
Retrieving Task-Related Clusters from Change History

Martin P. Robillard and Barthélémy Dagenais
School of Computer Science

McGill University
Montréal, QC, Canada

{martin,bart}@cs.mcgill.ca

Abstract

During software maintenance tasks, developers often
spend an important amount of effort investigating source
code. This effort can be reduced if tools are available to
help developers navigate the source code effectively. For
this purpose, we propose to search the change history of
a software system to identify clusters of program elements
related to a task. We evaluated the feasibility of this idea
with an extensive historical analysis of change data. Our
study evaluated to what extent change sets approximating
tasks could have benefited from knowledge about clusters
of past changes. A study of 3 500 change sets for seven dif-
ferent systems and covering a cumulative time span of close
to 12 years of development shows that less than 12% of the
changes could have benefited from change clusters. We re-
port on our observations on the factors that influence how
we can use change clusters to guide program navigation.

1. Introduction

When involved in a task to change unfamiliar code, a
software developer will generally spend an important frac-
tion of the task time investigating the code. In many de-
velopment environments, investigating the source code can
be supported in a wide variety of ways, from the most basic
cross-reference searches (e.g., for the callers of a method) to
advanced tools that take advantage of ever-growing quanti-
ties and types of software development data [18]. Examples
of advanced tools and techniques to support software in-
vestigation include query-based source code browsers [9],
association rule mining of change history [20], searchable
project memory [5], automated feature location [16], and
topology analysis of software dependencies [12]. The rich
and diverse collection of available program investigation
tools and techniques is not surprising when we consider the
wide variety of questions developers ask themselves during
software change tasks [14]. In fact the increasing size of
most software systems motivates the development of a col-

lection of search tools that can maximize the efficiency of
developers in different program investigation situations.

In this context, we investigated the usefulness of a soft-
ware’s revision history for facilitating software investiga-
tion. To do so, we devised a technique that takes as input
a simple query, and determines if there exists any change
clusters that would match the query. The concept of a
change cluster has been used in the past for purposes such
as analyzing the evolution of software systems [10]. In our
case, we define a change cluster to be a set of program
elements (methods or fields) that are related through their
change history. Our general assumption is that a developer
working on a task related to a change cluster can poten-
tially benefit from knowledge about the set of elements in
the cluster. Given this assumption, we were interested in es-
timating the potential value of change clusters for support-
ing program navigation. In other words, how often do tasks
overlap with change clusters? To what degree does the re-
trieval of a change cluster produce valuable information for
developers?

These questions build on previous research in repository
mining for the purpose of software engineering. Others
have proposed to mine software change repositories for as-
sociation rules, and to recommend an element for investi-
gation if it has consistently been changed together with an
element currently being modified by the developer [17, 20].
Although this idea was shown to be very good at recom-
mending specific elements in particular situations (i.e., sys-
tematic co-modifications of the same set of elements), it is
too specialized to support general-purpose code investiga-
tion. Instead, our goal was to broaden the idea of min-
ing association rules between sets of elements by proposing
clusters of elements related through change history, but that
were not necessarily modified in the same change sets.

To investigate the value of retrieving change clusters to
assist program navigation, we implemented a fine-grained
change clustering technique and applied it to the revision
history of seven mature open-source systems. Our study of
3 500 change sets for these systems covered a cumulative



time span of close to 12 years of development. Our analysis
of this data shows that less than 12% of the changes could
have benefited from change clusters. However, our analysis
also allowed us to make numerous insightful observations
on the factors that influence how we can use change clusters
to guide program navigation.

2. History-Based Clusters
The basic idea of task-related change clusters is to search

the development history of a software project to detect
groups of elements (clusters) that form a cohesive subset
of the program. This approach broadens the idea of min-
ing association rules between sets of elements [17, 20] by
proposing clusters of elements related through change his-
tory, but whose change pattern is not strictly an instance of
an association rule. The idea for searching for task-related
clusters in revision history stems from our previous work
on the reuse of program investigation knowledge for code
understanding [13].

2.1. Background

Our proposed approach relies on the analysis of reposi-
tories storing the change history of software systems. Such
repositories typically store software changes as differences
between versions of artifacts. Central to our approach is
the concept of a transaction (or change set), i.e., a num-
ber of software artifacts committed together to a software
repository. Some repository software (such as Subversion)
explicitly support the tracking of transactions. Other sys-
tems (such as CVS), do not. In the latter case, it is nev-
ertheless possible to convert a stream of commit operations
on individual artifacts into transactions. Following common
practice for mining CVS repositories [19], we consider all
commits sharing a user and log message performed during
a given time window to constitute a transaction.

The merging of branches is another issue that arises
when analyzing software repositories. This operation is not
explicitly documented by neither CVS nor Subversion. De-
tecting merges is important because we do not want to an-
alyze the same change twice: one in the branched version
and one in the merged version. As in previous work [19],
we avoid the issue of branch merging by filtering out large
transactions (see Section 2.3).

Finally, although commit operations are performed at the
granularity of files, a parsing operation will extract infor-
mation about the individual program elements that were
changed as part of a transaction. Henceforth, we will as-
sume that a software repository can be abstracted as a se-
quence of transactions, each describing the set of changed
elements (fields, methods). For each changed element, we
record whether the element was added, deleted, or modified
as part of the transaction.

