literals then P (Cj is satisfied) = 1− 1
2k worse case k = 1 ⇒ P (Cj is satisfied) = 1

2 .

Corollary 1 1
2 approximation algorithm

8.2 LP rounding

Set up an IP with yi = 1(0) iff xi = T (x̄i = T)∀xi and ∀ clauses Cj∃zj : zj = 1 if Cj satisfied 0 otherwise

max
∑
j

zj

∑
xi∈C+

j

yi +
∑

xi∈C−
j

yi ≥ 1∀j

zj , yi ∈ {0, 1}

where C+
j is the set of variables in Cj in uncomplemented form xi not x̄i.

Relax 0 ≤ yi ≤ 1, 0 ≤ zj ≤ 1 and solve LP Set xi = T with probability yi otherwise false.

Lemma 1 If Cj has k literals then it is satisfied with probability at least

(1− (1− 1
k
)kzj ≥ (1− 1

e
)zj

Proof. Assume WLOG C̄j = Ø. Cj = X1 ∨X2... ∨Xk. Cj is unsatisfied with probability

k∏
i=1

(1− yi) ≤AGMI (1−
∑k

i=1 yi

k
)k ≤ (1− zj

k
)k

by the LP .
max

∑
j

zj

∑
xi∈Cj

yi ≥ z∗j ∀j

zj , yi ∈ {0, 1}

it is satisfied with probability atleast

1− (1− zj

k
)k

≥ (1− (1− 1
k
)k)z ⊕

≥ (1− 1
e
)zj

to prove ⊕ f ′′(x) ≤ 0

Lemma 2 let f(x) be concave on [0, 1] with f(0) ≥ b and f(1) ≥ a+ b. The f(x) ≥ ax+ b on [0, 1]

we have f(zj = (1− zj

k)k convex f ′′(x) ≥ 0,

• f(0) = 1− (1− 0
k)k = 0 = b

• f(1) = 1− (1− 1
k)k = [1− (1− 1

k)k
:=a] · 1 + 0

So E(#clauses set

≥
∑
j

zj(1−
1
e
) = (1− 1

e
)
∑
j

zj ≥ (1− 1
e
)opt

Note that the bound gets worse as k →∞.

8.2.1 R3

1. Run both algorithms and take the best one.

Theorem 7 R3 is 3
4 approximation algorithm.

Proof. E(max(N1, N2)) ≥ E(N1+N2
2) =

1
2

∑
Cj

P (Cj sat by R1) + P (Cj sat by R2)

≥ 1
2

∑
Cj

(1− 1
2

kj

) + (1− (1− 1
kj

)kj)zj

≥ 1
2

∑
Cj

(1− 1
2kj

)zj + (1− (1− 1
kj

)kj)zj

1
2

∑
zj(1−

1
2kj

+ (1− (1− 1
kj

)kj))

• k := 1 1
2(1− 1

2 + 1) = 3
2

• k := 2 1
2(3

4 + 3
4) = 3

4

• k ≥ 3 ≥ 1
2(7

8 + (1− 1
e)) ≥ 3

4

8.3 non-linear randomized rounding

We dont have to round using the exact LP values. e.g. suppose there is a function f such that

1− 1
4x

≤ f(x) ≤ 4x−1 ∀x ∈ [0, 1]

Round according to f(yi) rather than yi. Take Cj

P (Cj is sat) = 1−
∏

xj∈C+
j

(1− f(yi))
∏

xj∈C−
j

f(yi)

≥ 1−
∏
C+

j

(1− (1− 1
4yi

))
∏
C̄j

4yi−1

≥ 1−
∏
C∗

j

4−yi
∏
C−

j

4yi−1

= 1− 4
[−
∑

xi∈C+
j

yi−
∑

xi∈C−
j

(1−yi)]

≥ 1− 4−zj ≥ 3
4
zj

now 4−x is convex. 1− 4−x is concave.

1− 4−0 = 0:=b = 0
3
4

+ 0

1− 4−1 =
3
4 :=a

=
3
4
· 1 + 0

f(x) ≥ 3
4
x

Can we do better than this LP ? Can we do better with this LP ?

x1 ∨ x2, x1 ∨ x̄2, x̄1 ∨ x2, x̄1 ∨ x̄2

opt = 3, LP = 4 xi = 1
2 i = 1, 2 zj = 1 j = 1, ..., 4 Can do better using semidefinite programming

upperbound get 0.78.
Open: beat 0.78 Interestingly max(2 SAT) is NP − hard but 2− SAT is polytime. Exersize:
solve 2− sat.

9 Min Congestion Flow

Problem 12 MCFP Given G := (V,A) and source terminal pairs, si, ti, i ∈ {1, ..., k} We want to
find a collection of si − ti paths such that the max congestion on any arc is minimized.

• congestion: the flow on arc a is equal to the number of paths Pi using a.

We would like to use randomized rounding. So we need an LP formulation.

min C∑
a∈δ+(v)

f i
a −

∑
a∈δ−(v)

f i
a = 06=si,ti, 1=si ,−1=ti ∀commodity i, ∀v

k∑
i=1

f i
a ≤ C∀a

f i
a ≥ 0,∀a, i

C ≥ 0

We can solve the LP in polytime, since there is a polynomial number of constraints and variables.
What do we do with the LP solution?

• If we round edges we dont get a flow.

• Flow Decomposition: Any flow f i of value 1 can be decomposed into at most m paths of
weights λi

1, λ
i
2, ..., λ

i
m such that

∑m
j=1 λi

j = 1

Proof.

1. • Let Gi be a graph with positive f i
a. Find si − ti path P in Gi by BFS, DFS.

• Let â = mina∈P f i
a. Pick P with λP = f i

â.

• Let χP be the incident vector for P . χP
a = 1a∈P , 0a/∈P . f i is still a flow of value 1− λP .

2. Repeat

At each stage the constraints are not violated. Note that Gi now has at least 1 less arc. We
repeat at least m times therefore we obtain at least m paths.∑

p

λi
p = 1

Do this for all k commodities. Let P+
i := the set of si, ti paths with positive flow. For each i∑

p∈P+
i

λi
p = 1

Use λi
p as the probability to choose one path/commodity. i.e. choose pj ∈ P+

j with probability λi
pj

.
Expected Congestion on arc a is

k∑
i=1

∑
pi

j∈P i+,a∈pi
j

P (pi
j is chosen)

=
k∑

i=1

∑
a∈pi

j ,pi
j∈P+

i

λi
j

=
k∑

i=1

f i
a ≤ C

this is just the expectation on one edge. We want to approximate Cong = maxa cong(a). We want
the probability that the maximum congestion is large to be small. To do this let Xa

i be the event
that path P ∗

i contains a. So the congestion on a is
∑

i X
a
i

P (Xi
a = 1) =

∑
a∈P i

j ,P i
j∈P j+

i

λi
j = pi

a

Theorem 8 Chernoff Bounds Let X1, ..., Xk be independent bernouilli trials such that P (Xi =
1) = pi, then if X :=

∑
i Xi we have

P (X > (1 + δ)E(X)) ≤ (
eδ

(1 + δ)1+δ
)E(X)

Proof.
P (X > (1 + δ)E(X)) = P (etX > et(1+δ)E(X))

By Markov inequality

= P (etX >
et(1+δ)E(X)

E(etX)
· E(etX)) ≤ E(etX)

et(1+δ)E(X)

now
E(etX) = E(et

∑
Xi) =

∏
i

E(etXi) =
∏
i

(1− pi + pie
t)

=
∏
i

(1 + pi(et − 1))

since 1 + x ≤ ex,
≤
∏
i

epi(e
t−1)

= e(et−1)
∑

pi = eE(X)(et−1)

So we have

P (X ≥ (1 + δ)E(X)) ≤ e(et−1)E(X)

et(1+δ)E(X)

Choose t to minimize this probability t = h(1 + d)

P (X > (1 + δ)E(X)) ≤ (
eδ

(1 + δ)1+δ
)E(X)

Set 1 + δ ≥ 2e, X =
∑k

i=1 Xa
i

P (X ≥ 2eE(X)) ≤ (
e

1 + δ
)(1+δ)E(X) ≤ 1

2(1+δ)E(X)

Lets take δ such that (1 + δ)µ ≥ 3 lg(n)

P (X ≥ (1 + δ)E(X)) ≤ 1
n3

There exists at most n2 arcs. So the probability any has congestion greater than (1 + δ)E(X) =
max(2eE(X), 3 lg(n)) ≤ n2

n3 = 1
n

So our ‘approx’ guarantee is Cong ≤ 2e · opt + 3 lg(n). i.e. O(lg(n)) approximation algorithm.
But O(1) approximation algorithm if opt ≥ Ω(lg(n))

10 Shortest Superstring

Problem 13 (Shortest Superstring) Given n strings s1, ..., sn, find a superstring containing
all the si of minimum length.

10.1 Applications

• Given pieces of DNA, what is original string

• Data compression

Without loss of generality we can assume s1...sn are ordered in S, and that no si ⊆ sj . Let
p12 := prefix(s1, s2) = s1−O12 where O12 := overlap(s1, s2). So opt = p12 + p23 + ...+ pn,1 +On,1,
thus

opt ≥
n∑

i=1

pi,i+1

How can we use this? We can find pij

• Prefix Graph

– G∗ has vertices s1, ..., sn

– we have arcs (si, sj) of length pij .

• So G∗ has a Hamelton cycle of cost at most opt.

But we can find a minimum cost cycle cover.

Problem 14 (Cycle Cover) Find collection of disjoint cycles covering all the vertices of mini-
mum cost.

This is a matching problem. Solution has deg−(v) = deg+(v) = 1 ∀v. Consider the bipartite
graph B := (V, V ′) and have an arc ij′ for each arc ij. Finding a min cost PM in poly time solves
the problem.

So we run cycle cover and get cycles C1, ..., Ck. Let ri ∈ Ci be a representive string of Ci. We
break the cycles at their reps and then take the ordering given by the union. This solution has cost
at most

k∑
i=1

|Ci|+ |ri|

≤ opt +
k∑

i=1

|ri|

So we need to bound
∑
|ri|. If the |ri are small this is easy, but the cycles could be small.

