
CS 764 Algorithmic Game Theory Scribe: Matt Drescher
Instructor: Adrian Vetta Winter, 2006

Lecture 1: See Tardos lecture 1.

1 Load balancing

Social objective
maxs∈Srs(Ls)

We showed last time that the best NE optimizes this. What about the worst NE? In general this
can be really bad socially. Exersize(find an Example). What about for special response functions?
e.g. rs(Ls) = Ls.

Theorem 1 Any NE has max response time at most twice the optimal response time(i.e. min max
response time)

Proof. Let server 1 have max load in a NE M . Let job j be assigned to server 1.

r1(L1) ≤ rs(Ls + wj)∀s ∈ S

by definition of NE. since the response functions are linear we have ri(Li) = Li so we can just write

L1 ≤ Ls + wj∀s ∈ S

mL1 ≤
∑
s∈S

(Ls + wj)

L1 ≤ (
1
m

∑
s∈S

Ls) + wj

≤W.T.S 2opt

Take optimal allocation m∗. Job j is assigned to some server so opt ≥ wj . Now∑
s∈S

Ls =
∑
j∈J

wj

max loaded server has load at least the average

=
1
m

∑
j∈J

wj =
1
m

∑
s∈S

Ls

i.e.
opt ≤ c

What about the other social objective function ? Total Time( average time per job)

=
∑
s∈S

Ls · rs(Ls)

Note here average response time can increase when a player makes a best response move.



2 Potential Games

A game is a potential game if there exists a potential function φ such that if player i changes
strategy from s to s′ then the change in φ = change in i’s payoff.

Why are potential functions useful? #1. if players make best response moves then φ always
decreases. If it stops we have a (pure) NE.

Theorem 2 A potential game with finite strategy sets has a pure NE.

Proof. Process must terminate. No cycles since potential function is always decreasing. Finite
strategy set.

#2. We can use potential functions to give bounds on the social quality of NE. Consider the
case wj = 1∀j ∈ J . Let

φ :=
∑
s∈S

Ls∑
k=1

rs(k) =
∑
s∈S

[rs(1) + rs(2) + ... + rs(Ls)]

How does this relate to the social objective ?

γ(m) :=
∑
s∈S

rs(Ls)Ls =
∑
s∈S

[rs(Ls) + rs(Ls) + .. + rs(Ls)]

What happens if job i moves from server s to server t? payoff i rs(Ls) → rt(Lt + 1) changes by
rt(Lt + 1)− rs(Ls)

This is exactly the change in φ.

corollary 1 There exists pure NE

Lets consider the social value of NE. Suppose φ(m) ≤ γ(m) ≤ β · φ(m)∀m
Theorem 3 Then there exists a pure NE m with γ(m) ≤ β · γ(m∗) where m∗ is optimal social
solution.

Proof. Let m minimize φ(i.e. m is NE)

γ(m) ≤ β · φ(m) ≤ βφ(m∗) ≤ βγ(m∗)

by minimality and assumptions.

2.1 Load balancing game

we have rs(Ls) = Ls

2φ(m) =
∑
s∈S

2(rs(1) + rs(2) + ... + rs(Ls))

=
∑
s∈S

2
1
2
Ls(Ls + 1) ≥

∑
s∈S

L2
s

γ(m) =
∑
s∈S

Ls − rs(Ls)

so set β := 2φ(m) ≥ γ(m) ≥ φ(m).

corollary 2 Best NE within factor 2 of optimal.



2.2 Broadcasting game

Directed network G with arc costs ca ≥ 0. A broadcaster makes a broadcast from a source s to
customers t1, ..., tn. Each customer shares the cost of any link it needs for its broadcasts. Look at
best NE.

γ(T ) =
∑
a∈T

ca

φ(T ) =
∑
a∈T

ca(1 +
1
2

+
1
3

+ ... +
1
na

)

where na := # customers using arc a in T . Its easy to show φ is a potential function. In this
case(example on chalk board) γ(T ) ≤ φ(T ) ≤ log(n)γ(T ). So there exists pure NE and best NE
costs atmost logn · opt we have seen log(n) is tight by example.

2.3 Open Problems

# 1. Observe that upper bound also applies to undirected networks. But the examples lower bound
does not. is gap o(logn)? is gap O(1)?

# 2. What happens if there is more then 1 source? i.e. source - destinations s1 − t1, s2 −
t2, ..., sn − tn problem there may be no NE! (paid edges are not shared).

possible approach use sink equilibria

3 Selfish Routing

Given a graph G = (V,A) with source sink pairs (s1, t1), (s2, t2), ..., (sk, tk). We want to route Fi

units of flow from si to ti. The ri is made up of tiny units eg cars, data. Associated with arc is a
cost function ca() that is load dependent and non-negative, non-decreasing, convex. Goal is to find
a flow(traffic routing) that minimizes cost. This is the social goal. Private Objective: Minimize
your own travel costs. i.e. players pick shortest paths. Thus we have a game. A reasonable solution
therefore may be a NE.

3.1 Example

one source since pair (s, t) everyone wants to go from s to t. r = 1 we have two edges from s to t, call
them roads x1, x2. Suppose c1(x1) = 1 and c2(x2) = x2 per unit cost of travel. We have 1 unti of
traffic. What happens if we send half through each road. we have cost 1/2 ·c1(1/2)+1/2 ·c2(1/2) =
1/2 + 1/4 = 3/4. This is not stable since traffic taking road one would rather take road 2 and pay
less. Therefore in out NE the total cost is c2(1) = 1. We see that the NE is worse then the optimal
solution. Here NE is 4

3 worse then optimal. Surprisingly this is the worst ratio(if cost functions
are linear).

max
NE

cost(NE)
cost(opt)

= price of anarchy

Cost of a lack of coordination.



Theorem 4 R,T Price of anarchy ≤ 4
3 for all networks with linear cost functions

Proof. observations: At a NE xn := (xn
a1

, xn
a2

, ...). Players use the shortest paths. So for
p1, p2 ∈ Si, Si := the set of si → ti paths. assume xn

p > 0

c(p1) =
∑
a∈p1

ca(xn
a) ≤ c(p2) =

∑
a∈p2

ca(xn
a)

therefore all p ∈ Si with xp > 0 have the same cost. look at cost with respect to paths:

c(xn) =
k∑

i=1

∑
p∈Si,xn

p >0

c(p) · xn
p

or look at cost with respect to arcs: Let x∗ be the optimal flow.

=
∑
a∈A

ca(xn
a) · xn

a

so

c(xn) =
∑
a∈A

ca(xn
a)xa =

k∑
i=1

∑
p∈Si,xp>0

xn
p

≤
k∑

i=1

∑
p∈Si

c(p) · x∗p

=
∑
a∈A

ca(xn
a) · x∗a

using opt flow with respect to Nash costs is worse

c(xn) ≤
∑
a∈A

(ca(x∗a)x
∗
a − ca(x∗a)x

∗
a + ca(xn

a)x∗a)

= opt +
∑
a∈A

x∗a(ca(xn
a)− cA(x∗a)

≤ opt +
∑

a∈A,xn
a>x∗a

x∗a(ca(x∗a)− ca(x∗a)

the summand is a rectangle with length ca(xn
a) − ca(x∗a) and width c∗a . This rectangle is at most

1
4 of the region which is Nash. so nash ≤ 4

3opt . The important thing here is to realize that we
can thin of cost in terms of arcs or in terms of paths.

This result is not true for cost functions that are not linear. If ca(x) can be polynomial of degree
d then nash can be Ω( d

log(d)) · opt. What can we say in this case? -Bicriteria result.

Theorem 5 Cost of a NE xn is at most the cost of the optimal solution that routes twice as much
traffic i.e. r′i = 2ri ∀i



Proof. Replace c by cost function c′.

c′a(xa) = {ca(xn
a) if xa < xn

a ,= ca(xa) if xa ≥ xn
a

c′(xn) = c(xn)

c′(x∗) ≤ c(x∗) + c(xn)

cost can increase by at most Nash cost on every arc.
Consider any path pinSi

c′(pi) ≥
∑
a∈pi

ca(xn
a) = cn(pi)

i.e. the cost per unit of any path is at least the nash cost. But we route twice the traffic in x∗ so#2

c′(x∗) ≥ 2c′(xn) ≥ 2c(xn). therefore

c(x∗) + c(xn) ≥ 2c(xn) ⇒ c(x∗) ≥ c(xn)

4 Braess Paradox

four nodes(like a square) and we want to route flow from s to t with the same cost functions we
saw previously ca(x1) = 1, c2(x2) = x2. Consider a different network obtained by adding directed
arc from the top corner to the bottom with cost 0. Now its best to go up and then take the new
edge down and then go to t. In this case adding an extra road makes things worse!