2.2. Motivating Example

We illustrate the potential benefits of change clusters
with a scenario taken from the change history of Apache
Lucene,1 a text search engine library.

In October 2003, a developer starts fixing a bug having
to do with locking (Transaction #1105). The modification
ends up requiring the developer to commit changes to seven
methods in three distinct classes, and presumably to inves-
tigate a greater amount of code.

As it turns out, the code touched is related to a high-
level “locking” concern, and code related to this concern
was modified multiple times in the past. For instance, more
than 18 months ago a different developer had committed a
very similar set of elements with the log message “obtain
write.lock while deleting documents” (Transaction #670).
Very similar transactions were also committed months later
by other developers (#1005, #1095). In fact, the union of
all the 24 methods committed as part of transactions #670,
1005, and 1095 contains all the seven methods committed
as part of #1105, and likely many methods also investigated
(but not modified) by the developer. From this example, one
can surmise that the ability to effortlessly retrieve the ele-
ments changed as part of the three above transactions would
have been an asset to the developer. But how to find the set
of related transactions? A textual search for the word “lock”
in all the change logs yields over 30 distinct transactions,
with a vast number of irrelevant elements. Association rule
mining would also not have yielded this result, because the
seven modified methods had never been modified together
in the past.

The clustering technique we describe in the rest of this
section is able to identify the three related transactions given
any combination of 2 methods in transaction #1105. In our
scenario, having identified two relevant methods, the devel-
oper would have been able to instantly view a recommen-
dation consisting of the 22 methods in the matching change
cluster.

2.3. Overview of the Technique

We model a program P = {e1, ..., en} as a set of pro-
gram elements ei, which in our case are Java fields and
methods. Our technique takes as input a query Q ⊆ P and
returns a related cluster C ⊆ P .2 The idea is that Q repre-
sents a small number of elements related to a task (typically
2 or 3), and that C represents a larger set of elements that
are part of clusterable transactions, and that are related to
the task.

1lucene.apache.org/
2In practice a cluster is a more elaborate data structure that retains the

list of transactions composing it, but this level of detail is superfluous here.



Given a query, our technique retrieves relevant clusters
in four steps:

1. Determine the sequence of clusterable transactions.
2. Cluster transactions.
3. Retrieve the clusters matching a query.
4. Filter retrieved clusters.

Determine the sequence of clusterable transactions.
Transactions that involve too few or too many changed ele-
ments to be useful are removed from the list of transactions
processed by the clustering algorithm (see next paragraph
for thresholds). The result of this step is a list of clusterable
transactions.
Cluster transactions. The clusterable transactions are
clustered based on the number of overlapping elements us-
ing a standard nearest-neighbor clustering algorithm (Ap-
pendix A). We used a nearest-neighbor clustering algo-
rithm because it is a simple and intuitive way to associate
elements transitively through transactions. In other words,
if elements A and B are changed together in one transac-
tion, and then B and C are changed together in another
transaction, A and C might have a relation worth report-
ing to a developer. During our initial investigation with this
technique, we also did not encounter any issue that would
justify or motivate experimentation with different clustering
algorithms. The result of this clustering operation is a set
of clusters representing transactions that address an over-
lapping set of elements. The only parameter of our clus-
tering algorithm is the minimum number of common ele-
ments between two transactions required to assemble the
two transactions in a cluster. Experimentation with the
Lucene change history revealed 4 elements as the thresh-
old leading to the most balanced results. To produce useful
clusters, we remove, in the first step, all transactions with
less than four elements from the sequence of clusterable
transactions as they can never be clustered. Additionally,
based on prior experimentation [13], we also remove trans-
actions with more than 20 changed elements as these gen-
erate overly large clusters that would require developers to
spend an unreasonable amount of effort to study. Removing
large transactions has the added side-effect of eliminating
transactions representing branch merges.
Retrieve the clusters matching a query. We return all
the clusters C ∈ C|Q ⊆ C.
Filter retrieved clusters. Based on various filtering
heuristics (Section 2.4), we remove the clusters that are not
likely to be useful to developers from the list of results.

2.4. Filtering Heuristics
The results of the search technique described above can

be influenced by a number of heuristics that are applied to
the four steps above. We experimented with a number of fil-
tering heuristics that we developed based on insights gained

during a preliminary study [13], and through extensive iter-
ative experimentation with the change history of the Lucene
system described in Section 2.2. Based on these insights,
we fixed a number of parameters that clearly appeared as
offering good results, such as the minimum overlap value of
4 for the clustering algorithm. Other heuristics required fur-
ther experimentations and remained variables in our study.

Heuristic 1 (Ignore High Frequency) In step 3, queries
automatically return no result if any of the query elements
is an element that changed more than a specified number of
times as part of a transaction.

We define the function

highFrequency(e, T ) → boolean

as returning true if element e occurs in 3% or more of the
transactions in T . We designed this heuristic through prior
experimentation after noticing many situations where some
central or critical elements were continually modified [13].
In such cases, our hypothesis is that querying the change
history for the highly changed element returns too many
recommendations to be useful.

Heuristic 2 (Minimum Cohesion) We define the cohesion
of a cluster C created through the clustering of n trans-

actions Ti as
∑n

i=1
|Ti|

|C|n . Cohesion varies between 0 and
1 and measures how much the transactions clustered ac-
tually overlap. For example, a cluster created from trans-
actions grouping identical sets of changed elements would
have a cohesion of 1.0. Two transactions of 5 elements,
of which 4 overlap, would create a cluster of cohesion
(5 + 5)/(6 · 2) = 0.83.