The key to bounding
∑
|ri| is the following

Lemma 3 Take Ci and Cj with reps ri, rj then Oij < |Ci|+ |Cj |

Using this lemma we can prove

Theorem 9 The algorithm is a 4 approximation algorithm

Proof. Observe that

opt ≥
k∑

i=1

|ri| −
k−1∑
i=1

Oi,i+1

by the lemma

>
∑

|rj | −
k−1∑
i=1

(|Ci|+ |Ci+1|)

≥
∑

|ri| − 2
k∑

i=1

|Ci|

So ∑
|ri| ≤ opt + 2

∑
|Ci| ≤ 3opt

Our solution has cost at most
opt +

∑
|ri| ≤ 4 · opt

We now prove the lemma. We need some notation. Let γN = γ ◦ γ ◦ . . . ◦ γ where ◦ denotes
concatenation. Claim: If t1, ..., tp are subsets of γ∞ then there is a cycle in the prefix graph of size
γ covering t1, ..., tp. Proof. Pick a starting point of tj on cycle of size γ this proves the claim

Proof. (of lemma) Assume Oij ≥ |Ci + |Cj | let Ci = string α, Cj = string β then α ⊂ β∞,
β ⊆ α∞, Oij ⊆ α∞ Oij ⊆ β∞. Without loss of generality β ≤ α need |α|+ |β| ≤ Oij . Pick first |β|
elements in second α. So α ◦ β = β ◦ α. Consequently αn ◦ βn = βn ◦ αn (swap αβ pairs in turn).
THis means that the first |β|n entries of βn and αn are the same! So α∞ = β∞. By the previous
claim all strings in Cj and Ci are substrings of β∞. So we dont need the α cycle. i.e. we didnt
have a minimum cost cycle cover.

• Open:Find factor 2 approximation algorithm(best is 2.5)

• In particular the Greedy alg that repeatedly merges 2 strings with largest overlap is widely
used in bioinformatics. Is this a 2− approximation?

11 The k- center problem

Problem 15 (k-center) Given G and edge weights de, choose k vertices to minS:|S|=kmaxv∈V d(v, S)
where d(v, S) := minu∈Sd(v, u).

i.e. pick k vertices such that all vertices are “near” some center.

• For general d this is hopeless.

Problem 16 (Dominating Set) given G := (V,E) is the set of vertices T ⊆ V such that all
vertices in V − T are adjacent to some vertex in T .

This is NP-hard. Suppose we have an α approximation algorithm for k-center. Then we can
solve dominating set! Take G, de = 1 ∀e ∈ E, de = L where L > α ∀e /∈ E. There exists a
dominating set of size k iff there exists a solution to k center with value 1. So approximation
algorithm gives the optimal solution if there exists a dominating set of size k.

Corollary 2 if d is a metric then there is no approximation algorithm with guarantee 2− ε.

Proof. set L < 2− ε. This satisfies the triangle inequality.
We can find a 2 approximation algorithm in this case:

1. let s1 be any vertex

2. Given S := {s1, s2, ..., si−1} i ≤ k, let si ∈ V − S be the vertex that maximize

maxv∈V−Sd(v, S)

3. output S := {s1, ..., sk} maxv∈V−Sd(v, S)

Theorem 10 This is a 2 approximation algorithm

Proof. Let sk+1 be furthest from S. Our solution is d(sk+1, S). Note the d(si, S) are decreasing.
Consider {s1, s2, ..., sk, sk+1} since we have only k centers, and k + 1 vertices, we must have sj , sj′

which are ‘served’ by the same center x. Thus by the triangle inequality d(x, sj′) ≥ 1
2d(sk+1, S)

11.1 Asymmetric k-center

What if the graph is directed? Choose S such that |S| = k such that there exists a short dipath from
some vertex in S to any other vertex. Assume we satisfy the triangle inequality and therefore we
can assume G is complete graph by filling in shortest paths. dij ≤ div + dvj ∀v, i, j We can assume
we know the optimal distal R = minS:|S|=kmaxvd(S, v) There are only n2 possible solutions(the
edges). We try all n2 until one works. (By the triangle inequality: keep edges ≤ R. If we have
correct R then there exists a dominating set (directed sense) of size k in this graph.) Assume now
all distances are equal to 1(= R). i.e. just want to find stars(unweighted).

Problem 17 (Combinatorial Problem) Given G := (V,A) find k directed stars that cover all
vertices.

this is a bicriteria result.

Lemma 4 If G has a [k, 6 R=1] solution then there exists a polytime algorithm to give a [2k, lg∗(n) 6
R] solution

Proof. We can view this as a set cover problem. There are n elements v1, ..., vn and n sets(stars)
where Sv = {u : d(u, v) ≤ 1} = {v} + Γ+(v) where Γ+ means out neighbours . So we know there
exists a solution of size k. We have “seen” that there exists an approximation algorithm giving
solution S of size (k · lg(n

k)) (n
k = #elements

Opt). But suppose we cover S1. If we do this then we cover

all elements at cost at most 2. But |S1| < n so we find a solution of size (k lg k lg(n/k)
k) = (k lg lg n

k)

Repeat S3 (k lg lg lg n
k)... We get set S of size k lg ... lg n

k
lg∗ n ≤ 2k that lg∗ n covers V .

How do we use this for an approximation algorithm?

11.1.1 Phase 1

We call a vertex v “center-capturing”(ccv) if Γ−(v) ⊆ Γ+(v). Now v ∪Γ−(v) has a center therefore
v ∪ Γ+(v) has a center. Choose v to be alg center as it hits all of Γ+(v) too. Repeat on G− Γ+

2 (v)
vertices at distance 0, 1 or 2 from v. Stop when there are no ccvs. Let X be set of chosen vertices.
Clearly |X| ≤ k. So there is a set P of k− |X| vertices that cover the remaining vertices.(i.e. those
not 2-covered by X).
Claim: there exists |P |

2 vertices P ′ such that X ∪ P ′ 5-covers V .
Proof. Consider opt : S = (S1, S2, S3)

• S1: centers in Γ+
2 (x) = Ā

• S2: centers x ∈ A such that Γ−2 (x) ∩ Ā 6= ∅

• S3: centers x ∈ A such that Γ−2 (x) ∩ Ā = ∅

Let S3 = {x1, ..., xq}. xi ∈ S3 is not ccv. So there exists yi ∈ Γ−(xi) − Γ+(xi). Thus xi is at
least 3 from Ā. So yi ≥ 2 from Ā. So yi is covered by S2 ∪ S3 = {

(x1

xq+1

)
. . .
(x1

xp

)
}

Claim:Thereare |P |
2 vertices in S2 ∪ S3 that cover the vertices covered by S3 Proof.

Consider an auxiliary graph G with vertices S2 ∪ S3. There exists an arc (xi, xj) if 1 ≤ j ≤ q yj is

covered by xi.

Any digraph H has a subset of size |H|
2 that 2 covers any vertex with indegree atleast

1. Proof. exorcise
So there exists a set of size p

2 that 2 covers {x1, ..., xq} in H. So they 4-cover x1, ..., xq via yi in G.
So we 5 cover the vertices covered by S3.

Given the claim we can apply our bicriteria result to find 2 |P |2 vertices that with X S lg∗(n)-cover
everything. Thus we have

Theorem 11 there exists an O(lg∗(n)) approximation algorithm for asymmetric k-center problem.

Theorem 12 There does not exists an approximation algorithm with performance better than
O(lg∗ n).

12 The Knapsack Problem

Problem 18 (Knapsack) Given n objects with

• values: v1, ..., vn

• weights: w1, ..., wn

Finde a collection of objects of maximum value that fit into the bag. We have the IP:

max
n∑

i=1

tivi

s.t.
n∑

i=1

ti · wi ≤ W

ti ∈ {0, 1}

This problem is NP hard. Reduction from Subset-Sum. However this is the “easiest” type of
NP-complete problem in terms of approximation.

12.1 Approximation Schemes

Definition 2 (PTAS) An algorithm A is a polytime approximation scheme(PTAS) for a problem
P if for any instance I and fixed ε

• A gives a solution within ε of opt.

• A runs in polynomial time in the size of I.

Definition 3 (FPTAS) An algorithm A is fully polytime approximation scheme(FPTAS) if is
PTAS and

• A runs in polytime in |I| and 1
ε

We will give FPTAS for Knapsack. First we give pseudo-polytime algorithm (poly in input and
values of data) . We use dynamic programming: Let

• s(i, V) = min weight of subset of {1, 2, ..., i} that give a value of V (∞ if it doest exist).

• These can be found recursively

w(i, V) = min[w(i− 1, V), wi + w(i− 1, V − vi)]

Base cases: w(i, 0) = 0, w(i,−N) = ∞

Finding w(i, V) is constant time. So running time is #w(i, V). For i = 1, ..., n let v∗ := maxivi

so V ≤ nv∗ . Therefore run time is O(n2v∗)(pseudo- polytime) gives us the exact answer.

12.1.1 FPTAS

If v∗ is small this is fine. So we try to make v∗ small.
Algorithm

1. Run D.P with value v̂i := bvi
k c(k to be decided)

2. Output S, the solution to D.P

Claim: S has value within ε of opt. Proof. Let S∗ be optimal, then

v(S) ≥ kv̂(S) ≥ kv̂(S∗) = k
∑
i∈S∗

v̂i

= k
∑
i∈S∗

bvi

k
c

≥
∑
i∈S∗

(vi − k) = v(S∗)− k|S∗| ≥ v(S∗)− nk

so
v(S) ≥ v(S∗)− nk

i.e. set k =
∑

v∗

n

v(S) ≥ v(S∗)− n
εv∗

n

v(S∗)− εv∗

≥ v(S∗)− εv(S∗)

we know that v∗ ⊂ v(S∗).
claim 2This is polytime in |I|α1

ε Proof. v̂ ≤ v∗

k ≈ n
ε so The run time O(n2v̂∗) = O(n3 1

ε

13 Bin Packing

Problem 19 (Bin Packing) Given n items of sizes a1, ..., an ∈ [0, 1] find a packing of the items
into as few unit sized bins as possible.

13.1 2 Approx Algo

1. Place an item into the first bin it fits into

• If it fits into no bins then start a new bin

Theorem 13 This is a 2 approximation algorithm

Proof. Suppose we use m bins. The first m − 2 bins are at least half full.(otherwise we could
combine them). Bins m, and m− 1 must contribute at least 1 unit, otherwise we would not need
to start a new bin. We have

n∑
i=1

ai ≥
1
2
(m− 2) + 1

=
1
2
m

Thus
OPT ≥ 1

2
m

Theorem 14 There is no approximation algorithm with guarantee 3
2 − δ unless P = NP

Problem 20 (Partition Problem) Given a1, ..., an can we partition the numbers into two groups
with equal sum?