4.1 Extensions and Open Problems

Add capacities , Changing objective functions(fairness, etc..), Larger players, priorities,Braess Para-
dox

5 The existence of NE

Given k−player− game. Player i has strategy set Si. Payoff to i is πi(s1, s2, ..., sk), where si ∈ Si.
If players use mixed strategies p1, p2, ..., pk then the expected payoff to i is πi(p1, p2, pk)

=
∑

s1∈S1,s2∈S2,...,sk∈Sk

k∏
j=1

pj(sj)πi(s1, s2, ..., sk)

So p1, ..., pk form a (mixed) NE if ∀i pi maximizes expected payoff to i given p1, ..., pi−1, pi+1, .., pk.
Nash’s result says that NE always exist in finite games. We will give a combinatorial proof of this.

Brouwer’s fixed point 1 Any CTS function f : Sd → Sd has a fixed point f(x) = x

We give the proof when d = 2(its easy to generalize to higher dimensions). Proof. Idea: Take a
”‘big”’ triangle, triangulate it into smaller triangles. 3 color the vertices such that col(vi) = i. All
vertices on edge (vi, vj) are colored i or j.



Sperner’s Lemma 1 Any such coloring gives a ”small”. 3− colored triangle.

Proof. We show there exists an odd number of 3 colored small triangles. Use a dual graph-we
have a node for each small triangle and a node for the big outside triangle. 4A and 4B have an
edge between them if they share an edge with endpoints colored 1 and 2. Observations: The inside
triangles have degree: 2 if 4 has only the colors 1 and 2, 1 if 4 has all 3 colors, 0 if 4 misses color
1 or color 2. Degree of outer 4 is odd as ∃ odd number of color changes from v1 to v2. There
is an even number of odd degree vertices, therefore there exists at least 2 odd degree triangles as
outer triangle is odd degree. Therefore there exists an inner 4 of degree 1 . therefore there exists
a 3− colored inner 4

Let the simplex be the triangle in R3 with vertices v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1).
Take any infinite sequence T1, T2, .... or triangulations. Where δ(Tn) → 0 as n → ∞ and δ(Tn) is
max edge length in Tn. We 3 color Tn as follows: let

col(v) = min1≤i≤3(i : f(v)i < vi)

-col(vi) = i, f(1, 0, 0) = (< 1, , ), f(0, 1, 0) = (≥ 0, < 1, , )
Take vertex x on edge opposite vi has xi = 0 as its a convex combination, i.e. not colored i. So Tn

has a 3 colored triangle 4n = {x1
n, x2

n, x3
n} Focus on x1, x2, x3, ..., xn... is an infinite sequence. It

need not converge but it has a convergent subsequence. (sequence is compact-Bolzano Weisstras
thm). Let this subsequence converge to x∗. Look at the traingles corresponding to this subsequence.
So there exists a subsequence of this (x2

1, x
2
2, ...) which tends to x∗. There exists a subsequence of

x3
1, x

3
2, ... which tends to x∗. By continuity we have

f(x∗) ≤ x∗1

f(x∗)2 ≤ x∗2 ⇒ f(x∗) = x∗

f(x∗)3 ≤ x∗3

This easily generalizes to higher dimensions(eg use tetrahedrons in 3d). Also applies to spaces
homeomorphic to the simplex. How does this apply to NE? What is the space -each player picks a
probability distribution pi on s ∈ Si let f(f1, f2, ..., fh) = (p′1, p

′
2, ..., p

′
k) . Where p′i is best response

of i to p1, ..., pi−1, pi+1, ..., ph So a fixed point f(p1, ..., ph) = p1, ..., ph is NE. Can we do this in a CTS
way? Consider pi and p′i. Why not just increase the prob of any strategy that is an improvement.

Aside: Given p2, ..., pk what can i do? Any pure strategy gives some payoff π1(s, p2, ..., pk). i.e.
a mixed strategy p1 is only a best response is if all the pure strategies give > 0 probability to all
best responses.

p′i(s) = pi(s) + max[0, πi(p1, ..., s, pi+1, ..., ph) = π1(p1, ..., pi, ..., ph)

We now scale p′i to make it a prob distribution.

p′i(s) =
pi(s) + max(0, εi,s)
1 +

∑
s max(0, εi,s)

p′i improves on pi i.e. if p′i = pi ∀i we are done. This is CTS so by Brouwers FPT we have a NE.



6 Auctions

Start simple:
we have 1 good to sell
k bidders, player i values good at vi

assumptions
No collusion auction.
Quasilinear utilities: ui = vi − pi if pays pi

players know their valuations from the start and they dont change.

6.1 English Auction

Bidders successively increase their bids bi.
winner is player with the highest valuation.
Pays the second highest valuation(i.e. all the other players have dropped out).

If this is the outcome what if we try to incorporate it into the auction?

6.2 Vickrey Auction

Players make sealed bids bi

Highest bidder wins
pays the second highest bid

Clearly if bi = vi ∀i then the outcome is the same as the english.
Vickrey auctions have several nice properties:

(1) Incentive Compatibility
(i) Truthfulness: bidding truthfully is a dominant strategy.

Lemma 1 Player i maximizes utility by bidding bi = vi no matter what the other bids {bj}j 6=i are.

Proof. Let B = maxj 6=ibj . If vi ≥ B, if you win you get ui = vi − B ≥ 0. Win if bi ≥ B ” lose
you get 0. i.e. bi = vi is best response. If vi < B then any bid greater then B wins and gives
ui = vi −B < 0 , bid < B lose so get ui = 0, i.e. bi = vi is best response.

(ii) Strongly truthful: For any other bid bi 6= vi there are cases where you do worse than bi = vi

. e.g. vi > B > bi lose but could of got ui > 0. bi > B > vi win and get negative payoff.

(iii) Individual Rationality: Truthful bids always get ≥ 0 utility.
Losers get 0 utility.
Truthful bids only win when vi > B i.e. get ≥ 0 utility.

Caveat: In practice players do not always bid truthfully in tests!

So incentive constraints ”‘Should”’ get players to bid truthfully. Why is this useful?
-Auctioneer: has some objective to optimize(e.g. revenue, efficiency) to max this you have to know
the valuations not the bids. (auctioneer bribes players to get this info: pay second price)
-Bidders: You don’t care what the other players do- you just bid truthfully. [dont spend money



figuring out beliefs of other players. Don’t investigate how auction works.]
-simplicity

(2) Efficiency. An efficient outcome maximizes total utility.
∑

i∈bidder ui + uauctionear

(Auctioneer has utility = price). Prices transfer money i.e. just transfer utility so have no effect
on total utility.

So Vickrey auction is efficient if everyone bids truthfully.(Bad for revenue max).

(3) General valuations. This works no matter what the structure/ type of valuations.

(4) Polytime: The auction is polytime (in number of players and number of items). (Go through
k bids)

However it is not possible to get all these 4 properties in more complicated auctions.
There are other useful properties too: ”fairness”, ”transparency”.

7 Combinatorial Auctions

What if we have a set I of n items to sell. We could sell them off one at a time. But this may not
be very effective.

-compliments a set of items might be worth more then the sum of the parts. e.g. Art collec-
tion.

-substitutes a set of items might be worth less then the sum of their parts.

Combinatorial auction allows players to bid on subsets S ⊆ I. These are most useful if we have
compliments.

7.1 VCG(Vickery Clark Groves) Mechanism

Players submit bids bi(S) on each S ⊆ I
Auctioneer chooses an allocation(disjoint perturbation of I) (S∗

1 , S∗
2 , ..., S∗

k) that maximizes

n∑
i=1

bi(Si)

over all feasible allocations.

Player i pays price Pi.

Properties
(3) General Valuations
(2) Efficient: If truthful biddes then we max efficiency.
But will bidders bid truthfully ??



First we will find some ”‘silly”’ prices that waork.

Lemma 2 Using VCG mechanism with prices pi = −
∑

j 6=i bj(S∗
j ) induces truth telling.