The intuition behind this heuristic is that clusters with
low cohesion may represent transactions that have been
clustered but that do not represent changes associated with
a common high-level concern. Based on prior experimen-
tation and on an analytic interpretation of the measure, we
determined that 0.6 seemed a reasonable cohesion cutoff.
When this heuristic is enabled, in step 3 of the technique,
clusters are only returned if they have a minimum cohesion
of 0.6.

Heuristic 3 (Minimum Transactions) In step 3, the mini-
mum number of transactions that must be associated with a
cluster for it to be returned as a match.

The idea behind this last heuristic is to avoid returning
results that are single transactions or very small groups of
transactions, which may have been spuriously clustered. We
experimented with values 2 and 3. A value of one returns
all clusters, whereas higher values produce very few recom-
mendations.



3. Empirical Assessment
The overall goal of this research was to assess to what ex-

tent can we use past changes to inform program navigation?
This section describes the empirical setup we designed to
answer that question.

3.1. Research Question

We refine our general research goal with three specific
research questions:

Q1. Support Frequency. What percentage of change
tasks relate to history-based clusters? Although we ex-
pect support frequency to vary across different projects, we
wanted to get a general estimate of the amount of historical
information we can to use to produce recommendations to
support ongoing maintenance.

Q2. Impact of Heuristics. What is the impact of the fil-
tering heuristics on the usefulness of the technique?

Q3. Value of the information. To what degree are rec-
ommended clusters likely to be useful to developers?

3.2. Methodology

The basic methodology we employed for answering the
research questions was to apply various configurations of
our technique to the change repositories of a number of
long-lived Java systems. For each system we proceeded
with the following steps:

1. We produced a sequence of analyzable transactions.
An analyzable transaction is a transaction with three or
more changes that are not additions (i.e., that are changed or
deleted elements), and with a total of 20 or fewer elements.
Transactions outside this range cannot be efficiently ana-
lyzed with the procedure described in the following steps
(because newly added elements have no chance of result-
ing in a matching query unless they are reintroduced). The
list of analyzable transactions is different from the list of
clusterable transactions in that analyzable transactions rep-
resent transactions to which our empirical design is appli-
cable, whereas clusterable transactions are any transactions
that can be used to create clusters.

2. We skip the first 200 analyzable transactions, to ana-
lyze transactions that approximate tasks on a system with a
reasonable amount of change history. We analyze the fol-
lowing 500 analyzable transactions in the system’s change
history.

3. For each analyzable transaction Ti (for i > 200), we
apply the clustering algorithm of Appendix A to the set of
all clusterable transactions {Tj | j < i}.

4. For transaction Ti, we produce a set of queries Q =
{(em, en)|(em, en) ∈ Ti × Ti ∧ em 6= en ∧ {em, en} ∩
additions(Ti) = ∅}. In other words, we consider all pos-
sible combinations of two elements in Ti that do not corre-
spond to additions. Although, in theory, |Q| =

(|Ti|
2

)
can

grow very big, restricting our analysis to transactions with
a maximum of 20 (changed) elements leads to a tractable
number of combinations (190). We use this strategy be-
cause a maintenance task can be approached from differ-
ent angles (i.e., different elements being selected as start-
ing points for the investigation). For example, a developer
might want to start with elementsA andB while another de-
veloper would start by looking at elements B and C. With
our strategy, we exhaustively take into account all possible
starting points of two elements.

5. We retrieve the clusters formed by at least 2 transac-
tions. If filtering heuristics are enabled, we apply the heuris-
tics to remove unwanted clusters.

6. We measure various properties of the output clusters.
We refer to the output of our technique as recommended
clusters, or simply recommendations.

We use four measures to assess the results of experiments
as described above.

Measure 1 (Supported Transactions) The number of
transactions (out of 500 analyzed for a system) for which at
least one query generates a recommendation.

This measure assesses how many tasks could potentially
have benefited from the technique, in answer to research
question Q1.

Measure 2 (Input Coverage) For transactions producing
at least one recommendation, the ratio of recommenda-
tions to the total number of queries for the transaction.
For instance, a transaction with 5 elements would gener-
ate
(
5
2

)
= 10 queries. If only 4 of these queries produce

a recommendation, Input Coverage = 0.4. This value is
aggregated over all supported transactions to produce an
overall ratio.

This measure estimates the probability that a transaction
would have benefited from the technique if a developer en-
tered a query based on the first two relevant elements iden-
tified. In other words, if for a transaction Input Coverage
= 1.0, any query will produce the output cluster, and hence
the probability to produce a recommendation is 1. The mea-
sure of input coverage will help us assess Q1.

Measure 3 (Scattered Clusters) The ratio of transactions
for which there is at least one recommendation of a scat-
tered cluster to the total number of supported transactions.
A scattered cluster is defined as a cluster grouping elements
in at least 3 different classes and 2 different packages, gen-
erated from transactions that span at least seven days.