Proof. Does the partition problem return true when applied to our items a1, ..., an? It does iff
the items can be placed into 2 bins of size ∑n

i=1

2

So a 3
2−δ approximation algorithm for bin packing solves this problem. A 3

2−δ approximation will
only output at least 3 if the solution is greater than 2. This applies if OPT is small. In some ways
this is misleading as the bound comes from instances with small solutions, but a large number of
items. In fact, we “almost” get a PTAS for this problem. The idea is to partition the items into
big :≥ ε and small < ε.

Lemma 5 There exists a PTAS for bin packing if every item has size at least ε

Proof.

• Sort the items by size.

• Partition them into b := d 1
ε2
e groups of cardinality ≤ S := bnε2c.

• Create 2 new instances I1, I2 by rounding up(respectively down) the size of each item in a
group to the size of the max(resp min).

Claim:Problems I1, I2 can be solved optimally in polynomial time. Proof.

• We have k distinct sizes.

• All items have size at least ε

• Any bin has at most y := b1
ε c items

• The number of different configurations in a single bin is at most X :=
(y+k

y

)
. We can think of

the k + 1 element which means we dont use any of the k sizes. Drop y balls into k + 1 boxes
(+1 means ball not used) there are

(y+k
k

)
ways to do this.

• So we have at most X types of bins. There are at most n bins(# of items). So the total
number of configurations os at most

Z :=

(
n + X

n

)
=

(
n + X

X

)

Since X, y, k are constant we have Z ∈ poly(n) sop we have only a polynomial amount of
configurations to try.

Note that an optimal packing for I1 is feasible for I since sizes are bigger. We want to show
that

OPT (I1) ≤ (1 + ε)OPT (I)

To show this consider I2. Observe that the n− S (where S := bnε2c) largest items in I2 dominate
the n− S smallest items in I1. thus

OPT (I1) ≤ OPT (I2) + S

where we are stupidly just adding S boxes for the top discarded S items from I . Finally each item
has size ε implies

OPT (I) ≥ nε ≥ S

ε

So
S ≤ εOPT (I)

therefore
OPT (I1) ≤ OPT (I)(1 + ε)

How do we deal with the small items?

Theorem 15 There is a poly time algorithm for bin packing that gives you a solution with at most
(1 + 2ε)OPT + 1 bins .(this +1 is bad if OPT is small but negligable if OPT is big).

Proof.

• Run previous algorithm on big items

• Greedily add in the small items

If no new bins opened then we use at most (1 + ε)OPT bins. Suppose m bins are used. The
first m− 1 have less then ε space left. So

OPT ≥ (m− 1)(1− ε)

therefore
m ≤ OPT

1− ε
+ 1 ≤ (1 + 2ε)OPT + 1

14 Unsplittable Flow Problem

Definition 4 (Unsplittable Flow) An unsplittable flow is a flow that satisfies each of the de-
mands using a single path and it satisfies arc capacities.

Problem 21 (Unsplittable Flow) Given directed graph G = (V,A) with arc capacities ua, there
is a set (si, ti), i = 1, ..., k of source-terminal pairs with demand di units from si to ti.

Problem 22 (Congestion Problem) What is the smallest α ≥ 1 such that there is a feasible
unsplittable flow if we multiply all arc capacities by α

We would like our approximation algorithm to find α.

• We assume here si = s ∀s

Solves partition problem if α = 1 on two nodes s, t with two arcs from s to t each with half the
capacity.

Theorem 16 Any feasible fractional flow can be converted into an unsplittable flow with at most
twice the congestion provided that dmax ≤ umin

EX: Find min congestion feasible fractional flow using an LP

14.1 Algorithm(single source)

1. Find fractional flow f

2. Preprocess f

• Assume acyclic

• Given f , greedily move back terminals towards source if di ≤ fa on an incoming arc.

After preprocessing all terminals are called regular: di > ua for all in coming arcs.

3. Augmenting Cyles

• Pick any vertex and grow forward path to a sink= outdegree = 0 in G. There is a sink
since we have no cycles.

• Grow a backward path along singular arcs: (u, v) is a singular arc if there is a unique
path from v to a unique sink.(All out degrees from v to sink are 1).

• Repeat until reach vertex we have seen. i.e. cycle

4. Augment Cycle

• decrease flow by ε on forward arcs.

• increase flow by ε on backward arcs.

• ε = min[ε1 := mina forwardfa, ε2 := mina backward(di − fa)]

• So we either remove arc or get di = fa on a singular arc. Note we maintain flow
constraints.

• After Augment we:Priority

(a) a singular and fa = di

(b) a non singular and fa ≥ di

• we then find another cycle and repeat until all terminals at source.

Singular arcs remain singular.

Theorem 17 if v contains an irregular terminal then

1. deg−(v) = 0 (outdegree is zero)

2. v has no other irregular terminal

3. v contains a regular terminal

We have dj ≤ fa as j is irregular. Hence fa > dj or it would have been moved back by (a). a
is singular by (b) or it would have been moved back by (a).

Claim:To create an irregular terminal j must have been moved back along a singular arc say
(v, w).

By ε2, fa can’t have gone from below dj to above dj whilst j was at v. THerefore fa > dj

when j is moved to v. Therefore a is singular at this time or make move (2). Therefore â(v, w) was
singular at this point. Therefore fâ = dj So fâ becomes 0 and is removed. v had out degree 1 before
so outdegree(v) = 0 (A). (B) So when irregular terminal moves to v we then get outdegree(v) = 0
so no other irregular terminals can move to v. (C) v contains a regular terminal since we have
fa > dj but outdegree(v) = 0 therefore there exists another terminal at v therefore by (B) this
terminal is regular.

Corollary 3 At start of phase the in degree of any vertex with a terminal is at least 2.

Proof. it contains a regular terminal.

Lemma 6 Alg gives an unsplitable flow

Proof. Forward paths hit sink. The sink has a regular terminal therefore indegree is atleast 2. So
we can find backward path of singular arcs. So find cycle.

Proof Of Main theorem: Proof. The flow increases only on singular arcs. Once an arc is
singular but since fa = dj we then remove a. Therefore we can only send 1 extra packet above its
capacity ≤ dmax ≤ ua so total flow ≤ ua + dmax ≤ 2ua.

• 5 approximation algorithm if ua < dmax

• Demand max: Max sum of demands satisfied without exceeding capacities 4− 43 approx

• Round min use k phases to satisfy demands k = 5

15 Confluent Flows

Chen et al.

Definition 5 (Confluent) A flow is confluent if all packets leaving a vertex go out along the
same arc if they have the same destination.

• If there is a single destination t then a confluent flow is an aborescence.

This is interesting since most internet routing is destination-based. e.g. shortest path routing.
Confluent flows do not seem good for minimizing congestion. How good/bad are they? Single

Commodity:i.e. one sink t.

• Uniform capacities ua = 1.

• Remove t to give “sinks” t1, ..., tk.

• special case : di := 1∀i.

• Find a spanning tree with root t such that the max size of a subtree is minimized.

We are interested in “node” congestion at t1, t2, ..., tk. Worst node congestion here equals worst
arc congestion before.

15.1 Algorithm

We start with a splittable (fractional) flow that minimizes node congestion. (WLOG congestion =
1). i.e.

flow in v + dv = flow out of v

We take an LP formulation ∑
a∈δ−(v)

fa + dv =
∑

a∈δ+(v)

fa

∑
a∈δ+(v)

≤ 1

Want to turn this into a low congestion confluent flow. We use 3 operations: We assume f is
acyclic.

1. Node Aggregation: If node v only has arcs going to one sink ti (Ti) we contract v into ti
using only one of its arcs. This does not change the max congestion which is at t1

2. Breaking saw-tooth cycles: We look for cycles between “frontier” nodes and sinks.

• Add a reverse arc (ti, v) for any arc (v, ti) and look for a dicycle of length greater than
2.

Blue paths long, yellow have 1 edge.

• increase the flow by ε on yellow arcs (rev of yellow arc).

• decrease the flow on blue arcs by ε.

We still have flow constraints on non-sinks. Congestion falls/stays the same on these nodes.
If we extend this into ti then we maintain ε flow. The congestion is the same at root (or
where blue, yellow paths meet) so max congestion still does not go up.

3. Sink Deactivation: If we can not do (1) or (2) then there must be a sink ti with only one
neighbour v (check this)

Let bi be the congestion of ti.

• if bi + f(v, tj) < bj − f(v, tj) we remove arc (v, tj) and send the flow to ti.

• Otherwise we remove arc (v, ti) and send its flow to tj . “Deactivate” ti.

Repeat these steps until we have a confluent flow. observe that (1) and (2) do not increase
max congestion. (congestion never increases for non-sink nodes, even for S. i.e. congestion ≤ 1) To
evaluate (3) we use a potential function

φ(f) =
∑

ti active

2bi

initially
bi ≤ 1 so φ(f) ≤ k · 21 = 2k

We will show that φ only decreases.
φ(f ′) ≤ 2k

so ∑
active

2bi ≤ 2k ⇒ bi ≤ O(log k)

•

bi + f(v, tj) < bj − f(v, tj)

2bi + 2bj → 2bi+f(v,ti) + 2bi−f(v,tj)

By convexity this is smaller.

• t2 is deactivated so 2bi ≤ φ(f) ≤ 2k So bi ≤ O(log k).

• For active nodes the change φ(f ′)− φ(f)

−2bi − 2bj + 2bj+f(v,tv) ≤ 2bj+f(v,ti) − 2bj − 2bj−2f(v,ti)−i

bi > bj − 2f(v, tj)

≤ 2bj+f(v,ti) − 2bj+1−f(v,tj)

Convexity
2bj + 2bj−2f(v,tj) ≥ 2 · 2bj−f(v,tj)

as long as v ≤ 1 we have
f(v, ti) + f(v, tj) ≤ 1

(f → f ′).

Corollary 4 This is an O(log k) approximation algorithm.

It is NP hard to do better than O log k. This LP analysis is tight.

16 Semi Definite Programming

We often use an LP relaxation to approximate the set we are optimizing over. Problems:

• Sometimes relaxation is not“tight” enough. Here we look at non linear relaxations that may
be tighter.