Proof. these prices mean auctioneer pays the bidders. Utility of player i is :

vi(S∗
i ) +

∑
i6=j

bj(S∗
j )

Should player i tell the truth? The auction max
∑

i bi(Si). So i can influence the allocation by its
bids, but i has no influence on bj(S) ∀S, ∀j

So setting bi(S) = vi(S) ∀S mean the auctioneer is also maximizing its utility.

Note setting
pi = −

∑
j 6=i

bj(S∗
j ) + c

is also truth telling. Moreover so is

pi = −
∑
j 6=i

bj(S∗
j ) + fi({bj}j 6=i)

Each player has same optimization problem as before.
Auctioneer allocates according to bids not prices.

fi({bj}j 6=i) = max{Sj}j 6=i

∑
j 6=i

bj(Si)

(best allocation where Si = 0. So

pi = maxSi=0

∑
j 6=i

bj(Sj)−
∑
j 6=i

bj(S∗
j ) ≥ 0

as {S∗
1 , ..., S∗

k} − S∗
i is feasible for max problem.

So the prices are reasonable. Is the auction individually rational? i.e. ui ≥ 0. if truth telling
So

pi = bi(S∗
i )−

k∑
j=1

bj(S∗
j ) + max{Sj}j 6=i

∑
j 6=i

bj(Sj)

(*)

= bi − (
k∑

j=1

bj(S∗
j )−max{Sj}j 6=i

∑
j 6=i

bj(Sj)

≥ 0

ui = vi − pi

= vi(S∗
i )− (bi(S∗

i )− (∗)) = (∗) ≥ 0

(since bi(S∗
i ) = vi(S∗

i ) )



the following two lines are the key to understanding the VCG auction:

pi = damage your participation does to other players.
ui = what you contribute to extra efficiency by taking part.

−
∑
j 6=i

bj(S∗
j )−−− what the others get

max{Sj}j}

∑
j 6=i

bj(Sj)−−−−−− what they would get without you

ui =
k∑

j=1

bj(S∗
j )−max{Sj}j 6=i

∑
j 6=i

bj(Sj)

(4) Polytime ? No chance. Run time is exponential in number of items.
a: each player submits exponential number of bids.
b: the allocation problem is NP hard. Even if the bids could be submitted succinctly in poly-

time. Its also a disaster to approximate.

7.2 Bidding for contracts

Another type of auction = bidding for contracts. Contractors submit bids(”‘quotes”’) for com-
pany/gov work. e.g. Suppose we want to build a road from s to t. Contractors can build/rent out
links. Each link a incurs a cost of ca for the contractor a ∈ A.

Social goal: min cost s → t path.
Contractors goal: Max Profit πa = pa(payment it receives)− ca

Contractors will not reveal there true costs so will bid higher. Lets use V CG mechanism to get
truth telling (i.e. bribe contractors to tell truth)

VCG Utility = added efficiency by having agent a. Want ua = 0 if a /∈ P ∗ for any min cost path P ∗

, c(P−a)− c(P ∗) if a ∈ P ∗

where P ∗ is min cost path, P−1 optimal path not using a, c(P ) =
∑

a∈P ca

remember our bids are c′ not c
Payments should then be :

pa = c′a(to cover their costs)+(c′(P ′−a)−c′(P ′∗))(bribe) if a ∈ P ′∗, c′(P ′−a)−c′(P ′∗) = 0 if a /∈ P ′∗

P ′−a = cheapest path not using a with respect to cost c′

Payment depend on c′.

Lemma 3 Truth telling is dominant strategy.



Proof. Utility of a is pa − ca = c′a − ca + (c′(P ′−a − c′(P ′∗)) if a wins

= [c′(P ′ − a)− ca]does not depend on c′a + [c′a − c′(P ′∗)]

So if bidding c′a = ca wins this is a best response. (if change too much you could lose). If
bidding c′a = ca loses then ua = 0. So

c′(P ′−a) < c′(P ′+a)

(P ′+a–best path that uses a.)
To win you must cut your bid by at least c′(P ′+a)− c(P ′−a) and this is all loss. never get > 0

payoff
This is polytime. Run a min cost s−t path alg, run a min cost s−t path algorithm on G−a ∀a.

8 Bidding for Contracts

VCG mechanism.
≤ m min s-t path algorithms.

8.1 Open Problems

Can you do this faster, i.e. use less min s-t path algorithms in directed case. eg O(1) Efficient but
transfer payments are huge!

9 Single minded Bidders

For general valuation functions we can’t satisfy all the properties (1)-(4) at once. Lets keep (4)
polytime but relax (3) general value functions.

Single minded bidders: Player i only cares about one subset Si ⊆ I.

Vi(Ti) = vi if Si ⊆ Ti

vi(Ti) = 0 otherwise

Communication complexity is now clearly polytime i.e. 1 bid/player . Before we had 2n

bids/player.

Allocation problem: instead of 2n · k bids we have k bids.
But even if the players bid truthfully we still have a really hard allocation problem

9.1 Weighted Stable Set problem

Stable set = set of pairwise non adjacent vertices. Find a max weight stable set∑
v∈S

wv

We can formulate this as an allocation problem:
Players are vertices , edges are items, Sv for vertex v is δ(v) = edges incident to v .
v(Sv) = wv . Feasible allocation. disjoint partition of items to players. Stableset S ⇒ all of S can
win their bids. Not stable set ⇒ (x, y) ∈ E ⇒ x, y can not both win their bids.



9.2 Weighted Stable Set Problem

Stable set is not approximable to within a factor O(|V |1−ε or O(|E|
1
2
−ε) (unless NP ⊆ ZPP )

corollary 3 Allocation problem can not be approximated to within O(R1−ε)–players or O(n
1
2
−ε)–

|I|.

So even assuming true bids we still do awfully. We try this anyway! Lets look for approx
algorithms for allocation problem with singleminded bidders.

9.3 Simple Algs

Sort v1 ≥ v2 ≥ ... ≥ vk. Allocate sets greedily in this order(i.e. whilst they are disjoint). could be
a factor of n off.

–Sort
v1

|S1|
≥ v2

|S2|
≥ ... ≥ vk

|Sk|
Allocate greedily n− ε
Sort

v1√
|S1|

≥ v2√
|S2|

≥ ... ≥ vk√
|Sk|

Allocate greedily
This is an O(

√
n) approximation algorithm Proof. Given (S1, v1)...(Sk, vk). Let J∗ ⊆

{1, 2, ..., k} be the optimal allocation. J ⊆ {1, 2, .., k} be the greedy allocation. Want to show∑
j∈J∗

vj ≤
√

n
∑
j∈J

vj

How do we prove this? Observe when j ∈ J is chosen then Sj may ”‘block”’ some sets in J∗. For
any j ∈ J let Bj = {i ∈ J∗ : Si is first blocked bySj}
Clearly ∪j∈JBj = J∗ if we say i ∈ J∗ , J clocks i. Since i ∈ Bj was available when we chose Sj we
have

∑
i∈J∗

vi =
∑
j∈J

∑
i∈Bj

vi ≤
∑
j∈J

vj

|
√

Sj |
·
√

n
√
|Bj |

√
n
∑
j∈J

vj

√
|Bj |
|Sj |

≤
√

n
∑
j∈J

vj =
√

n

value greedy allocation. |Sj | ≥ |Bj | as optimal sets are disjoint so Sj blocks at most |Sj | of them
So we have a

√
n approximation algorithm which is ”‘the best possible”’. tight example with

one guy getting
√

n + ε and the other getting 1.



But is this truthful? -VCG utility of i = i′s effect on efficiency. Cant find this. We can find i’s
effect on efficiency using our mechanism. But value may increase without a player. e.g. i’s utility
is
√

n + ε− n < 0 not irrational.
Single minded bidders i: Si value vi rank by bi√

|Si|
VLG:doesnt work. Is there a truthful

payment scheme? –Let i pay pi where pi = v̄i is the lowest bid i could have made to win the
auction (under this mechanism) given other bids.

Why is this truthtelling? vi ≥ v̄i, Any bid ≥ v̄i gives utility vi − v̄i ≥ 0
vi < v̄i any winning bid gives utility vi − v̄i < 0 bid bi = vi gives 0 utility.

So we have
(1) Truthfulness
(2)dont have Efficiency –approximate
(3) dont have general calculations –single minded bidders.
(4) we have polytime.

10 Auctions with Large Supply

Same format as before:
Single minded bidders. j : (Sj , vj) §j ⊆ I

But
Large supply: mi copies of item i.

e.g
club membership
Highway tolls
Partitioning bandwidth
(in fact sometimes we have ∞ supply and we chose to restrict it.)