This measure estimates the number of tasks for which
recommended clusters could have been particularly useful
to developers as they represent scattered (and thus poten-
tially hard to find) elements. This measure is intended to
help provide answers to questions Q2 and Q3.
Measure 4 (Recommendation Accuracy) A measure of
how accurate the recommended cluster is. We estimate the
accuracy of a recommended cluster by calculating the aver-
age precision and recall of each recommendation, and then
generating the average F-measure for all the recommenda-
tions. The precision for a cluster is the number of non-query
elements in the cluster that are also in the transaction an-
alyzed, divided by the number of non-query elements in the
cluster. The recall is the number of non-query elements in
the cluster that are also in the transaction, divided by the
number of non-query elements in the transaction. The F-
measure is the harmonic mean of both precision and recall,
calculated as F = 2 · P · R/(P + R). Our final mea-
sure of recommendation accuracy is the average F measure
over all recommendations. In brief, Recommendation Ac-
curacy varies between 0 and 1: a value of 1 indicates that
precision and recall are perfect for all recommendations,
and degrades according to a corresponding degradation in
precision/recall as measured by the F-measure.

In the context of our approach, it should be noted that the
precision and recall ratios grossly underestimate the perfor-
mance of the approach because they are calculated based
on the elements changed as part of a task, whereas we
attempt to produce recommendations of what a developer
needs to investigate. We have used the accuracy measure
described above because, in the absence of additional infor-
mation about the change tasks, it is the only way to rigor-
ously assess our technique. In practice the F-measure cal-
culated represents an extreme lower bound on the accuracy
of the approach. For example, a recommendation with an
F-measure of 0.0 may still have been useful if it allowed the
developer to find related, but unchanged, program elements.
The main purpose of this measure is to provide a robust and
objective way to measure the impact of the various heuris-
tics to answer Q2. However, the intermediate F-measures
can also help us interpret the results for the purpose of as-
sessing Q3.

3.3. Example

We clarify our experimental procedure and measures
with an example. Figure 1 represents a hypothetical trans-
action stream and some clusters, and where each changed
element is represented by a letter. We assume that all the
changed elements represent modifications to existing pro-
gram elements (as opposed to addition of new elements or
deletion of existing elements).

According to our definitions all transactions are both an-
alyzable and clusterable. We proceed with our methodol-

T1 = A B C D C1 = A B C D

T2 = A B E F C2 = A B C D E F

T3 = G H I J C3 = G H I J

T4 = A B C I

Figure 1. Transaction stream and clusters

ogy, using a clustering overlap of 2 to shorten the example
(we use 4 in practice).

T1: Analyzing T1 produces no recommendation because
it is the first transaction.

T2: Analyzing T2 generates a single cluster C1 = T1. For
T2,Q = {(A,B), (A,E), (A,F ), (B,E), (B,F ), (E,F )}.
Only (A,B) retrieves cluster C1, which is filtered out
because it only “clusters” a single transaction and MIN
TRANSACTIONS = 2. We thus have no recommendation
for T2 as well.

T3: Analyzing T3 generates cluster C2. Of the 6 possible
queries for T3, there is no overlap with the cluster.

T3: Analyzing T4 generates clusters C2 and C3. Queries
(A,B), (A,C), and (B,C) all retrieve cluster C2, which is
considered a result because it represents 2 transactions. We
thus consider T4 to be a supported transaction. The Input
Coverage metric for T4 is thus 3/

(
4
2

)
= 0.5. The precision

of query (A,B) is |{C}|/|{C,D,E, F}| = 0.25, and the
recall is |{C}|/|{C,D}| = 0.5, yielding F = 0.33. The
results are the same for the other two queries, yielding a
final Recommendation Accuracy of 0.33.

4. Results

We describe our data sources and analyze the results of
the experiments to answer our three research questions.

4.1. Data Sources

Systems were selected among the population of available
and long-lived open-source Java projects. To be selected for
analysis, a system needed to have at least 700 analyzable
transactions. For each system, we considered all transac-
tions starting at the first transaction, but removed small and
large transactions as described in the previous section. Ta-
ble 1 reports on the systems we analyzed and their main
characteristics as related to our research questions. Ref-
erences to the systems analyzed are in Appendix B. For
each system, the columns First and Last give the dates of
the first and last analyzed transactions, respectively. These
correspond to the 201st and 700th analyzable transactions
available in the repository. The following column gives the
number of days between the first and last transactions ana-
lyzed. Column Trans. gives the total number of transactions
committed between the first and last analyzed transactions.



System First Last Time Trans. Clusters Pool Ratio

Ant 30 Oct 2001 10 Dec 2004 1136 2353 860 962 1.12
Azureus 11 Nov 2003 17 May 2004 188 2377 711 814 1.14
Hibernate 21 Nov 2003 9 Jun 2005 565 2237 868 952 1.10
JDT-Core 24 Jan 2002 21 Feb 2003 393 3216 557 684 1.23
JDT-UI 16 Aug 2001 18 Apr 2002 245 2555 765 823 1.08
Spring 13 Jan 2004 30 Nov 2004 322 1578 785 912 1.16
Xerces 7 May 2001 2 May 2005 1455 2189 665 769 1.16

Total 4304 16 505

Table 1. Characteristics of Target Systems

System Supported Ratio Coverage

Ant 87 0.17 0.18
Azureus 113 0.23 0.26
Hibernate 69 0.14 0.23
JDT-Core 163 0.33 0.25
JDT-UI 47 0.09 0.16
Spring 109 0.22 0.28
Xerces 89 0.18 0.37

Average 96.7 0.19 0.25

Table 2. Support and Input Coverage

For instance, for the Ant project, we analyzed 500 transac-
tions out of 2353 because 2353− 500 = 1853 transactions
were to small or too large to be considered analyzable (see
Section 3.2). Finally, the last three columns describe the
amount of clustering that took place for the last analyzed
transaction. Column Clusters gives the clusters formed for
the last analyzable transaction and column Pool gives the
maximum number of clusterable transactions. The last col-
umn is the ratio of Pool to Clusters, or the average num-
ber of transactions per cluster. Experimentation showed that
this ratio tends to remain stable (i.e., the number of clusters
grows linearly with the number of transactions analyzed).