16.1 Linear Algebra

The following are equivalent :

• X is positive semidefinite � 0

• yT Xy ≥ 0 ∀y ∈ Rn

• All eigenvalues of X are non-negative

• X := V T V for some m× n matrix V .

Proof. Exercise
Given A,X(n × n) set A ◦ X :=

∑
i,j aij · xij = trace(AT X) Then a semi definite program is

formulated as
max C ◦X

s.t. Ai ◦X = bi

X � 0, X symmetric

or ∑
ij

cijxij

s.t.
∑
ij

ak
ijxij = bk

(xij) � 0

xij = xji

If C,Ak are diagonal matrices we get an LP . Semi definite programs ca be solved in polytime
(also in log 1

ε by ellipsoid method, or interior point methods to within ε of Opt.

• We have now Covered ellipsoid method

Given X is positive semi definite we can find V such that X = V T V in polytime (within ε).
Semi definite programming is equivalent to vector programming.

max
∑
i,j

cij(vi · vj)

s.t.
∑
ij

ak
ij(vi · vj) = bk ∀k

vi ∈ Rk

because X is positive semidefinite and symmetric X = V T V

17 Max Cut

Given G = (V,E) and weights ce ∀e ∈ E find S ⊆ V such that
∑

e∈δ(S) ce is maximized. Unlike
min-cu, max-cut is NP hard. For a long time factor 2 was the best known approx alg.

17.1 Goemans , Williamson

max
∑
i<j

cij(
1− vivj

2
)

Vi ∈ {−1, 1} ∀i ∈ V

So we have the vector program relaxation

max
1
2

∑
i<j

cij(1− vivj

s.t. vi · vi = 1

vi ∈ Rn

So we solve this V P to get v1, v2, ..., vn. What do we do with these? Easy pick a random vector
r and let S = {i : r · vi ≥ 0} picking a random hyperplane to divide the vectors into 2. By linearity
of expectation we can focus on a single edge (i, j). What matters is just the probability that vi, vj

are separated by H. This depends only on the orthogonal projection of r onto the plane given by
vi and vj . As r · vi = (r1 + r2) · vi = r1 · vi , r · vj = r1 · vj .

Lemma 7 P (i, j separated) = 1
πarccos(vi · vj) = φij

π

Corollary 5 SDP gives

E(SDP) = E(
∑

e∈δ(S)

ce) =
∑
i<j

cij
φij

π

Is this any good? ∑
i<j cij

φij

π
1
2

∑
i<j cij(1− vivj)

≥ mini<j
φij

π
· 1

1
2(1− vivj)

=
2
π

mini<j
φij

1− cosφij

≥ 2
π

min0<φ<π
φ

1− cos(φ)

≥ 0.878

Lemma 8 For 5 cycle Opt
UpperBound ≈ 0.884

In fact there are examples where the gap is 0.878.

Theorem 18 (Haastad) there is no 0.941 approximation algorithm for max cut

18 Applications

• Max 2-SAT

18.1 Vertex Coloring

Given G. Assign min number of colors to vertices such that i, j have different colors if (i, j) ∈ E.
This is notoriously hard to approximate

Theorem 19 Unless P = NP not approximable to within n
1
7
−ε , n1−ε unless P = ZPP .

In certain cases we do okay. i.e. can test in polytime if χ(G) = 2.

Theorem 20 (Widgeson) If G is 3 colorable there is a O(
√

n) approximation algorithm

Proof. see HW #1.

To beat this we use a SDP approach. We can partition the graph into 3 stable sets. Assign
each group to a vector y1, y2, y3. We will insist if (i, j) ∈ E then vi, vj are at 120◦. This motivates
the following vector progam:

min λ

vi · vj ≤ λ ∀(i, j) ∈ E

vi · vj = 1 ∀i ∈ V

vi ∈ Rn ∀i ∈ V

Ex: Formulate as an SDP

φij ≥ arccos(λ) . We know λ ≤ −1
2 . So we have v1, ..., vn. Pick t random vectors r1, ..., rt

where t := 1 + log3(∆). Each vector vi has vi · rj ≤ 0 : − or vi · rj > 0 : +. So vi has a type
(+ + − −+ − + + + − −−)length t there are 2t types 21+log3(∆) = 22log3(∆) = 2∆log3(2). We use 1
color per type. The problem is that this may not be feasible. If there are not many bad edges this
is not a problem. Suppose ≤ n

3 edges are bad. Then at least n
3 vertices S which are not adjacent

to a bad edge. Recurse on G − S using new set of colors. Therefore edges in δ(S) are good. We
get a valid coloring on G[V − S]. Use O(log(n)∆log3(2)) colors in total.

How many edges are bad?

P (ij is bad) = (1− φij

π
)t

≤ (1− arccos(λ)
π

)t

≤ (1−
arccos(−1

2)
π

)t

= 1− 2π

3
1
π

=
1
3

t

= (
1
3
)1+log3 ∆ =

1
3∆

Lemma 9 E(# bad edges) ≤ n
6

Proof. There exist m edges with m ≤ n∆
2 thus n∆

2
1

3∆ = n
6

By Markovs inequality the probability there are at least n
3 bad edges is ≤ 1

2 . Repeat c · log(n)
times. Probability we get n

3 bad edges is (1
2)c log(n) ≈ 1

nc .

Corollary 6 There exists O∗(∆log3(2)) approximation algorithm to color 3 colorable graphs.

Proof. O∗ means ignore lower order terms such as log(s) . But if ∆ = n this
is O∗(n.63). How do we fix this? Run hybrid with Widgerson. ApplyO(n

p) iterations of Widgeson.
For the case degree ≥ p. Then apply SDP to use O(plog3(2) colors.

Corollary 7 there is a O∗(n.387) approximation algorithm.

Proof. Use O(n
p + plog3(2)) colors. This is minimized n = p1+log3(2) ⇒ p = n0.613

We can improve this.

Theorem 21 There exists an O∗(n
1
4) approximation algorithm if χ(G) = 3.

Proof.

• Solve SDP

• Pick t = O∗(∆
1
3) round vi to closest rj

• Ignore bad edges and recurse.

It can be shown that P (ij bad) ≤ O∗(1
∆)... This gives O∗(n

p + p
1
3) coloring. n = p

4
3 ⇒ O∗(n

1
4)

colors.
These methods extend to χ(G) = k.

19 LP Duality

Take an LP in standard form:
min cx

s.t. Ax ≥ b

x ≥ 0

We would like to know if we can get a lower bound(any feasible solution gives an upper bound)
, take for example

min 7x1 + x2 + 5x3

s.t. x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

by adding constraints together we can derive other inequalities e.g.

7x1 + x2 + 5x3 ≥ 6x1 + x2 + 2x3 ≥ 16

More systematically we are choosing multiples yi of row i, such that∑
i

yiaij ≤ ci ∀j

and
y ≥ 0

this gives us lower bound ∑
i

biyi

We want the maximum lower bound so in general we have

max yb

s.t. yA ≤ c

y ≥ 0

which we call the dual.

Theorem 22 (Weak Duality) for any feasible x, y for primal, dual programs we have yb ≤ cx

Proof.
yb ≤ y(Ax) = (yA)x ≤ cx

Perhaps, surprisingly we have something stronger

Theorem 23 (Strong Duality) If the primal and dual are feasible then their objective optimal
values are the same.

cx∗ = y∗b

Proof. see combinatorial optimization notes.

19.1 Complimentary Slackness

Weak duality proof tells us that feasible solutions x, y are optimal iff the following hold

Theorem 24 (Primal complimentary slackness) (yA)x = cx, i.e. xj > 0 ⇒
∑m

i=1 aijyi = cj

similarly

Theorem 25 (Dual complimentary slackness) yb = xAy i.e. yi > 0 ⇒
∑n

j=1 aijxi = bi

Many classical results in combinatorial optimization can be derived from combinatorial opti-
mization.

20 Linear Programming and Approximation Algorithms

Here we see how LP duality can be used to evaluate the performance of an algorithm.

20.1 Meta Method

1. Formulate problem as an integer program

2. Relax to LP (primal)

3. Use the dual as lower bound and compare against solution by algorithm (any dual feasible
solution can be used)

Lets apply this to set cover

20.1.1 Set Cover

sets S1,, St costs c1, ..., ct.

1. C := ∅

2. Pick set Sj which covers uncovered elements at the lowest average cost

3. C := C ∪ S|

4. repeat until C is a set cover

let µj = cj

of items first covered by Sj
We have (P)

min
t∑

j=1

cjxj

s.t.
∑

Sj :vj∈Sj

xj ≥ 1∀i

xj ≥ 0

Note that A has a row for each element and a column for each set. So we have the Dual

max
n∑

i=1

yi

s.t.
∑

vi:vi∈Sj

yi ≤ cj ∀Sj

yi ≥ 0

recommends that we practice taking the dual.
Let Greedy give integral solution x of cost cost(x). We want a dual solution y such that

cost(x) ≤ αdualcost(y) ≤ αdualopt = αprimalopt ≤ αopt

i.e. an α approximation algorithm. To get this define y as

yi =
1

Hn
µj(i)

where vi is first covered by Sj(i) in greedy, where j(i) is the first set which covers i in greedy. Lets
set that y is dual feasible. yi ≥ 0. We want to show that∑

vi:vi∈Sj

yi ≤ cj ∀Sj

Let Sj := {vi, ..., vp} in the order that they were covered by greedy. Take vr ∈ Sj . At this point
vr, ..., vp are uncovered,so Sj could be chosen with µj ≤ cj

p−r+1 . So yr ≤ 1
Hn

µj(r) ≤ 1
Hn

µj = 1
Hn

cj

p−r+1
therefore

p∑
r=1

yr ≤
1

Hn

p∑
r=1

cj

p− r + 1

=
cj

Hn

p∑
r=1

1
r

= cj
Hp

Hn

≤ cj
Hn

Hn
= cj

now
cost(y) =

∑
i

yi =
1

Hn
=

1
Hn

∑
i

µj(i)

=
∑
Sj∈C

1
Hn

∑
vi first covered by Sj :j(i)=j

µj

=
1

Hn

∑
Sj∈C

cj

=
1

Hn
cost(x)

i.e. O log(n) approximation algorithm.

21 The Primal Dual Method

Lets first see how to use LP duality to solve LPs. This is the Primal Dual method due to Dantzig,
Ford and Fulkerson.