10.1 Unlimited Supply

in other words Mi ≥ k
Assume bidders are truthful. How do we price the items? We assume that the pricing mechanism
must be envy - free i.e. all players get the same deal. e.g. cant charge vj for Si and vi for Si = Sj .
Envy free may be a legal requirement, price discrimination is common.

An envy-free mechanism is:
charge pi for item i, j gets Sj if vj ≥

∑
i∈Sj

pi

Lets set pi = p ∀i ∈ I
So we can choose

p =
v1

|S1|
or

v2

|S2|
or...

vk

|Sk|



set Bi := v1
|S1|

So try all k and pick the best one.

Theorem 6 Alg is an O(logk + logn) approximation algorithm.

Proof. Let Rj be the revenue at price Bj . R∗ = maxjRj . Then Rj =
∑

1≤t≤j Bj |St| =
vj

|Sj |
∑

1≤t≤j |Sj |

Opt ≤
∑

1≤j≤k vj =
∑

1≤j≤k
|Sj |Rj∑
1≤t≤j

|St|

≤ R∗ ∑
1≤j≤k

|Sj |∑
1≤t≤j |St|

= R∗ ∑
1≤j≤k

|Sj |∑
s=1

1∑
1≤t≤j |St|

≤ R∗ ∑
1≤j≤k

|Sj |∑
s=1

1
s +

∑
1≤t<j |St|

= R∗(1 +
1
2

+ ... +
1∑

1≤j≤k |Sj |

≤ R∗log(
∑

1≤j≤k

|Sj |)

≤ R∗log(nk)

This analysis is tight. Let k = n. Player i wants item i at value 1
i . Clearly pi = 1

i ⇒ reveue
=
∑

1≤i≤n
1
i ≈ log(n)

We have prices p. i.e. p = 1 or 1
2 or 1

3 or.̇. or 1
n

They all give revenue = 1.

10.2 Open Problems

There are lots of open problems even for special cases of this problem.

-Beat O(lognk)
Highway Problem- I is a road: 1−−2−−3−−4−−5−−6−−7. Player j wants interval(subpath)
Sj ⊆ I. Open to beat O(log(n)).

Vertex Pricing Open truthful mechanisms. Given G = (V,E) players are edges with values
ve. Items are vertices. Price vertices pi to maximize

∑
(i,j),ve≥pi+pj

pi + pj . Give better then 4
approximation algorithm.

What if we get rid of envy-free pricing? Can we do better? (1) Obviously for infinite supply
sell Sj for vj



(2) Large but limited supply: mi ≥ c · log(n)

max
∑
j

bjxj

s.t.
∑

j:i∈Sj

xj ≤ mi ∀i ∈ I

xi ∈ {0, 1} ∀j

Relax integrality constraints with 0 ≤ xj ≤ 1 ∀j.
What does it mean to fractionally accept a bid? We use xj as a probability to round to 0− 1.

Accept bid bj with probability xj

Exp[
∑

j′s bid accept

bj ] =
∑
j

bjxj = LPsol ≥ opt

We expect to do better then opt! The problem is we expect to sell at least mi of items i but
we may oversell it. To get around this use probability xj

1+δ . So expected revenue = 1
1+δ · opt

Expected number of copies of i sold is ≤ mi
1+δ . Probability that i is oversold? Suppose Z1, ..., Zt are

0−−1 random variables with E(
∑

s Zs) = µ then Chernoffs bound says

P (
∑
s

Zs > (1 + δ)− µ) ≤ (
e

(1 + δ)1+δ
)µ

P (# items sold ≥ mj) ≤ (

Choose c large enough with respect to δ ≤ ε/n

10.3 Auctions with large Supply

So with failure probability εwe get within δ of optimal. If we over sell any item we can just run it
again until we get a good solution.

Can we implement this as a truthful auction? What are the prices?
Observe that if the other bids are fixed then if bj increases this causes an increase in xj . We

maximize an LP so the LP solution increases as bj increases. So the probability that j wins the
auction is monotonically increasing in bj (if this was not the case then clearly there would be some
incentive to lie).

Caveat: we have to be careful as an increasing bj changes the other x values and this could
change failure probability. Maybe this could give incentive to lie? To get around this just cancel
the auction with a total probability ε whether or not the allocation is good.

Theorem 7 Using prices pj = bjxj(bj)−
∫ bj

0 xj(tj)dtj is truthful.

Proof.

Truthtelling gives vjxj(vj − [vjxj(vj)−
∫ vj

0 xj(tj)dtj ] =
∫ vj

0 xj(tj)dtj ≥ 0



Case 1: bj > vj . Expected utility

= vjxj(bj)− (bjxj(bj)− [bjxj(bj)−
∫ bj

0
xj(tj)dtj ]

=
∫ bj

0
xj(tj)dtj − (bj − vj)xj(bj)

≤
∫ vj

0
xj(tj)dtj

Case 2: bj < vj similar proof by picture.

11 Zero-Sum Games

A 2-player game is zero-sum if payoff to player (1) + playoff to player (2) = 0. Can we find NE in
these games? Suppose x, y are mixed strategies of (1) and (2) respectively. What are the players
objectives? The outcome of the game is: Expected pay off to I = xT Ay =

∑m
i=1

∑n
j=1 xiyjaij =∑

i

∑
j P (i, j occurs)aij

Given x , player (2) wants to

maxyx
T (−A)y = minyx

T Ay

= miny

n∑
j=1

n∑
i=1

aijxiyj

= miny

n∑
j=1

yj(
n∑

i=1

aijxi)

= min1≤j

n∑
i=1

aijxi

your best response to a mixed strategy is always a pure strategy!(in all games) But any convex
combination of pure best responses(if ∃ > 1) is a best response. So NE may only be mixed.

Fine but player (1) knows this so wants to

maxxminyx
T Ay

= maxxmin1≤j≤n

m∑
j=1

aijxi

max min1≤j≤n

n∑
i=1

xiaij



n∑
i=1

xi = 1

xi ≥ 0∀i

we can write this as

max z

s.t.
m∑

i=1

xiaij ≥ z ∀j = 1...n

n∑
i=1

xi = 1

xi ≥ 0

So player (1) can guarantee a payoff of z∗ = max z Symmetric argument for player (2)

min max1≤i≤m

n∑
j=1

aijyj

n∑
j=1

yj = 1

yj ≥ 0

minw

n∑
j=1

aijxj ≤ w∀i = 1...n

∑
yj = 1

yj ≥ 0

Player (2) can guarantee that (1) gets at most w∗ = min w if w∗ = z∗ this is a solution to the
game. i.e. a NE.

Recall LP duality:

max(cx|Ax ≤ b, x ≥ 0) = min(by|yA ≥ c, y ≥ 0)

(assume some aij ≥ 0 by adding constant to all payoffs). can change ′ =′ to ′ ≤′ since solution
must still give

∑
xi = 1 or we don’t have a max.

max z

s.t.z −
m∑

i=1

xiaij ≥ 0 ∀j = 1...n



n∑
i=1

xi ≤ 1

xi ≥ 0

max(1, 0, 0, ..., 0)T (z, x1, x2, ..., xm)

A′x ≤ (1, 0, ..., 0)

xi ≥ 0, z unrestricted

where A′ =
(, 1, 1, ..., 1)

−AT

x := (z, x1, ..., xn)T

dual is
min(1, 0, ..., 0)T (w, y1, ..., yn)j

−A′y ≥ (1, 0, ..., 0)

yi ≥ 0, w unrestricted

min max theorem:
minyx

∗Ay = maxxxT Ay∗

What about 3 player zero-sum games ?
Ex: Show that multiplayer zero-sum games are as hard as multiplayer games(general games)

An LP approach cant work here exactly for 3+ player games.

12 Correlated Equilibria

Consider the game of chicken:  G S
G (0, 0) (5, 1)
S (1, 5) (4, 4)


NE at SS,GG.
If we put any probability distribution on NE (included mixed NE) and we are told to play this

way according to these probabilities then it is an equlibria for all players to obey these instructions.
So we can get any expected payoff within the convex hull of the payoffs of NE. Can we do better?
No: if all players receive the same signal(i.e.get same info). restriction ⇒ can only put weight on
NE solutions. Yes: if we give players different signals.

Observations: NE are correlated equlibria including mixed NE.
Allows a wider range of payoffs.
Can sometimes do even better.