4.2. Q1: Support Frequency
Table 2 reports on the measure of Supported Transac-

tions and Input Coverage for all systems analyzed. The sec-
ond and third columns give the number of supported trans-
actions (out of 500) and the corresponding ratio, respec-
tively. The last column gives the input coverage measure.

As this data shows, on average 1 in 5 analyzed trans-
action overlaps with change clusters. As it is expected,
the number of supported transactions varies per system
(σ=0.076 for the ratio), with a distribution between the ex-
tremes that is close to uniform. The input coverage val-
ues show that on average 1 in 4 queries will yield a recom-
mended cluster if a cluster can be recommended. Values of
input coverage metric are more stable (σ=0.069).

The general answer to our first research question is that it
is reasonable to expect that around 1 in 5 maintenance tasks

are associated with change clusters. In addition, querying
for change clusters based on two relevant methods will iden-
tify the cluster 1 in 4 times. A rough overall interpreta-
tion of this data is thus that a developer who identifies two
elements modified as part of a task and performs a query
using our technique can expect to see a recommendation
0.19× 0.25 ≈ 5% of the time.

4.3. Q2: Effect of Filtering Heuristics
To study the effect of the various heuristics, we calcu-

lated the effect of applying the heuristic on the values of
the Supported Transactions, Scattered Clusters, and Accu-
racy metrics. We can analytically determine that Supported
Transactions will drop as the result of filtering more clus-
ters: our experiments revealed to what extent. In the case of
Scattered Clusters, we have no a priori theory about the ef-
fect of the heuristics on the nature of the clusters identified:
we used our experiments to discover this effect (using a two-
tailed Wilcoxon signed-rank test).3 Finally, the heuristics
were designed to improve the results, so our theory was that
the heuristics should result in an increased accuracy, and we
used our experiments to test this hypothesis using 1-tailed
Wilcoxon signed-rank test. In the following, we consider
results to be statistically significant at p=0.05.

Table 3 reports on the measure of Supported Transac-
tions, Scattered Clusters, and Accuracy for the default con-
figuration. In this configuration, Heuristics 1 (IGNORE
HIGH FREQUENCY) and 2 (MIN COHESION 0.6) are
disabled, and the parameter value for Heuristic 3 (MIN
TRANSACTIONS) is 2. No correlation was detected be-
tween the Supported Transactions, Scattered Clusters, and
Accuracy variables.

Table 4 shows the effect of the IGNORE HIGH FRE-
QUENCY heuristic. Applying this heuristic results in an av-
erage 7.8% drop in the number of supported transactions.
There is no statistically significant effect on the number
of scattered clusters reported. A one-tailed Wilcoxon test
shows a statistically significant (positive) impact on the ac-
curacy (p=0.0178).

3The Wilcoxon signed-rank test is more conservative than the t-test. It
does not assume normality of difference scores.



System Supported Scattered Accuracy

Ant 87 0.37 0.28
Azureus 113 0.47 0.28
Hibernate 69 0.33 0.29
JDT-Core 163 0.64 0.34
JDT-UI 47 0.55 0.31
Spring 109 0.51 0.36
Xerces 89 0.56 0.42

Average 96.7 0.49 0.33

Table 3. Measures – Default Configuration

The impact of IGNORE HIGH FREQUENCY on the scat-
tered clusters metric for Hibernate is an outlier (-42%). We
manually inspected the recommended clusters to find an ex-
planation for this value. As it turns out, 100% of the 12
transactions filtered by the heuristic had recommended a
scattered cluster. However, in all cases the high-frequency
element causing the rejection was either a factory method or
the root of a data structure. Because of the “global” nature
of these elements in the design of Hibernate, their modifi-
cation together with other elements inevitably classified a
cluster as “scattered”. Despite this aberration, the heuris-
tic increased the overall accuracy of the results. We there-
fore consider IGNORE HIGH FREQUENCY to be a generally
valuable heuristic.

System Supported Scattered Accuracy

Ant -5% +5% +3%
Azureus -14% +1% +4%
Hibernate -17% -42% +8%
JDT-Core -4% -1% +3%
JDT-UI -6% +7% +2%
Spring -2% +2% 0%
Xerces -7% -8% +6%

Average -7.8% -5.2% +3.6%

Table 4. Effect of Ignore High Frequency

Table 5 shows the effect of the MINIMUM COHESION
(0.6) heuristic. Applying this heuristic results in an over-
all 45.7% drop in the number of supported transactions.
A two-tailed Wilcoxon test shows a statistically significant
negative effect on the number of scattered clusters reported
(p=0.0156). There is no statistically significant positive im-
pact on the accuracy. The negative effect on the number of
scattered clusters report is easily explained by the design of
this heuristic. If we assume that most transactions tend to
modify elements in the same classes, then requiring a min-
imum of cohesion will eliminate overly scattered clusters.
This heuristic does not provide a clear advantage: although
it might increase the accuracy, it may result in simply rec-
ommending more obvious information.