(P) min cx

s.t. Ax ≥ b

x ≥ 0

(D) max by

yA ≤ c

y ≥ 0

We know feasible (x, y) are optimal if they satisfy complimentary slackness conditions:

(P) xj > 0 ⇒
m∑

j=1

aijyi = cj

(D) yi > 0 ⇒
n∑

i=1

aijxj = bi

The idea is:

• Start with a feasible y to dual.

• Either find x such that (x, y) satisfy complimentary slackness or find y′ with higher dual value
than y.

• repeat

How do we do this? Given y lets try to find an x that satisfies complimentary slackness with y.
We use an LP.

(ResP) min
∑

i:yi>0

si +
∑

j:
∑

i=1
aijyi<cj

xj

s.t.
n∑

j=1

aijxj ≥ bi

∑
j=1

aijxj − si = bi

si ≥ 0

xj ≥ 0

This imposes dual complimentary slackness via constraints, and the objective function enforces
primal conditions when xj = 0. Observe if Opt(ResP) = 0 then (x, y) are optimal in original P
and so we are done. So assume Opt(ResP) > 0 and

(ResD) max
n∑

i=1

biŷi

s.t.
m∑

i=1

aij ŷi ≤ 0 ∀j :
n∑

i=1

aijyi = cj

m∑
i=1

aij ŷi ≤ 1 ∀j :
n∑

i=1

aijyi < cj

ŷ ≥ −1 ∀i : yi > 0

ŷi ≥ 0 ∀i : yi = 0

Exercise : check that (ResD) is the dual of (ResP)

since Opt(ResP) > 0 this implies ResD has Opt > 0. Take a solution ŷ with value greater than
0. y′ = y + εŷ. Want y′ feasible and of higher value than y in D.

bT y′ = bT (y + εŷ) = bT y +
∑

bT ŷ > bT y

So we want ε such that y′ is feasible in D. We know y ≥ 0.

y′ = y + ε1ŷ ≥ 0

This is true since if −1 ≥ ŷ < 0 then yi > 0 so pick ε1 to give tightest constraint. (if ŷ ≥ 0 there is
nothing to show).

Similarly
∑m

i=1 aijy
′
i ≤ cj for some ε2 > 0 since if

∑
aij ŷi > 0 then

∑
aijcj < cj .

• Take the most restrictive

• Set ε := min(ε1, ε2)

So y′ is feasible. So P − D method leads to optimal solution. But we have reduced LP to a
collection of LP s! There are two advantages:

• – Objective function in P is 0, 1.

– Constraints in ResD have 0− 1 on RHS. i.e. no c.

• – The unweighted problems can often be solved combinatorially

Many classical combinatorial optimization algorithms can be understood in terms of the primal dual
method. i.e. Hungarian method for assignment problem(Kuhn), Edmonds matching algorithm,
Ford Fulkersons network flow algorithm. Even Dijkstra’s shortest path algorithm.

In general it is not practical for solving LP s. However the ideas are very useful for approximation
algorithms.

21.1 Primal Dual Method for Approximation Algorithms

Maybe not obvious since approximation algorithms use I.P s not LP s! These don’t usually have
nice max-min results for integral solutions. We also need integral solutions to primal. What do we
do? we relax the complimentary slackness conditions.

Let x, y be feasible primal dual solutions satisfying for α, β ≥ 1.

• Approximate Primal complimentary slackness conditions

xj > 0 ⇒
m∑

j=1

aijyi ≥
1
α

cj

• Approximate Dual Complimentary slackness conditions

yi > 0 ⇒
n∑

i=1

aijxj ≤ β · bi

Lemma 10 If so
val(x) ≤ αβval(y) ≤ αβopt(LP) ≤ αβopt(INT)

Proof.

cT x ≤ α(AT y)T x = αyT Ax ≤ αβbT y

So if x is integral and we find such a Y (can be fractional) then x is an αβ approximate solution.
Lets see how we can apply this to set cover :

min
∑
j

cjxj

s.t.
∑

Sj :vi∈Sj

xj ≥ 1 ∀vi

xj ≥ 0

Take the dual we have
max

∑
i

yi

s.t.
∑

vi:vi∈S

yi ≤ cj ∀Sj

yi ≥ 0

These types of primal -dual problems are known as packing - covering . Let f be the maximum
number of sets any element is in. Now set α = 1, β = f .

So we need to satisfy

xj > 0 ⇒
m∑

i=1

yi = cj

and

yi > 0 ⇒
n∑

j=1

xj ≤ f

21.1.1 The Primal Dual Algorithm

1. typically start with x = y = 0 is a dual feasible solution

2. increase y , keeping it feasible and try to improve the “feasibility” of x.

3. We do this maintaining approximate complimentary slackness conditions until x is feasible

Lets apply this to Set Cover:

1. x := 0, y := 0

2. if x not feasible then there is some element vi which has not been covered.

3. While x is not feasible DO:

(a) Pick uncovered vi

(b) Increase yi until some set Sj 3 vi becomes tight in the dual.

(c) So picking Sj covers at least one new element

(d) Update as covered any newly covered element.

Theorem 26 This is an f approximation algorithm

Proof. We have produced an integral feasible x in polytime. The primal complimentary slackness
conditions are tight. Since we have produced a 0, 1 solution, by the definition of f we have satisfied
the dual complimentary slackness conditions.

This analysis is tight.

21.1.2 Multi commodity Flows and Multicuts

Definition 6 (Multicut) Given G := (V,E) with edge capacities ue , wource sink pairs (s1, t1), ..., (sk, tk)
Multicut is a set of edges whose removal disconnects all pairs si, ti.

Problem 23 (Min Multicut) Find a minimum capacity multicut

This simple case is still NP − hard. To see this take an instance of vertex cover on Star =
vcentre, v1, ..., vn. (vi, vj) is source-sink pair if and only if (vi, vj) ∈ E. An edge set (vcentre, vi)i∈C

is a multicut if and only if {vi}i∈C . is a vertex cover.
Let Pi be a path from si to ti in T .

min
∑

uexe

s.t.
∑
e∈Pi

xe ≥ 1 ∀i = 1 . . . k

xe ≥ 0

The Dual is
max

∑
yi

s.t.
∑

Pi:e∈Pi

yi ≤ ue ∀e

yi ≥ 0

An integral solution to the dual is an integral multi commodity flow. Where yi is the number of
units of flow from si to ti. So fractional multicut equals fractional flow for LP optima.

We have (PCS)
xe > 0 ⇒

∑
i:e∈Pi

yi = ve

and (DCS)
yi > 0 ⇒

∑
e:e∈Pi

≤ 2 · 1 = 2

Thus we will have a 2 approximation algorithm for minimum multicut on trees. We change y
integrally so we get a 2 approximation algorithm for integral multi commodity flow as well.
Algorithm

1. C := ∅, F := ∅

2. Root T at some vertex r

3. Phase 1: Work up from leaves

(a) Given v for all (si, ti) with least common ancestor (lca(si, ti) = v greedily route
flow integrally from si to ti

(b) Add to C all edges that becomes tight

4. Phase 2: clean up let C := {e1, ..., ei} in order.

(a) For j = i to 1 (reverse order)

(b) if C − ej is a multicut set C := C − ej

Lemma 11 Let (si, ti) have non zero flow. Then |Pi ∩ C| ≤ 2 which means we satisfy (DCS).

Proof. Let lca(si, ti) = v. We show that at most 1 edge from si − v is chosen, and at most 1 edge
from ti − v is chosen. Suppose e, e′ are chosen on si − v with e deeper. Consider reverse delete
step when e is examined. It is not removed so there is some (sj , tj) with Pv ∩ C = {e}. So e′ ∈ Pj

implies that lca(sj , t) are below e′.
So v is above v′ too. So for phase examining v′ to end there is some e′′ ∈ Pj that hits capacity.

There is flow from si to ti. We can only add this flow in phase v = lca(si, ti). So e was added to C
in phase v or later. So e is added after e′′ so e′′ ∈ Pj ∩ C when we test e in reverse delete. ⇒⇐

There are O log(k) approximation algorithms for multicut in general graphs. There no non
trivial approximation algorithms of integral multi commodity flow in general graphs. There are big
integrality gaps for typical LPs.

22 The Steiner Forest Problem

Problem 24 (Steiner Forest) Given G := (V,E) with edge costs ce and disjoint vertex sets
V1, ..., Vk ⊆ V . Find a min cost sub graph such that all vertices in Vi are connected for all i.

To formulate as an LP let rij = 1 if i, j ∈ Vp , 0 otherwise. Let f(S) = 1 if we have i ∈ S, j /∈ S
with rij = 1. 0 otherwise.

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ f(S) ∀S ⊆ V

xe ≥ 0

Dual
max

∑
S

f(S)yS

∑
S:e∈δ(S)

yS ≤ ce ∀e

yS ≥ 0

The primal dual algorithm usually wants : PCS xe > 0 ⇒
∑

S:e∈δ(S) yS = ce and DCS: yS >
0 ⇒

∑
e∈δ(S) xe ≤ 2f(S) However in our case making this work is an open problem.

Relax DCS

• Instead of a chosen S having at most 2 edges

• A chosen S has at most 2 edges ‘on average’

One obstacle is that there are an exponential amount of cuts. During the algorithm we say S
is unsatisfied if

• f(S) = 1

• |F ∩ δ(S)| = 0 where F is current solution.

We say that S is active if it is a minimal unsatisfied set. Observe S is active if and only if it is
a component of F and f(S) = 1. We can find these in linear time by BFS. a component is active
if |S ∩ Vi|, |S̄ ∩ Vi| ≥ 1 for some i. If there are no active sets then x must be feasible.
Algorithm

1. F := ∅, yS := 0 ∀S

2. Repeat until no unsatisfied sets(no active sets)

(a) Raise yS for all active sets until some edge e is tight.

(b) F := F ∪ e

3. Return F̂ := {e ∈ F : F − e is infeasible}

F̂ is feasible. In the first phase we never add an edge with a component. (only add one edge at
a time). So F is a forest. Therefore there is a unique path from i to j for i, j ∈ Vp. So take R ∈ Pij ,
F − e disconnects i and j so keep e ∈ F̂ . So algorithm is polytime and gives feasible solution. Lets
analyse it.