Questions: How much better can we do? Can we quickly find CE ? What about more players?
We have k players, S = (S1, ..., Sk) pure ⇒ π(S) = (π1(S), ..., πk(S)) For a CE: (1) it has a proba-
bility distribution p(S) ≥ 0∀S and

∑
S p(S) = 1 .

(2) There is no incentive to deviate.

e.g. If I is told to play T1 I knows the signal is (T1, ∗, ∗, ...). So her payoff is

∑
S:S1=T1

p(S)∑
S:S1=T1

p(S)
π1(S)

If she plays T̄1 she gets

∑
S:S1=T1

p(S)∑
S:S1=T1

p(S)
π1(T̄1, S2, ..., sk)

So obey the signal if ∑
S:S1=T1

p(S)π1(S) ≥
∑

S:S1=π

p(S)π1(T̄1, S2, ..., Sk)

This must be true for every signal she receives and true for all the other players.
This is just an LP

max
∑
S

p(S)(
∑

i

πi(S))

s.t.∀playersi, Ti, T̄i

∑
S:Si=Ti

p(S)πi(S) ≥
∑

S:Si=Ti

p(S)πi(S1, ..., T̄i, ..., Sk)

∑
S

p(S) = 1

p(S) ≥ 0

This LP has n1, .., nk variables as player i has ni pure strategies.
∑

i n
2
i constraints

So for constant # players we have polytime algorithm. Remark: can implement CE without outside
signals by using prenegotiated contracts.

13 Evolutionary Stable Equilibria

Idea: Suppose the payoffs in a game are related to reproductive fitness. Then over time the players
with the highest payoff reproduce more and their characteristics/behaviors become dominant.



13.1 Simple Model

-Large number of players.
-Each player competes for a resource against another player(≥ 1 player)
-Players reproduce asexually at rate dependent upon payoff.

-children are identical to parent.
-game repeats for children.

A strategy S∗ is evolutionarily stable if δ > 0 such that if at most a δ fraction of the population
change strategy from S∗ to S then those players do worse then the rest of the population. X Y

X (2, 2) (0, 1)
Y (0, 0) (1, 1)


Pure strategy X is ESS. suppose δ fraction change to Y .

Mutants : (1− δ)− 0 + δ · 1 = δ

Original : (1− δ)2 + δ · 0 = 2− 2δ

If players switch to a mixed strategy they still do worse. Pure strategy Y is also an ESS.

mutants : (1− δ) · 0 + δ · 2 = 2δ

original : (1− δ) · 1 + δ0 = 1− δ

Theorem 8 An ESS must be Nash eq.

Proof. If S∗ is not NE then any single individual can do better by switching strategy-we dont
need a δ − group to switch.

So an ESS is stable against small coalitions.

corollary 4 S∗ is an ESS iff
(i) (S∗, S∗) is a NE
(ii) ∀ best responses S to S∗, S 6= S∗ u(S, S) < u(S, S∗)

Proof.
Mutants : π(S) : δπ1(S, S) + (1− δ)π(S, S∗)

non−mutants : π(S∗) : δπ1(S∗, S) + (1− δ)π1(S∗, S∗)

Since (S∗, S∗) is NE we have π(S∗, S∗) ≥ π(S, S∗)
if π(S∗, S∗) > π(S, S∗) then ∃δ > 0 such that δ − groups lose out.
if π(S∗, S∗) = π(S, S∗) then any δ − group still loses as π(S, S) < π(S∗, S).

if either (i) or (ii) does not hold then some δ − group can do better.



13.2 Examples

(1) Hawk -Dove
H D

H (v−c
2 , v−c

2 ) (v, 0)
D (0, v) (1

2v, 1
2v)

]

-resourse worth v := 4 fighting costs loser c := 10. Doves share resource

{(2
5
,
3
5
), (

2
3
,
3
5
)}

is NE
H D

H (−3,−3) (4, 0)
D (0, 4) (2, 2)

](i)

PfractionofpopulationareHawks.
(ii)AllplayerscanbeHawks/Dovestheyrandomizetheirbehavior(commonaswelle.g.wasps).

Is S∗ an ESS? Exersize.

Another example Side Blotched Lizards

Y O B
Y (2, 2) (3, 0) (0, 3)
O (0, 3) (2, 2) (3, 0)
B (3, 0) (0, 3) (2, 2)

]

Orange throat: Aggressive Large territories
Blue throat: Less Aggressive small territories
Yellow throat: No territory, sneak onto other territories to mate.

Yellows invade orange, orange invade blue, blue beats yellow. Unique Nash is (1
3 , 1

3 , 1
3) = S∗. Is

this an ESS?
-Is there a best response S to S∗ with π(S, S) > π(S∗, S) e.g. π(Y, Y ) = 2 v(S∗, Y ) = 2+0+3

3 = 5
3

nY is a best response to S∗ i.e. there exist games with no ESS. In practice relative numbers of
colored lizards varies a lot.

We can deal with non-symmetric payoffs by assuming that if 2 players are paired then they are
1 with prob 1/2.

e.g. Asymmetric H-D
H D

H (V −c
2 , v−c

2 ) (V, 0)
D (0, v) (1

2v, 1
2v)

]

Player I has value V , player II has value v, and c > V > v. rows: Owner, columns:Intruder.
Then e.g. baboons, moths, etc

Bourgovise Strategy : {(H if owner, Dif intruder), (H if owner, Dint)}



is ESS . So is
Paradoxical Strategy{(D0,HI), (D0,HI)}

e.g. Oecibus Cuitas Spider–abandons hideout if intruder enters.

13.3 Repeated Games

These kind of arguments also apply to repeated games. Suppose we want to max expected payoff
over t games.

C D
C (1, 1) (S, 0)
D (0, S), (4, 4)

]

Always playing C still dominates always playing D.
Tit-for-Tat

-cooperate at first (D)
-if opponent plays C then play C in next game. Nice, Not a pushover, Forgiving.
Observe that tit-for-tat is an ESS

C D TFT
C (1, 1) (S, 0) (1 + ε1, 1− ε1)
D (0, S) (4, 4) (4, 4)

TFT (1− ε2, 1 + ε2) (4, 4) (4, 4)

]

(C is also just about an ESS! for small δ, t). Of course there are lots of other strategies.

14 Hardness of NE

Here we show that it is NP −Hard to find to find the (socially) best NE in a 2-player(symmetric
) game. Social payoff:

∑
individual payoffs. We use a reduction from 3− SAT : n variables

x1, ..., xn

Each variable has two literals ± , xi, x̄i

There are m clauses C1, ..., Cm of the form Cj = (x1 ∨ x̄3 ∨ x7) (union of 3 literals)
Is there an assignment ± of the literals such that all the clauses are satisfied? i.e. Ø =

C1 ∧ ... ∧ Cm is true (Formula in conjunctive normal form) .

What does this have to do with games? Coitzer and Sanholm gave a reduction from 3− SAT
to a game in which if we can find the best NE we can test whether or not Ø is satisfiable.

2 player symmetric game
S1 = V ∪ L ∪ C ∪ {S} = S2

for a total of n + 2n + m + 1 = 3n + m + 1 strategies.
Payoffs are: 

l′ ∈ L v′ ∈ V c′ ∈ C S
l ∈ L l′ = l̄ : −2, l′ 6= l̄ : 1 −2 −2 −2
v ∈ V l′ = v or v̄ : 2− n l′ 6= v, v̄ : 2 −2 −2 −2
c ∈ C c′ ∈ C : 2− n, c′ /∈ c : 2 −2 −2 −2

S 1 1 1 0





intuition
Use of L strategies give assignment which is good NE.
Use of S gives bad NE.
π1(l, l̄) = −2 is to enforce consistency (−V gives the corollaries).

Lemma 4 The pure strategy (S, S) is a NE.

Proof. Get 0 get −2 if switch from S.

i.e. ∃NE with social value 0 + 0 = 0.

Lemma 5 if L1, ..., Ln satsifies Ø then ∃NE in which each player plays li with probability 1
n .

Proof.
Assume player 2 plays ( 1

n , 1
n , ..., 1

n) on L1, ..., Ln. If L1, ..., Ln are all best responses then any mixed
strategy on them is also. if player 1 plays L1 he gets 1(same for L2, .., Ln).
Show get ≤ 1 for any other pure strategy.

player 1 plays l̄i: 1
n − 2 + (1− 1

n)− 1 < 1
player 1 plays v ∈ V : 1

n(2− n) + (1− 1
n)2 = 1.

player 1 plays c ∈ C ′ :≤ 1
n(2− n) + (1− 1

n)2 = 1(at least 1 literal is in C as Ø is satisfied).
player 1 plays S: gets 1

Value of this NE is 1 + 1 = 2.
If these are the only NE then we are done.