System Supported Scattered Accuracy

Ant -46% -42% +13%
Azureus -11% -18% +33%
Hibernate -68% -32% +12%
JDT-Core -32% -41% +6%
JDT-UI -64% -26% -22%
Spring -46% -11% +28%
Xerces -54% -48% +29%

Average -45.7% -31.0% +14.3%

Table 5. Effect of Minimum Cohesion 0.6

Table 6 shows the effect of the MINIMUM TRANSAC-
TIONS (3) heuristic. Applying this heuristic results in an
average 56% drop in the number of supported transactions.
A two-tailed Wilcoxon test shows a statistically significant
positive effect on the number of scattered clusters reported
(p=0.0156). There is no statistically significant positive im-
pact on the accuracy. Again, the impact on Scattered Clus-
ters is intuitive: clusters with more transactions are likely
to be more scattered. The fact that this heuristic has no ob-
vious bearing on accuracy also means that it might not be
universally desirable.

System Supported Scattered Accuracy

Ant -71% +31% +8%
Azureus -53% +57% -4%
Hibernate -42% +5% +3%
JDT-Core -45% +26% +1%
JDT-UI -77% +15% +55%
Spring -64% +25% -28%
Xerces -40% +21% -20%

Average -56% +26% +2%

Table 6. Effect of Min Transactions 3
The conclusion of our experiment is that the IGNORE

HIGH FREQUENCY heuristic should always be applied, and
that the two other heuristics should be chosen based on the
characteristics of the desired results. MIN COHESION 0.6
helps produce more accurate but less scattered results. MIN
TRANSACTIONS 3 is more aggressive, producing results
that are potentially more useful, but also may be irrelevant
more often.

4.4. Q3: Result Usefulness

Because our overall accuracy metric is difficult to inter-
pret, we provide a simpler metric: the ratio of supported
transactions for which the recommended cluster overlapped
with the task (with at least one element in addition to the
query). Such transactions correspond to supported transac-
tion with an average F-measure greater than zero. Table 7
presents the results for the default configuration (Def.) as



System Def. HF MC-0.6 MT-3

Ant 48% 50% 47% 52%
Azureus 54% 59% 19% 53%
Hibernate 58% 63% 73% 48%
JDT-Core 56% 58% 54% 53%
JDT-UI 49% 52% 59% 36%
Spring 61% 62% 61% 69%
Xerces 58% 61% 56% 53%

Average 55% 58% 53% 52%

Table 7. Overlap

well as for IGNORE HIGH FREQUENCY (HF), MIN COHE-
SION 0.6 (MC-0.6), and MIN TRANSACTIONS 3 (MT-3).
As expected from the results in Section 4.3 the only heuris-
tic with a consistent positive impact is IGNORE HIGH FRE-
QUENCY.

We observe that, on average, the recommended cluster
for 58% of the supported transactions overlaps with the el-
ements modified as part of the task. Conservatively, we can
interpret this value to be an upper bound on the number of
tasks that have a measurable potential of being supported
through our change clusters. Combining this ratio with the
average support ratio in Table 2, we determine that we can-
not reasonably expect that more than 0.19×58% = 11% of
the tasks have the potential to benefit from change clusters.
We conclude that, although cases such as the one described
in Section 2.2 have good potential to decrease the amount
of program navigation required for a task, such cases will
not be common in the life-cycle of a system. Future devel-
opments with our or similar approaches should thus focus
on maximizing the quality of the match between the current
task and past transactions, rather than finding many poten-
tial matches.

Although a systematic qualitative study of the 677 sup-
ported transactions we detected is beyond the scope of this
paper, we conducted a partial study of the supported trans-
actions. For each system, we inspected the supported trans-
actions with the highest F-measure, and two randomly-
selected transactions with an F-measure of 0. Although it
does not provide definite answers, this initial inspection al-
lowed us to make a number of useful observations that will
help guide future research and tool development.

• Initial evidence indicates a good correlation between
our measure of scattering for a cluster and the actual
usefulness of the cluster. Clusters generating very high
F-measures typically group transactions that are very
close in time, not only to each other but also to the ana-
lyzed task. The benefit of recommending such clusters
is limited, and our definition of scattering appears to
be a promising filtering metric.

• Some recommendations are clearly spurious and the
result of continuous modifications to unstable code.
Transactions addressing code cleanups, simple refac-
torings, javadocs, etc., are unlikely to generate useful
recommendations independently of the retrieval tech-
nique used.

• Valuable clusters include instances of association
rules, or instances of a rule with small exceptions. For
example, in Azureus, there is a near-perfect association
rule related to the concern ”connection closing”. Two
developers were involved and the modified lines were
almost the same across the transactions of the recom-
mended clusters. Such evidence seems to indicate that
it is sensical to provide recommendations based on im-
perfect matches to association rules.

• Many of the zero-overlap recommendations we in-
spected were caused by central classes that changed
often, hence providing qualitative evidence that the IG-
NORE HIGH FREQUENCY heuristic is useful.