Theorem 27 This is a 2 approximation algorithm

Proof. We want to show that
∑

e∈F ce ≤ 2
∑

S yS∑
e∈F̂

ce =
∑
e∈F̂

(
∑

s:e∈δ(S)

yS)

=
∑
S

∑
e∈δ(S)∩F̂

yS =
∑
S

yS |F̂ ∩ δ(S)|

Claim: Let ∆i := the raised dual weights in iteration i of the first phase. Then ∆i
∑

S fl in phase i |F̂∩
δ(S)| ≤ 2∆i · number of active sets in phase i Proof. We want to show

∑
S active phase i

|F̂ ∩ δ(S)|
active sets phase i

≤ 2

Look at H = (V, F̂) and contract the components of Fi at iteration i. Each active node S in
iteration i must have |δ(S) ∩ F̂ | ≥ 1. So isolated nodes are non active. Remove all non-active
nodes. The remaining non active nodes share |δ(S′)∩ F̂ | ≥ 2 (as not leaf) Suppose δ(S′)∩ F̂ = e it
is non redundant so e needed to connect i, j ∈ Vr so WLOG i ∈ S′, j ∈ S′ ⇒ S′ is active as rij = 1.

So non active nodes have degree at least 2 in a Forest. The average degree in a forest is at most
2(n−1)

n ≤ 2. Therefore active nodes have average degree less than 2. i.e.∑
S active phase i |F̂ ∩ δ(S)|
active sets phase i

< 2

(this is tight)

23 Facility Location Problem

We have a set F of facilities and a set C of cities.

• Cost cf to open facility f ∈ F

• Costs dif to connect city i to facility f (service i from f).

Problem 25 (Facility Location) We want a minimum cost solution subject to the constraint
that every city is connected to some facility.

Variant:

• can open at most k facilities. This is k median problem

We formulate the FLP as an IP.

min
∑
i∈C

∑
f∈F

difxif +
∑
f∈F

cfyf

s.t.
∑
f∈F

xif ≥ 1

xif ≤ yf

xif ∈ {0, 1}

yf ∈ {0, 1}

taking the linear relaxation we have (P)

min
∑
if

difxif +
∑
f

cfyf

s.t.
∑
f

xif ≥ 1 ∀i

yf − xif ≥ 0 ∀i, f

xif ≥ 0

yf ≥ 0

and (D)
max

∑
i∈C

αi

s.t. αi − βif ≤ dif ∀i, f∑
i∈C

βif ≤ cf ∀f

αi ≥ 0 ∀i

βif ≥ 0 ∀i, f

What are the complimentary slackness conditions? PCS

1. xif > 0 ⇒ αi − βif = dif

2. yf > 0 ⇒
∑

i∈C βif = cf

DCS

1. αi > 0 ⇒
∑

f xif = 1

2. βif > 0 ⇒ yf = xif

Suppose F ∗ ⊆ F is an optimal integral solution, and σ : C → F ∗ is corresponding connection.
We view (α, β) as “paying” for the primal solution.

We again want a dual solution that “approximately” pays for an integral primal solution. Unlike
the other primal dual problems we have seen, now

• there are different types of constrains

• Not packing/covering

• there are negative coefficients

Here we relax PCS, but not DCS.
Algorithm

1. We raise αi, βi dual variables over time t

2. Raise αi by 1 at time 1 etc...

3. If we reach f then also raise βif .

4. We do this simultaneously for each city. e.g. more than 1 city pay for a facility.

5. We stop growing αi, βif when

6. i is connected to some facility that is completely “paid for”(has reached). We say such a
facility is “temporarily open”

7. i is connected to the first “temp open” facility f it has reached c(i) = f . (in this case we say
f is a witness for i)

8. Algorithm stops when all the duals have stopped growing.

The problem is that a city may pay βif > 0 to lots of facilities. So the dual does not actually
pay for the integral solution we found. If you only contribute to one facility this would work. Let
F̂ = temporary open facilities. Take F̂ we have (f, f ′) ∈ E if there is some i that contributes
to both f and f ′. Take a maximal stable set S ⊆ F̂ . clearly no city contributes to more than 2
facilities in S. But most cities may not be connected. So for Phase 2:

1. Connect i to f ∈ S if σ(i) = f i.e. f is a witness for i.

2. if σ(i) = f ′ /∈ S then there is some (f, f ′) edge so connect i to f .

How good is this algorithm? To get a 3 approximation algorithm approx PCS:

1. xif > 0 ⇒ 1
3dif ≤ αi − βif ≤ dif

2. yf > 0 ⇒ 1
3cf ≤

∑
i βif ≤ cf

We prove something stronger.

• (2) is not relaxed.

• (1) relax indirectly connected cities. Not relaxed for directly connected cities.

• i indirectly connected ⇒ βif = 0 ∀f

• Directly connected cities pay for S. ∑
i:σ(i)=f

βif = cf

• Directly connected i ⇒ αi = di,σ(i) + βi,σ(i)

Lemma 12 i indirectly connected to f ⇒ dif ≤ 3αi

Proof. i′ contributes βi′f , βi′f > 0. This means they both open after time max[di′,σ(i), di′,f] ≤ α′
i ≤

min(t′, t) ≤ αi. σ(i) is a witness for i , so αi ≥ t′. We assume triangle inequality in d(otherwise its
hopeless). So di′f ≤ 3αi.

Therefore this is a 3 approximation algorithm.

24 Euclidian TSP

There is no PTAS for metric TSP unless P = NP . What if distances satisfy a stronger property
than the triangle inequality? Here we take points on the plane(more generally in Rd).

Theorem 28 (Arora) There is a PTAS for Euclidean TSP

Assume:

• the maximum distance is n2 = L where n is a power of 2(by scaling)

• We can round each vertex to the nearest unit grid point. Let d(v, v′) be the distance from v
to the nearest point on the grid. We have

Opt′ ≤ Opt + 2
∑
v

d(v, v′)

≤ Opt + 2n

Opt ≥ 2n2

i.e.
Opt′ ≤ (1 +

1
n

)Opt

We want to use Dynamic programming. To do this we want to show there is a “near” opti-
mal tour with a nice structure. This nice structure will allow us to search for it using dynamic
programming(i.e. search all tours with this nice structure).

1. First we partition the grid up as follows. Draw two orange ‘type 0’ lines to divide up the
grid into 4 equal regions. For each region repeat and draw two pink ‘type 1’ lines to divide
the region into 4 equal regions. In general a level i + 1 line is half the length of a level i
line.(although sometimes we will abuse notation and consider the union of level i+1 lines.)

2. We add ‘portals’ on each line.(m = 2 log(n)
ε) equidistant L

2im = εL
2i2 log(n)

We say a tour if ‘nice’ if:

• It visits each vertex

• It crosses lines only at portals(or vertices)

• Portals can be used many times but no other point can.

We a tour is very nice if

• It visits portals at most twice

Lemma 13 Given a nice tour, there is a very nice tour of at most the same length

Proof. Suppose a portal is used at least 3 times. Then we can short cut it. If you create a crossing
at an interior point then shortcut that.

Theorem 29 The best very nice tour can be found by dynamic programing in time 2O(m) = nO(1
ε
)

Proof. Any unit square has at most 4m portals. So there are at most 8m visits to these portals.
This corresponds to at most 4m non-crossing paths between portals. Each portal is used 0, 1 or 2
times. i.e. 34m = nO(1

ε
) possibilities. There are n4 squares. Given the portals(there are an even

number of which say r) we have at most 23r ≤ 28m = nO(1
2
) valid pairings.

22r can be shown using Catalan numbers. There are p pairs of brackets so 1
p+1

(2p
p

)
< 22p. We

store all these nO(1
ε
) possible solution. For each square, given a bigger square S. There are nO(1

ε
)

enter/exit possibilities. What are their costs? The pairing must be consistent with the routings in
S1S2s3S4. We check all possibilities. Which we can do as we only have nO(1

ε
) table entries for each

of the 4 squares.
Finally at the top square the pairing should give a tour.
So we can find the best very nice tour. But this may not be near Opt. But there is if we

randomly shift the partition by (a, b). Let τ be an optimal tour. Let N(τ) be the number of times
it crosses a grid line.

Lemma 14 N(τ) ≤ 4Opt

Proof. Let e ∈ τ have distance de ≥ 1. Say for (x1, y1) to (x2, y2) it crosses at most

|x1 − x2|+ 1 + |y1 − y2|+ 1 ≤ 4de

Lemma 15 Given τ and a random shift, there is a very nice tour with expected cost at most
(1 + 4ε)Opt.

Proof. When we move an edge to cross at a portel, the cost increases by at most the interportal
distance. This distaince is L

2im on level i line. There are 2i horizontel level i lines, L lines in total.
So expected cost of moving to a portal

∑
level i

2i

L
· L

2im
=

∑
level i

1
m

=
2 log(n)

2 log n
ε

= ε

We have at most 4Opt crossings . So total increase in cost is at most ε4Opt
So a random one will be good. Or try all n4 possibilities.

25 2 Connectivity

Assignment #4 question 5 should be G− S is a tree, not bipartite.
A Graph G is 2 edge connected if there are 2 edge disjoint paths between any pair of vertices.

This is equivalent to saying G has minimum cut at least 2 by Mengers theorem.

Problem 26 (2EC) Given 2 edge connected graph G find a minimum sized spanning subgraph
H ⊆ G such that H is 2 edge connected.

This is NP hard. Includes Hamelton cycle as a special case.
To obtain an approximation algorithm we use a DFS Tree

• Back edge connects ancestor to descendent

• there are no cross edges.

Let Ti be subtree of T rooted at vertex i. Let bi be the deepest back edge emanating from Ti

(goes as close to r as possible). This bi exists or ei(the edge closest to r touching vi is a cut edge.

Algorithm

1. Find DFS tree T. Set H := T

2. Work up from leaves. At vertex i: if ei is a cut edge in H set H := H ∪ bi

This gives a feasible solution. H is 2 edge connected. Take e ∈ H e = ei tree edge. (ei is not a
cut edge or we would have already added bi). e = bi then cant be cut edge as a − b path is in T .
This is clearly Polytime.

This is a 2 approximation algorithm.

• |T | = n− 1

• the number of back edges is at most n− 1.

• Opt ≥ n (Hamelton cycle is best possible)

In fact the algorithm is better than this. We need to tighten the lower bound. Say we add
k back edges. Call these bv1 , bv2 , ..., bvk

= b1, ..., bk. Let the corresponding tree edges be e1, ..., ek.
Observe that T − {e1, ..., ek} contains exactly k + 1 components.Contracting components V1, ..., Vk

to nodes gives a tree T̂ with k + 1 vertices. We claim that T̂ is a tree carving

Definition 7 (Tree Carving) A partition of V into W1, ...,Wk such that

• Each Wi is a node in a tree Γ.