Lemma 6 There are no other NE


l′ ∈ L v′ ∈ V c′ ∈ C S

l ∈ L l′ = l̄ : (−2, l′) 6= l̄ : 1 l = v orv̄ : (−2, 2− n) l 6= v′, v̄′ : (−2, 2) l ∈ C ′ : (−2, 2− n), l /∈ C ′ : (−2, 2) (−2, 1)
v ∈ V l′ = v or v̄ : (2− n,−2) l′ 6= v, v̄ : (2,−2) (−2,−2) (−2,−2) (−2, 1)
c ∈ C c′ ∈ C : (2− n,−2) c′ /∈ c : (2,−2) (−2,−2) (−2,−2) (−2, 1)

S (1,−2) (1,−2) (1,−2) (0, 0)


Proof. If player 2 plays S with probability 1 then player 1 must play S with probability 1.
Suppose player 2 plays S with prob p (inc p = 0).
I can guarantee 1− p by playing S.
S player 1 gets ≥ 1− p simply play with prop q gets...erased board... Sum ≥ 2− p− q
But sum of payoffs

(1− p)(1− q) +−1(1− p)q +−1(1− q)p + pq · 0

< 2 if players use V or C.

= 2− 3p− 3q + 4pq ≤ (1− p) + (1− q)



i.e. in NE V and C are not used. So players use only L ∪ {S} at NE. l′ S
l ≤ 1 −2
S 1 0


S weakly dominates l
S strictly dominates l if player 2 plays S with prob p > 0. Expected payoff for S is > then with
l. for any other NE both players only use L. Suppose player 2 plays l̄i and li with combined
prob < 1

n . If player 1 plays vi he gets > 2(1 − 1
n) + 1

n(2 − n) = 1. i.e. player 1 has no best
response in L. ⇒ player 2 use li, l̄i with probability 1

[ n∀i (also for H̄ by symmetry). If player 2
plays Li and player 1 plays L̄i sometime then payoffs are < 1 and we can do better playing S. So
player 1 and player 2 both play li (or both play l̄i) with prob 1

n . So both play l1, l2, ..., ln with prob
( 1

n , ..., 1
n). Suppose there is an unsatisfied clause C. Playing C gives payoff of 2. So this is not NE.

So if we find in polytime the best NE then if social value > 0 Øsatisfiable, = 0 Ønot satisfiable.

Theorem 9 Finding best NE is NP-Hard

corollary 5 Counting the number of NE is ]P hard

# Nash = 1+# of sat assignments.

15 Graphical Games

Get notes for first lecture

Open Problems
Find NE exactly in polytime? Paper on this which was recently shown to be flase!
What about on trees with bounded pathwidth/treewidth? What about other graphs ? e.g. find
NE in other sorts of graphs.

Payoff matrices for players I and II:

A :=



1 7 6 3 4 1
0 5 6 2 0 1
2 0 3 2 4 1
4 5 1 3 5 0
3 1 7 4 6 2
5 2 0 5 1 4





B :=



3 4 0 0 1 2
0 3 1 4 5 0
0 6 4 3 2 2
2 2 5 0 1 6
7 1 0 3 4 2
1 5 6 1 4 1


with columns : c1, ..., c6, rows : r1, ...., r6

Suppose I knows that II will play c1 Obviously I will play r6, as this gives the highest payoff.
Geometrically

I plots points on line and picks the one furthest to the right i.e. an ”‘extreme point”’.

Suppose I knows II will play only c1 or c2 with probability p, 1− p say. Plot the points in two
dimensional space.

The extreme points are on the dominant of the convex hull. Instead of rightmost point which
we wanted in one dimension, we want points on Convex Hull with positive norms. Points on
faces(facets) are also best responses if p corresponds to the normal to the face.

e.g. p = 3
5 , then r4 gives I

3
5
· 4 +

2
5
· 5 =

22
5

and r6 gives
3
5
· 6 +

2
5
· 2 =

22
5

i.e. any convex combination of (r4, r6) is b.r. to p = 3
5 . (r4, r6) are brs to some probability

distribution on (c1, c2) iff r4 − r6 is a facet of P (c1, c2).

similarly (c1, c2) are b.r.s to some prob distribution on (r4, r6), iff c1 − c2 is facet of P (r4, r6).
This generalizes to higher dimensions. b.r.s correspond to facets d−dim polytopes. This observation
helps if we , say , want to count the expected number of NE in random games. Payoff entries are
iid from some distribution e.g. U [0, 1].

# pure NE ri is a best response to cj iff it is highest number in cj probability of this is 1
n .

cj is best response to ri with prob 1
n . since the matrices are independent , the probability of the

event is P (ri ↔ cj) = 1
n2 So the expected number of NE is n2 · 1

n2 .

Note: As points in general position therefore only need to search for 1× 1, 2× 2, ...

# 2× 2 NE:
What is the probability that (ri, rj) is a best response to (cr, cs) for some p ? it is P (rirj is face) =
E(#faces)

(n
2)

.

P (rirj ↔ cscr) = (
E(#faces)(n

2

) )2 = q

E(#NE) =

(
n

2

)2

q = E(#faces)2 = E(#CH points)2



So lets count # CH points. Fix columns 1 and 2. We have n points (1 per row). For a point to
be onCH we need there to be some hyperplane H such that x ∈ H and all other pts lie bellow H.
Take (x, y) and the hyperplane shown all points below with probability (1− 2xy)n−1

E(#CH) ≥ n · E[(1− 2xy)n−1]

= n

∫ 1/2

0
(1− 2z)n−1f(z)dz

where z is product of two independent U [0, 1] distributions. We have f(z) = log(1
z ) 0 < z ≤ 1. So

E(#CH) ≥
∫ ε

0
n(1− 2z)n−1f(z)dz

≥ f(ε)
∫ ε

0
(1− 2z)n−1dz

= f(ε)[−1
2
(1− 2z)n]ε0

Setting ε = 1
n gives

E(#CH) ≥ log(n)[−1
2
(1− 2

n
)n +

1
2
]

≥ log(n)
3

Theorem 10 ∃Ω(log2(n)) 2× 2 NE in expectation

E = exp f(x) = e−x Gd = Gamma(d) , f(x) = e−xxd−1

(d−1)! U = U [0, 1] E ≡ −log(U),
P (E ≤ z) =

∫ x
0 e−ydy

= [−e−y]x0 = 1− e−x

= P (U ≥ e−x) = P (−logU ≤ x)

....
For a good algorithm you want ”‘concentration bounds”’ on # NE. Therefore with high prob-

ability ∃2× 2 NE.
Open Problem
Expected Polytime algorithm? Other distributions? Other games .e.g. 0-1 games
ε approximate NE.

16 Approximate NE

Recall an approximate NE is a set of probability distributions p1, ..., pk such that ∀i pi gives player
i an expected payoff within ε of optimal of her best response to p1, ..., pi−1pi+1...pk i.e.∏

i

(p1 · p′ipk) ≤
∏

(p1 · · · pk) + ε ∀i ∀p′i

Conceptually this is a problem: What does it mean to be almost an equilibrium?



But there is very little incentive to change so it is reasonable to study these approximate NE.
It is easier to find approximate NE . We show this for 2-players but it generalizes easily to a fixed
number of players. The key structural result is that ∃ approximate NE in which both players only
use O(lgn) strategies. i.e. small supports. This gives Quasi polynomial time algorithm...try all
possibilities.

So player (1) pick prob dist p andplayer (2) pick prob dist q
The payoffs are

(1) : pT Aq

(2) : pT Bq

where A is the payoff matrix for (1), B for (2). Assume entries of A,B are in range [0, 1].

Theorem 11 (Lipton et al)
For any NE p∗, q∗ and for any ε > 0 there exists an approximate NE p̄, q̄ with supports of size
O( logn

ε2
) .

Proof.
Let p∗T Aq∗ = π1, p∗T Bq∗ = π2 Since p∗, q∗ is NE we have ∀ strategies s ∈ S1 for which p∗s > 0

eT
s Aq∗ = π1 i.e. (Aq∗)s = π1 ∀s played by(1) in p∗

similarly (p∗T B)t = π2 ∀t played by (2) in q∗.