• In cases when there was a very large time span between
transactions in a cluster, the earliest transactions were
not relevant because the concern modified by the latest
transaction did not exist. A more sophisticated imple-
mentation of this technique should probably include a
component to remove obsolete transactions.

4.5. Threats to Validity

In designing our study we favored a quantitative focus
that would allow us to analyze massive amounts of histor-
ical data over a design favoring a more in-depth analysis
of the recommendations. As a result, our measure of rec-
ommendation accuracy is highly abstracted, and may not
always accurately reflect the actual usefulness of recom-
mended clusters.

In our overall evaluation of recommendation accuracy,
we have also made three conservative assumptions. First,
we have systematically queried for recommendations for
all analyzable tasks, including tasks for which a developer
would not require assistance (e.g., introducing localization
strings, adding comments, etc.). Second, we compared
our recommendations against elements actually modified as
part of a task, even though we know that these form a proper
subset of the elements investigated as part of the task. Fi-
nally, since we have not incrementally re-created interme-
diate versions of the system, we could not detect the recom-
mended elements that no longer existed at the time of the
corresponding query. In practice, such elements would be
eliminated from the recommendations, hence improving the
precision of the technique.



5. Related Work

There exists extensive previous work on both the mining
of software repositories and on the use of clustering algo-
rithms in software engineering. This discussion focuses on
the most similar and recent work in the area of software
evolution.

Mining Software Repositories
Our technique was partially inspired by the work of Zim-
mermann et al. [20] and Ying et al. [17] on the mining of as-
sociation rules in change history. As described in Section 1,
we sought to expand the technique to be able to recommend
larger (but less precise) clusters of elements to guide pro-
gram navigation.

Bouktif et al. also investigated how to recommend co-
changes in software development [2]. As opposed to the
work cited above, Bouktif et al. used change patterns in-
stead of association rules. Also, their approach does not
attempt to reconstruct transactions, and can consider asso-
ciated files that were changed in different transactions.

ChangeDistiller is a tool to classify changes in a transac-
tion into fine-grained operations (e.g., addition of a method
declaration), and determines how strongly the change im-
pacts other source code entities [6]. Our approach uses sim-
ilar repository analysis techniques but is focused on provid-
ing task-related information as opposed to an overall assess-
ment of a system’s evolution.

Finally, repository mining can also be used to detect as-
pects in the code [3]. In this context, aspects are recurring
sets of changed elements that exhibit a regular structure.
Aspects differ from the clusters we detect in the regular
structure they exhibit, which may not necessarily align with
the code that is investigated as part of change tasks.

Clustering Analysis
The classical application of clustering for reverse engineer-
ing involves grouping software entities based on an analysis
of various relations between pairs of entities of a given ver-
sion of the system [8]. Despite its long and rich history, ex-
perimentation with this approach continues to this day. For
example, Andreopoulos et al. combined static and dynamic
information [1], Kuhn et al. used a textual similarity mea-
sure as the clustering relation [11], and Christl et al. used
clustering to assist iterative, semi-automated reverse engi-
neering [4]. The main differences between most clustering-
based reverse engineering techniques and the subject of our
investigation is that the entities we cluster are transactions,
rather than software entities in a single version of a system.
For this reason, our analysis is based strictly on the evolving
parts of the system.

Both Kothari et al. [10] and Vanya et al. [15] recently
reported on their use of clustering to study the evolution of

software systems. The idea of using change clusters is the
same in both works and ours, but the purpose of the work
is different. Kothari et al. use change clusters to uncover
the types of changes that happened (e.g., feature addition,
maintenance, etc.) during the history of a software system.
Vanya et al. use change clusters (which they call “evolu-
tionary clusters”) to guide the partitioning of a system that
would increase the likelihood that the parts of the system
would evolve independently. In contrast, we cluster trans-
actions based on overlapping elements (not files), to recom-
mend clusters to support program navigation, as opposed to
architectural-level assessment of the system.

Finally, Hassan and Holt evaluated, on five open source
systems, the performance of several methods to indicate el-
ements that should be modified together [7]. This study
found that using historical co-change information, as op-
posed to using simple static analysis or code layout, offered
the best results in terms of recall and precision. The au-
thors then tried to improve the results using filtering heuris-
tics and found that keeping only the most frequently co-
changed entities yielded the best results. As opposed to our
approach, the evaluated filtering heuristics were only ap-
plied on entities recovered using association rules and not
using clustering techniques. The focus of their study was
also more specific, as they recommend program elements
that were strictly changed, as opposed to recommending el-
ements that might be inspected by developers.

6. Conclusion

Developers often need to discover code that has been
navigated in the past. We investigated to what extent we
can benefit from change clusters to guide program naviga-
tion. We defined change clusters as groups of elements that
were part of transactions (or change sets) that had elements
in common. Our analysis of close to 12 years of software
change data for a total of seven different open-source sys-
tems revealed that less than 12% of the changes we studied
could have benefited from change clusters. We conclude
that further efforts should thus focus on maximizing the
quality of the match between the current task and past trans-
actions, rather than finding many potential matches. Our
study has already helped us in this goal by providing reli-
able evidence of the effectiveness of some filtering heuris-
tics, and useful insights for the development of additional
heuristics.

Acknowledgments
The authors thank Emily Hill and José Correa for their

advice on the statistical tests, and the anonymous reviewers
for their helpful suggestions. This work was supported by
NSERC.