• if (x, y) ∈ E(G) and x ∈ Wi then either y ∈ Wj = Wi or y ∈ Wj where (Wi,Wj) ∈ E(Γ)

Lemma 16 T̂ is a tree carving

Proof. Take a non tree edge (x, y) ∈ G. Let xi ∈ Vi, y ∈ Vj (Vi named after its top vertex vi). But
when we removed ei we added bi but this does not go as high as y.

Lemma 17 If G has a tree carving with k + 1 pieces then

Opt ≥ 2k

Proof. Each edge f ∈ Γ cuts the graph into two parts: (Sf , S̄f). Any Solution has to have at
least 2 edges across a cut. No edge is in more then 1 of these cuts as we have a tree carving. i.e.
Opt ≥ 2k.

Theorem 30 (Khuller , Vishkin ‘94) Our Algorithm is a 3
2 approximation algorithm.

Proof. We use n− 1 + k edges. Opt ≥ max(n, 2k). So

|H|
Opt

≤ n + k − 1
max(n, 2k)

≤ (3/2)n− 1
n

when n ≥ 2k,
3k − 1

2k
else

This approach can be used on connectivity problems as we will see on assignment 5...

25.1 Iterative Rounding

We consider the following edge connectivity problem

Problem 27 (Generalized Survivable Network Design Problem) Given G := (V,E) with
edge cost ce, requirments rij for pairs i, j ∈ V . Find a minimum cost subgraph H with rij edge
disjoint paths from i to j for all i, j.

This is clearly NP hard, since if we set ce = 1, rij = 2 ∀ij we get the 2EC problem.
For any S ⊆ V set

f(S) = max
i∈S,j /∈S

rij

By max flow min cut we can then model the problem as

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ f(S) ∀S ⊆ V

xe ∈ {0, 1}

So f(S) ≥ rij for any S such that i ∈ S, j /∈ S
Cant solve this so take the LP relaxation.
Given x does it satisfy the LP constraints . If not give a violated constraint. For all i, j is

the max −j flow(with capacities of e = xe) at least rij . If no then there is some i − j cut S with
capacity < rij ≤ f(S).

25.2 SVNP cont

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ f(S) ∀S ⊆ V

0 ≤ xe ≤ 1

Theorem 31 (Jain 00) The LP has an edge of weight at least 1
2 (xe ≥ 1

2).

In fact, we have a stronger result. This theorem holds for any weakly supermodular function f .

Definition 8 (weakly supermodular) A set function g is weakly supermodular if g(V) = 0 and
∀S, T ⊆ V either g(S) + g(T) ≤ g(S ∩ T) + g(S ∪ T) or g(S) + g(T) ≤ g(S − T) + g(T − S)

Lemma 18 f is weakly supermodular.

Proof. Notice we have 6 types of edges classified according to where their end points lie with
respect to S, T . f(S) = max r1 r3 r4 r6 where ri = maxp a vertex pair following type i rp

f(T) = max r1 r2 r3 r6 ... case analysis shows that f is indeed supermodular.

25.3 Iterative Rounding

Solve LP in iteration i. Select all edges Ai such that Ai = {ei : xe ≥ 1
2}. f i+1(S) := f(S)i−|δ(S)∩

Ai|∀S ⊆ V |∀S ⊆ V (repeat until feasible)

Lemma 19 f i+1 is weakly supermodular.

|δ| is submodular |δ(S)|+ |δ(T)| ≥ |δ(S ∪ T)|+ |δ(T ∩ S)| ≥ |δ(S − T)|+ |δ(T − S)|.
How do we update all f i(S) in polytime? We can still solve the new LP with respect to f i+1.

All we do is perform max flows with capacity if e = 1 if e ∈ Ai.

Theorem 32 This is a 2 approximation algorithm

Proof. Induction on the number of iterations. Base case: A1 is feasible:

c(A1) ≤ 2
∑

e∈A1

cexe ≤ 2
∑
e∈E

cexe = |LP sol| ≤ 2Opt

Try
c(A1 ∪ ... ∪Ar+1) = c(A1) + c(A2 + ∪... ∪Ar+1)

≤ 2
∑

e∈E−A1

x′ece

≤ 2
∑
e∈E

cexe + 2
∑

e∈E−A1

x′ece

But [1, y] is feasible in iteration 2.
≤ 2

∑
e

cexe

Assume 0 < xe < 1. If xe = 0 throw e away. If xe = 1 we are done. We say set S is tight if

x(δ(S)) :=
∑

e∈δ(S)

xe = f(S)

(LP has a basis of m tight linearly independent sets)Suppose S, T cross, S − T, T − S, S ∩ T 6= ∅.

Theorem 33 If S, T are tight then either S ∪ T , S ∩ T are tight or S − T, T − S is tight.

Proof. Assume f(S) + f(T) ≤ f(S − T) + f(T − S) ≤ x(δ(S − T)) + x(δ(T − S))

≤ x(δ(S)) + x(δ(T))

= f(S) + f(T)

So the first inequality is tight. xe > 0∀e so there are no edges of type 1, therefore χS + χT =
χS−T + χT−S .

L is laminar if no sets in L cross.

Theorem 34 there is a laminar family of m linearly independent tight sets .

Proof. Take a maximal laminar set L of tight sets. Suppose there is a tight set that is not
spanned by L. Take such an S such that it crosses the fewest number of sets in L. So S crosses
T ∈ L . Assume χS = χS−T + χT−S − χT , S − T, T − S are tight. Without loss of generality
S − T /∈ span(L) But S − T crosses fewer sets in L than S which is tight.

Lemma 20 There is a set S in L with |δ(S)| ≤ 3(⇒ ∃e s.t.xe ≥ 1
3).

Proof. Given L we have a forest given by containment. There are m edges and 2m endpoints. If
the theorem is fals we assign end points to sets such that all sets have 2 endpoints, the roots have
4 endpoints. Assign endpoint to smallest set S ∈ L that contains it. Base case: Leafs get at least
4 end points. If root R has at least 2 children take 2 end points from both. If R has only 1 child
then if R has exactly 1 end point assigned to it then δ(C), δ(R) differ in 1 edge (as f is integral)
which is a contradiction. If it has no end points then χR = χC i.e. not linearly independent for
contradiction.

25.4 Vertex Connectivity

Problem 28 (Vertex Connectivity) SNDP − V C see edge version

Let rij := the number of vertex disjoint paths between i and j. Vertex connectivity is notoriously
more difficult than edge connectivity.

Theorem 35 (KKC) There is no approximation algorithm for SNDP−V C with guarantee better
than 2log1−ε n unless NPL ⊆ DTIME(npolylog(n)).

What about the special case of k connectivity?

Theorem 36 (CVV) There is a O log(k) approximation algorithm for k vertex connectivity if
n ≥ 6k2

First lets formulate it as an IP . We say (Wt ⊆ V,Wh ⊆ V) is a set pair if Wt ∩Wh = ∅. Let
δ(W) be the edges between Wt and Wh.

min
∑
e

cexe

∑
e∈δ(W)

xe ≥ k − (n− |Wt| − |Wh|) = f(W) ∀set pairs W

xe ∈ {0, 1}

Notice that any k connected subgraph must have f(W) edges across δ(W). Moreover a solution
to the IP is k connected.

We say the LP relaxation is LP (k) with solution Opt(k). To describe the algorithm we use the
following problem.

Problem 29 (k-Outconn) Given root r ∈ V . We want a subgraph H ⊆ G that is k − outconn
from r. i.e. there are k vertex disjoint paths from r to any other vertex v.

Interestingly the directed version of this can be solved as the following LP is integral. let
W̄ := V −Wt −Wh.

min
∑
a∈A

caxa

s.t.
∑

a∈δ+(W)

xa ≥ k − (n− |Wt| − |Wh|) ∀W s.t. r ∈ Wt

0 ≤ x ≤ 1

e.g. the ellipsoid method gives an optimal solution in polytime(by max flow algorithms).

Corollary 8 There is a 2 approximation algorithm for undirected k outconn

Proof. Given G, get D by replacing each undirected edge with two directed edges. Solve directed
version. Clearly

Opt(D) ≤ 2Opt(G)

Given HD solution to D, pick HU , the underlying undirected graph for HD.

cost(HU) ≤ cost(HD) ≤ 2Opt(G)

Note cost(HU) ≤ 2Opt(k).
Finally a result from graph theory:

Definition 9 (3 critical) A graph G is 3 critical if every subset S ⊆ V, |S| ≤ 3 is contained in
some minimum vertex cut (separator). i.e. κ(G− S) = κ(G)− |S|.

Theorem 37 (Mader) A 3 critical graph with vertex connectivity = k has ≤ 6k2 vertices.

Algorithm

1. Start with H1 = MST

2. Given Hi

(a) Set ce = 0 if e ∈ Hi

(b) Find a non-critical set R = {r1, r2, r3} in Hi

(c) Find a i + 1 outconn subgraphs R1, R2, R3 from r1, r2, r3

(d) Set Hi+1 = Hi ∪R1 ∪R2 ∪R3

3. Output Hk

To find R: there are n3 possibilities. Test if κ(Hi) = κ(Hi −R) + |R|

Lemma 21 The algorithm is polytime and gives feasible solution.

Proof. WTS Hi+1 is i + 1 connected. Suppose not. Then there is some in-eparator T in Hi+1.
Some vertex of R, say r1 is not in T . But R1 is i + 1 outconn therefore there is at least 1 edge
across set pair.

Claimcost(R1) ≤ 2Opt(k)
k−i for phase i .

If true
total cost ≤ 6(1 +

1
2

+
1
3

+ . . . +
1
k
)Opt(k) ≤ 6Hk ·Opt

as we will see in homework cost(MST) ≤ 2Opt(k)
k .

Proof. R1 is k + 1-outconn subgraph with cost at most 2Opt(i + 1). Let x be an optimal
solution to LP (k) and x′ feasible for LP (i+1). Where x′e = 1 for e ∈ Hi, = xe

k−i e /∈ Hi. The result
will follow. Take a set pair W .