Define p̄ as: sample k rows according to the distribution p∗(allow repeats). Let p̄ give weight 1
k

to each sample. (Similarly for q̄). We will show p̄q̄ satisfy conditions of the theorem with positive
probability. So by probabilistic method there exists small support approximate NE.

WTS
esAq̄ ≤ p̄Aq̄ + ε ∀s ∈ S1

p̄Bet ≤ p̄Bq̄ + ε ∀t ∈ S2

Claim 1: esAq̄ ≤ esAq∗ + ε
2 .

Claim 2: p∗Aq∗ ≤ p̄Aq̄ + ε
2 .

Proof of claim 2: by previous thing p̄(Aq∗) = p∗(Aq∗) = π1 So

p̄(Aq∗) = (p̄A)q∗ = π1

As q∗] is a probability distribution, the entries of p̄A have expectation π1 according to q∗. Since
q̄ is chosen with respect to q∗ we see each sample of q̄ has expectation π1 when multiplied by p̄A.
Now p̄Aq̄ is sum of r.v.s. with expectation π1

R SO the expectation is π1.
Hoeffding’s Tail inequality: Let X1, X2, ..., XN be independant r.v.s such that Xi is in range

[ai, bi]. Then for any t > 0

P [|
N∑

i=1

Xi − E(
N∑

i=1

Xi)|] ≤ exp(
−2t2∑N

i=1(bi − ai)2

Proof. Application of Chernoffs Bound.



So
P [|p̄Aq̄ − p∗Aq∗| ≥ ε

2
] = P [|i − E(

∑
Xi)| ≥

kε

2
]

≤ exp(
−2kε

2

2

k
)

= e−
kε2

2 =
1
n2

if k = 4logn/ε2

Proof of claim 1:
Similar argument shows

(esA)q̄ ≤ (esA)q∗ +
ε

2
with prob ≥ 1− 1

n2

As we have n rows the probability one of these is ’bad’ is ≤ n 1
n2 = 1

n

So
esAq̄ ≤ p̄Aq̄ + ε

is not true with probability 1
n2 + 1

n

Similarly with respect to player (2) and B things are good with probability 1− C
n > 0.

So there exists approximate NE with support s O( logn
s2 .

corollary 6 there exists quasi poly time algorithm

Proof. Try all pairs of support of size ....erased board...

17 Sink Equilibrium

So far our equilibria concepts have mainly been mixed strategy equilibrium. But many games
involve pure strategies only. We have the concept of PSNE. Often these do not exist ! Even they
do exist, why should PSNE be an outcome of a game? What if players iteratively make moves.
Maybe we converge to a PSNE eg potential games.

Lets suppose this is how our game evolves. What happens? We model this using a strategy
profile graph.

18 Sink Eq

Why are they of interest? consider the following game :
n-players
player i has one ’nice; strategy yi

i has n ’naughty‘ strategies X1
i X2

i ...Xn
i



player i gets payoff 1 if she plays yi

PLayer i gets 2 if she plays Xri
i for some ri and

i ≡ [
∑

j:j plays anaughty strategy X
ri
j

rj ] mod n

0 otherwise

Social utility = sum of private payoffs.
At any point player i has a strategy that gives 2.

So players will only ever use X strategies.
So there exists a sink in which all states only have X strategies. Each state sink has value 2.
Optimal value is n + 1:
n− 1 play yi

one player plays Xj
j

Price of sinking = worst case ratio of value of sink to opt

=
n + 1

2

Price of anarchy ≤ n+1
n each player always gets 1 in any NE.

i.e. factor n difference between performance you expect if people use mixed vs pure strate-
gies. why naughty strategies dont work against mixed strategies. conclusion price of anarchy is
not a good measure of the cost of the lack of coordination in games where players use pure strategies.

What is the valie of sink? max value of a state in Q.
min value of a state in Q .
expected value of a state in W .

Expected value of random walk over Q(value of steady state dist). So we are interested in
whether a random walk has good social value. speed of convergence. (e.g. after polytime walk
what is expected value?)

Open: Many games without PSME have have not been analyzed. They can be analyzed wrt
sink equilibria and random walks.

Use RWS to give speed of convergence.

Other types of underlying state graph: simultaneous moves
-best response moves
-forward thinking.

19 Market Equilibria

Suppose we have k players and n commodities.
PLayer i has a vectorvi ∈ Rn

+ of communities she owns



PLayer i has a linear utility function ui.
i.e. limited utility is

ui · vi =
∑
i∈C

uijvij

How can people trade to improve their utility.
Pareto Allocation: An allocation A of the commodities such that there does not exist an allocation
A such that no player is worse off under A′ and at least one player is strictly better off.
(i.e. no-one can be made better of without making someone worse off). We want to find a Pareto
allocation(there may be more then one). We will show one exists use commodities prices.

Given a set p of prices what will i do?
she can sell her goods for p · vi

She can spend this...
choose set of items v∗i that maximizes ui · v∗i such that

p · v∗i ≤ p · vi

For this to be a realistic solution we need demand at most∑
i

v∗i (p) ≤
∑

i

vi

If so we say the market clears.

Theorem 12 (Arrow-Debrew) There exists a market clearing set of prices (a general equilibrium).

Proof.
Assume ∑

j∈C

pj = 1 (a simplex)

Suppose demand is bigger then supply for some item(otherwise we are done). Use idea from before.
Raise prices

φ(p) =
p1 + max(0, d1)

1 +
∑

j∈C max(0, dj)
, ...,

, ...,
pn + max(0, dn)

1 +
∑

j∈C max(0, dj)

By Browers FPT there is some p∗ such that

φ(p∗) = p∗

Let d′j = max(0, dj)(excess demand). want d′j = 0∀j ∈ C Observe

φ(p) =
1
β

(p + d′)

Since
p∗ · v∗i ≤ p · vi ∀i



p∗(v∗i − vi) ≤ 0 ∀i

p∗(
∑

i

(v∗i − vi)) ≤ 0

p∗ · d ≤ 0

Now φ(p∗) = p∗ = 1
β (p∗ + d′). So p∗ · d = 1

β (p∗ + d′) · d

p∗d =
1
β

(p∗d + d′d)

(β − 1)≥0(p∗d)≤0 = d′d

therefore d′d ≤ 0.
but d′ · d ≥ 0 if dj < 0 then d′j = 0 therefore d = 0 i.e. market clears.

20 Coalition Games

20.1 The Core

What happens if players work together in groups? eg if players together buy/build/rent a network,
how are costs divided between them? One possible solution concept is the core

A set I of players.
A subset S ⊆ I can guarantee a payoff v(S).
How should v(I) be shared so that no subset is unhappy ?
e.g. Treasure: n people find treasure on an island. 2 people are needed to carry each piece of

treasure.
v(S) = b |S|

2
c

if n = 2 (ε, 1− ε) is a stable sharing i.e. in core.
If n ≥ 3 (1− ε, ε, 0), (1/3, 1/3, 1/3) the core is empty.

e.g. Majority Voting

v(S) = 1 if |S| > I

2
0 otherwise

again the core is empty if |I| > 3. When is the core nonempty? We need to assign xi to player
i ∈ I such that ∑

i∈S

xi ≥ v(S)

(this implies transferable payoffs) ∑
i∈I

xi = v(I)

We can answer this using LP we need 1 technical lemma:

Lemma 7 ∃x ≥ 0 such that Ax ≤ b iff ∀y ≥ 0 yA ≥ 0 ⇒ yb ≥ 0



Proof.
take y ≥ 0, AT y ≥ 0 and yb < 0 ∃x ≥ 0, Ax ≤ b So 0 > yT b ≥ yT (Ax) ≥ 0x ≥ 0

next suppose Ax ≤ 1, x ≥ 0 has a solution. Then the LP

max − 1z

Ax− Iz ≤ b

x, z ≥ 0

has value 0.
The dual is

min bT y

[AT ,−I]T y ≥ [0,−1]T

y ≥ 0

minyT b

AT y ≥ 0

1 ≥ y ≥ 0

also has value 0
∃x ≥ 0, Ax ≤ b iff ∀y ≥ 0, yA ≥ 0 ⇒ yb ≥ 0.