References

[1] B. Andreopoulos, A. An, V. Tzerpos, and X. Wang. Multiple
layer clustering of large software systems. In Proc. 12th
Working Conf. on Reverse Engineering, pages 79–88, 2005.

[2] S. Bouktif, Y.-G. Guéhéneuc, and G. Antoniol. Extracting
change-patterns from cvs repositories. In Proc. 13th Work-
ing Conf. on Reverse Engineering, pages 221–230, 2006.

[3] S. Breu and T. Zimmermann. Mining aspects from version
history. In Proc. 21st IEEE/ACM Int’l Conf. on Automated
Software Engineering, pages 221–230, 2006.

[4] A. Christl, R. Koschke, and M.-A. Storey. Equipping the
reflexion method with automated clustering. In Proc. 12th
Working Conf. on Reverse Engineering, pages 89–98, 2005.

[5] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development.
IEEE Transactions on Software Engineering, 31(6):446–
465, 2005.

[6] B. Fluri and H. C. Gall. Classifying change types for qual-
ifying change couplings. In Proc. 14th IEEE Int’l Conf. on
Program Comprehension, pages 35–45, 2006.

[7] A. E. Hassan and R. C. Holt. Replaying development his-
tory to assess the effectiveness of change propagation tools.
Empirical Software Engineering, 11(3):335–367, 2006.

[8] D. H. Hutchens and V. R. Basili. System structure analy-
sis: Clustering with data bindings. IEEE Transactions on
Software Engineering, 11(8):749–757, 1985.

[9] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. In Proc. 2nd Int’l Conf. on Aspect-
Oriented Software Development, pages 178–187, 2003.

[10] J. Kothari, T. Denton, A. Shokoufandeh, S. Mancoridis, and
A. E. Hassan. Studying the evolution of software systems
using change clusters. In Proc. 14th IEEE Int’l Conf. on
Program Comprehension, pages 46–55, 2006.

[11] A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse en-
gineering with semantic clustering. In Proc. 12th Working
Conf. on Reverse Engineering, pages 133–142, 2005.

[12] M. P. Robillard. Topology analysis of software depen-
dencies. ACM Transactions on Software Engineering and
Methodology, 2008. To appear.

[13] M. P. Robillard and P. Manggala. Reusing program inves-
tigation knowledge for code understanding. In Proc. 16th
IEEE Int’l Conf. on Program Comprehension, pages 202–
211, 2008.

[14] J. Sillito, G. Murphy, and K. De Volder. Questions program-
mers ask during software evolution tasks. In Proc. 14th ACM
SIGSOFT Int’l Symposium on the Foundations of Software
Engineering, pages 23–34, 2006.

[15] A. Vanya, L. Hofland, S. Klusener, P. van de Laar, and
H. van Vliet. Assessing software archives with evolution-
ary clusters. In Proc. 16th IEEE Int’l Conf. on Program
Comprehension, pages 192–201, 2008.

[16] N. Wilde and M. C. Scully. Software reconnaissance: Map-
ping program features to code. Software Maintenance: Re-
search and Practice, 7:49–62, 1995.

[17] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Transactions on Software Engineering, 30(9):574–
586, 2004.

[18] A. Zeller. The future of programming environments: In-
tegration, synergy, and assistance. In Proceedings of the
29th International Conference on Software Engineering—
The Future of Software Engineering, pages 316–325, 2007.

[19] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In Proc. 1st Int’l Workshop on
Mining Software Repositories, pages 2–6, May 2004.

[20] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Proc.
26th ACM/IEEE Int’l Conf. on Software Engineering, pages
563–572, 2004.

A. Clustering Algorithm
This algorithm is not sensitive to whether a given pro-

gram element exists or not in a given version of a program.
For example, if methodm exists in one version, it is consid-
ered a valid program element even if it is removed in a later
version. In the rest of this section, we use the term “program
element” to refer to the uniquely identifying representation
of the element (e.g., a Java fully-qualified name).

Let T be a transaction modeled as a set of program el-
ements changed together during the history of a software
system. Let T be a sequence of transactions. In this algo-
rithm a cluster is also modeled as a set of elements.

1: Input: T : A sequence of transactions
2: Parameter: MINOVERLAP: A positive, non-zero

value indicating the minimum overlap between two
transactions in a cluster

3: Var: C: A set of clusters, initially empty.
4: for all Ti ∈ T do
5: MaxOverlap← 0
6: MaxIndex← −1
7: for all Cj ∈ C do
8: if |Cj ∩ Ti| > MaxOverlap then
9: MaxOverlap← |Cj ∩ Ti|

10: MaxIndex← j
11: end if
12: end for
13: if (MaxIndex >= 0) ∧

(MaxOverlap ≥ MINOVERLAP) then
14: CMaxIndex ← (CMaxIndex ∪ Ti)
15: else
16: NewCluster← Ti

17: C ← C ∪ { NewCluster }
18: end if
19: end for
20: return C

B. Systems Analyzed
System home pages last verified 7 May 2008.

Ant ant.apache.org/
Azureus azureus.sourceforge.net/
Hibernate www.hibernate.org/
JDT-Core www.eclipse.org/jdt/core/
JDT-UI www.eclipse.org/jdt/ui/
Spring springframework.org/
Xerces xerces.apache.org