Case 1 Hi ∩ δ(W) = ∅(other case similar). Let q = |W̄ | = n − |Wt − |Wh|. q ≥ i as Hi is i
connected. Want ∑

e∈δ(W)

x′e ≥ (i + 1)− 1

Therefore q = i. So now ∑
e∈δ(W)

xe ≥ k − q = k − i

So ∑
e∈δ(W)

x′e ≥
k − i

k − i
= 1

26 Minimum Degree Constrained Spanning Tree Problem

So far we have assumed that a FPTAS/PTAS is the best approximation algorithm we can get for
an NP hard problem. However, we can do better if we allow “additive” approximation algorithms.
For example there are 2 well known NP hard problems for which we can get within one unit of
Opt

• Coloring a planar graph . Try one, two colors, otherwise 4 color it.

• Edge coloring a graph. Opt ≥ ∆(G) max degree. Vizing showed algorithmically Opt <
∆(G) + 1

Problem 30 (MDST) We want a spanning tree T in G := (V,E) such that the max degree in T
is minimized.

This is NP hard since it includes Hamelton Path. Thus it is likley that no (3
2 − ε) approximation

algorithm exists.
The key thing here is getting a good lower bound.

Lemma 22 Let W ⊆ V and G−W have γ(W) components comps(G−W). Then

Opt ≥ d|W |+ γ(W)− 1
|W |

e

Proof.
Contract the components of G−W . We have γ(W) component nodes plus |W | singleton nodes.

i.e. γ(W) + |W | nodes. Ao any tree needs |W |+ γ(W)− 1 edges to connect these nodes. All these
edges hits some vertex in W .

What will our W be? W := Sk + B where B ⊆ Sk−1 and Sj = {v : degT (v) = j} where
k := max degree in T = ∆(T).

Theorem 38 If comps(G−W) = comps(T −W) then Opt ≥ k − 1

Proof. So there are no edges in G between components in T −W . So the lemma applies:

Opt ≥ d|W |+ γ(W)− 1
|W |

e

Let |W | = nk = |Sk|+ nk−1 = |B|

γ(W) ≥ 1 + |E(W)| − |W |

E(W) = {e ∈ T |e is adjacent to some vertex in W}

|E(W)| ≥ knk + (k − 1)nk−1 − (|W | − 1)

here |W | − 1 is the maximum number of tree edges inside W .

= (k − 1)nk + (k − 2)nk+1 + 1

γ(W) ≥ (k − 2)nk + (k − 3)nk−1 + 1

Opt ≥ d|W |+ γ(W)− 1
|W |

e ≥ d(k − 1)nk + (k − 2)nk−1 + 1
nk + nk−1

e

= (k − 2) + d nk + 1
nk + nk−1

e ≥ (k − 1)

So we want to find a (T,W) with this property.
Idea: if comp(G−W) 6= comp(T − w) then there is some edge e = (u, v) between components

of T −W . Suppose degT (u), degT (v) ≤ k− 2 and there is some w ∈ W ∩C such that degT (w) = k.
Then add e and remove an edge on C incident to V . Therefore |Sk| has decreased. (this is an
improving move)

Algorithm

1. Start with W = Sk + B where B = Sk−1. Then

(a) Find T with smaller |Sk|(improving move)

(b) Or Reduce the size of B ⊆ Sk−1

(c) Or comps(T −W) = comps(G−W)

This is polytime as the number of iterations is polytime. i.e. within 1 of Opt. If there is an
improving move, we have (a). As (c) is not true there is some e = (u, v) connecting components
of T − W . So Fu, Fv are subtrees of T in components containing u, v respectively. We claim, by
induction, that we can “redirect” Fu, Fv so that u, v have degree at most k− 2 in T . This is clearly
true at the start since B = Sk−1.

Now cycle C in T ′ ∪ e has only vertices in B, say B′ ⊆ B ⊆ Sk−1. We set B := B − B′.
(|B′| ≥ 1) Adding B′ to comps(T −W) creates a bigger component F . Take w ∈ B′ ⊆ F . w has
degree k − 1. It is also on C so if we need to we can remove an edge on C adjacent to w sch that
degT (w) ≤ k − 2. This maintains induction. i.e. v ∈ Fv ⇒ redirect such that degT ′(v) ≤ k − 2

27 2 Edge connected

4
3 approximation algorithm . Can assume that the graph is 2 vertex connected, otherwise we can
paste together on a cut vertex.

28 Multicut and Sum Multicommodity flow

Given G := (V < E) with edge capacities ve and pairs (s1, t1), ..., (sk, tk)

Problem 31 (Multicut) Remove a minimum capacity set of edges that disconnects all pairs.

Problem 32 (Sum Multicommodity Flow) Find a flow that maximizes the sum of the satisfied
pairs.(fractional and integral versions) We will be considering the fractional version.

Pi := set of si ti paths. P := ∪iPi. We can formulate this as an LP :

max
∑

P∈P
fP

s.t.
∑

P :e∈P

fP ≤ ue

fP ≥ 0

The dual problem is
min

∑
e

uede

s.t.
∑
e∈P

de ≥ 1 ∀P ∈ P

de ≥ 0

The dual constraint says : for each pair si, ti, the length of any si, ti path is at least 1. So the
length of a shortest si, ti path is at least 1. Since we can find shortest paths in polynomial time,
we have a separation oracle:

• Given d check that each shortest path is at least 1.

Notice that an integral solution to the dual is a multicut. How can we turn a fractional solution
into an integral one? (Intuitively the edges with large de are more useful.) Given a dual solution
we work on

• G = (V,E)

• Edge distances de

• Edge weights we := uede

• weights w(si)

Our algorithm takes at most k phases. In each phase we find a cut that separates some pair
si, ti. We do this by “growing a region” around some si. This region Ri induces the cut δ(Ri)

1. Pick si

2. At time t: Ri = {v : d(si, v) ≤ t}

3. .

4. .

Cap(Ri) =
∑

e∈δ(Ri)

ue

w(Ri) =
∑
e∈E

weλe + w(si)

Where for each e = (u, v) , λuv = 1 if u, v ∈ Ri = 0 if u, v /∈ Ri and λuv = t−d(si,u)
d(si,v)−d(si,u) e ∈

δ(Ri), u ∈ Ri, v /∈ Ri corresponds to the ‘fractional’ amount of the edge in the cut.

1. Pick si

2. At time t: Ri = {v : d(si, v) ≤ t}

3. We stop growing when Cap(Ri) ≤ Mw(Ri) for some chosen M .

We claim that this process terminates before t = t
2 . Hence Ri separates si and ti (d(si, ti) ≥ 1).

More over Ri contains at most one of {sj , tj} as otherwise

d(sj , tj) ≤ d(si, sj) + d(si, tj) <
1
2

+
1
2

= 1

We repeat on G2 := G−Ri and pick some sr to be the new source, where sr, tr ∈ G−Ri.
Observe

dG(si, ti) ≤ dGi(sj , tj)

so using distances in G is OK. No Ri can contain a pair.

Corollary 9 ∪δ(Ri) is a multicut.

It remains to show

• there is some M such that the region stops growing before t = 1
2 .

• What approximation guarantee do we get.

Proof. of (1). Suppose it does not terminate before t = 1
2 . Then ∀t ∈ [0, 1

2]

Cap(Ri > Mw(Ri)

This means we can observe:
dw(Ri) ≥ cap(Ri)dt > Mw(Ri)dt

To see this take e = (u, v) ∈ δ(Ri). Notice that u ∈ Ri at time t = dGi(si, u) v is added to Ri at
time dGi(si, v). So

dw(Ri) =
∑
e

wedλe =?
∑

e∈δ(Ri)

we
1

d(si, v)− d(si, u)
dt

So
dw(Ri) ≥ ? ≥

∑
e∈δ(Ri)

we

de
dt =

∑
e∈δ(Ri)

uedt

= Cap(Ri)dt

So
w(Ri) increases exponentially > Mw(Ri)dt

Technicality: w(Ri) = w(si) +
∑

e∈E λewe . The initial weight is w(si). The final weight is at
most wi := w(si) + F ∗ :=

∑
e∈Gi

we.
So ∫ F ∗+wi

wi

1
w(Ri)

dw(Ri) >

∫ 1
2

t=0
M dt

log(F ∗ + wi)− log(wi) >
1
2
M

i.e.
2 log(

F ∗ + wi

wi
= 2 log(

F ∗

wi
+ 1) > M

e.g. wi = F ∗

k thus M ≤ 2 log(k + 1).
What is our approximation guarantee? Let C be the set of edges given by the algorithm.∑

e∈C

ue =
∑

i

CapGi(Ri) ≤ M
∑

i

wGi(Ri)

≤ M
∑

wi + M
∑

i:e∈Ri,e∈δ(Ri)

∑
we

≤ M
∑

wi + M
∑
e∈E

we

≤ 2M
∑
e∈E

we = 2M(LP solution)

Corollary 10 There is an O(log(k + 1)) approximation algorithm for the multicut problem in
general graphs.

Proof. If wi = F ∗

k then ∑
e∈C

ue ≤ 4 log(k + 1) · LP solution

(This is basically tight)

Corollary 11 max integer flow sum is at most max fractional flow sum which is equal to min
fractional multicut

≤ O(log(k))max frac flow sum

29 Open Problems

Problem 33 (Shortest Vector) Given n linearly independent vectors v1, ..., vn ∈ Qn find a
shortest vector v∗ in the lattice generated by those.

There is an exponential approximation algorithm. There is a constant lower bound 3
2 . Ques-

tion: Is there are polynomial approximation algorithm?

Problem 34 (Directed Feedback Edge(Vertex) set) Given D := (V,A) remove the mini-
mum number of arcs F ⊆ A such that G− F is acyclic.

• There is an O(log(n) log log(n)) approximation algorithm.

• is there a O log(n) or a better approximation algorithm?

Problem 35 (Directed Steiner Tree) D := (V,A), r ∈ V is the root , T ⊂ V terminals, ca arc
costs. Find a minimum cost arborescance rooted at r containing all of T .

• There is a nε approximation algorithm.

• Is there a polylog approximation algorithm?

Problem 36 (Volume of Convex Body) K is a convex body in n dimensions. Given a separa-
tion oracle we ask: is x ∈ K ? If yes give a separating hyper plane

• Known can’t approximate this to better than expo(n) factor in polytime using a deterministic
algorithm.

• Can do to within 1 + ε with randomized algorithm

Exam Friday 10, MC 103