Theorem 13 A coalition game with (trans payoffs) has non empty core iff ∀y ≥ 0
∑

S:i∈S yS =
1∀i ⇒

∑
S ySv(S) ≤ v(I)

Proof.

xi ≥ 0
∑
i∈I

xi ≤ v(I),
∑
i∈S

xi ≥ v(S)∀S ⊆ I

Ax ≤ b

x ≥ 0

[I, S]T x ≤ [v(I),−v(S)]T ⇔ ∀y ≥, yA ≥ 0 ⇒ yb > 0

[I, S]y ≥ 0, y ≥ 0 ⇒ (yI yS)[V (I), v(S)]T ≥ 0.

yI −
∑

S:i∈S

yS ≥ 0 ∀i, y ≥ 0



⇒ v(I)yI −
∑
S

v(S)yS ≥ 0

So
yI

yI
≥
∑

S:i∈S

yS

yI
, y ≥ 0 ⇒ v(I) ≥

∑
S

v(S)
yS

yI

∀ŷ > 0, 1 =
∑

S:i∈S

ŷS ⇒ v(I) ≥
∑
S

ŷSv(S)

20.2 The Core + Stable Matchings

Set of boys and set of girls, have a list of preferred partners. e.g.

gj : b3 ≥ b7 ≥ b26 ≥ ...

A ’Solution‘ is a matching of boys to girls H is a complete(perfect) matching if everyone prefers
being married to single.

What does it mean for M to be in the core?
Suppose a subset S ⊆ B ∪G prefers to deviate to give a matching M∗. So each player in S gets

at least as good a partner as in M . So any edge e ∈ M∗ −M is between members in S, otherwise
the other end vertices are needed in the coalition.

corollary 7 M is in the core iff i) Each i prefers M(i) to being single.
ii) No pair i, j prefer each other to their partners. i.e. not i : j ≥ m(i), j : i ≥ M(j)

Proof.
if S deviates to give M∗ then either some i ∈ S becomes single or ∃i, j ∈ S such that (i, j) ∈ M∗−M .

Clearly if (i) or (ii) is violated then we have |S| ≤ 2 showing M is not in core.
questions: Is the core always non-empty? Can we efficiently find an M in the core? We want an

M that satisfies (i) and (ii) such an M is a stable matching(marriage). We do this algorithmically.

20.3 Boy Proposal Algorithm

Pick any single man i
the man proposes to next girl j on his list.
j accepts if she prefers i to her current partner M(j). If so Set M(j) = i

Repeat until no single men or we have gone through all the lists of each single man.

First see that this is efficient. i.e. runtime is O(n2) Each list is of size ≤ n Property 1
the quality of a girls partner only gets better as the algorithm runs.
On the other hand the quality of the boys partner only gets worse.

Theorem 14 We have a stable marriage at the end



Proof. At the end of the algorithm he has been rejected by every girl on his list. They wont
change their minds... Similarly take i and i, j ≥ M(i) then j has rejected i and wont change her
mind

extensions Girls accept at least 1 boy. i.e. Girls = Hospitals. Same algorithm works. Room
mate problem- non bipartite graph. here the core can be empty.

21 Stable Matchings: Fairness and Truth telling

The game may have many stable matchings. Let j ∈ S(i) if (j, i) ∈ M for some stable matching
M . We say j is a ‘stable partner of i’. The boy-proposal algorithm has several interesting properties.

(0) The order in which boys are chosen to make proposals does not matter.
(1) The alg is truthful for boys.
(2) Every boy is matched to his ‘best’ stable partner.
(2′) Every girl is matched to her ‘worst’ stable partner.

Obviously girl proposal algorithm has symmetric properties.

But the mechanism is not truthful for girls. What if g2 lies and rejects b1 and stays with b2

when she has b3 > b1 > b2? We end up with a different matching...with g2 getting b3 instead of b1

i.e. she does better by lying. So there can be incentive to lie for girls. Remarks: Hospitals used
the hospital proposal algorithm but changed it

biased against students (didn’t want to get sued)
incentive for students to lie

In fact things are not so bad.
Suppose boys rank the top k girls. Girls have a complete ranking implicitly(i.e. only compare

2 boys at a time). How many girls have an incentive to lie? Assume each boys list is drawn at
random. (Girls can be anything.)

Theorem 15 The expected number of girls who may benefit from lying is O(ek).

Proof. A girl can only have an incentive to lie if she has at least 2 stable partners. So lets
calculate how many stable partners a girl has. Find the truthful boy-proposal stable matching M .
Let girl j discard her current partner M(j) . i.e. delete from list. Run the algorithm from here-this
is OK as order of proposals doesn’t matter. If j gets a partner then she has another stable partner.
As girls partners get better it suffices to check if anyone proposes to j after she discards M(j). If
not she has one stable partner. So boy M(j) makes proposal. If this is accepted by a matched girl
then another boy becomes single and we repeat with that boy.

This ends if
(i) the boy proposes to an unmatched girl(includes j)
(ii) we get to the end of the boys list.

So we only need to calculate the probability that the single woman chosen in (i) is j. But
the lists are random so each single girl is equally likely. i.e. j has at least 2 stable partners with



propbability ≤ 1
1+#single girls .

E(#single girls) = nP (g single)

≥ nP (girl is on no lists)

= n(1− k

n
)n ≈ ne−k (this is concentrated)

i.e. E(#girls with ≥ 2 stable partners) ≤ n 1
1+o( n

ek ) ≤ O(ek)

i.e. if k is small then truth telling is good strategy.
Open: What happens in roommate problem?

21.1 Coalition Games: Shapley Value

This a different solution concept for coalition games. Unlike the core, the shapely value always
exists. Recall we have v(S) ∀S ⊆ I, v(Ø) = 0. We want to assign xi values such that

∑
i∈I xi = v(I).

(we get rid of the constraint
∑

i∈S xi ≥ v(S)) What axiomatic properties should x have?
Axiom I: Symmetry: The label of a player should not affect its payoff. In particular, if players

i and j have the same effect on any coalition i.e.

∀S v(S ∪ i)− v(S) = v(S ∪ j)− v(S)

then xi = xj .

Axiom II Dummy Players that contribute nothing receive nothing. Specifically, we say R is a
carrier iff

∀S ⊆ I v(S ∩R) = v(S)

The set I −R are dummies. Only players in R receive anything. Given 2 coalition games v, v′, let
w be the coalition game that has value v a fraction p of the time, value v′ 1− p of the time. i.e.

w(S) = pv(S) + (1− p)v′(S)

Axiom III Linearity: if w(S) = pv(S) + (1− p)v′(S)∀S then xi(w) = pxi(v) + (1− p)xi(v′) .

These are all pretty natural. Surprisingly there is only one solution concept that satisfies all 3
axioms.

Shapely Value:

xi = Eπ[v({π−1(1), π−1(2), ..., i = π−1(πi)})− v({π−1(1), ..., π−1(πi − 1)})

632145 , v(1236)−v(632) what is this? Randomly select the players and see the average marginal
increase due to player i.

Theorem 16 Shapely value satisfies axioms I, II, III.



Proof.

• Look at all permutations.

• Dummies never increase value of subset so always get 0.
•

xi = p · xi(v) + (1− p)xi(v′)

By construction.

Theorem 17 Only the Shapley value satisfies axioms I, II, III.

Proof. Let O be the coalition game with v(S) = 0∀S ⊆ I. Then xi(0) = 0∀i ∈ I by axiom II.
Linearity axiom implies x : R2|I| → R|I| is a linear mapping. So the set of coaliion games on I is a
2|I|− 1 dimensional vector space. Lets find a basis. Given Ø 6= R ⊆ I let the coalition game VR be
VR = 1 if R ⊆ S, 0 otherwise i.e. R is a carrier in game VR, I −R are dummies.

So for x we have Dummy Axiom ⇒ xi(vR) = 0 i /∈ R,
∑

i∈R xi(vR) = 1. Symmetry: xi(vR) =
1
|R|∀i ∈ R. These are 2|I|− 1 such games. Are they linearly independent? If so we are done as then
these games give all game payoffs (as they are linear combinations of the basis). By III these are
values Shapely gives too.

Suppose ∃λS such that
∑

S λSvS = 0. Take S∗ the smallest set with λS 6= 0 then
∑

S λSvS(S∗) =
0 +

∑
S:S∗S λSvS(S∗) = λS∗vS∗(S∗) = λS∗ contradiction.

So Shapely value exists and has some nice properties. But it has some problems

• Complexity: there are n! permutations so how do we calculate it?

• it may not be fair. e.g. election example.

• Shapely value may not be in the core even if core is non-empty.


