
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 1

Using Traceability Links to Recommend
Adaptive Changes for Documentation Evolution

Barthélémy Dagenais and Martin P. Robillard

Abstract—Developer documentation helps developers learn frameworks and libraries, yet developing and maintaining accurate
documentation requires considerable effort and resources. Contributors who work on developer documentation often need to manually
track all changes in the code, determine which changes are significant enough to document, and then, adapt the documentation.
We propose AdDoc, a technique that automatically discovers documentation patterns, i.e., coherent sets of code elements that
are documented together, and that reports violations of these patterns as the code and the documentation evolves. We evaluated
our approach in a retrospective analysis of four Java open source projects and found that at least 50% of all the changes in
the documentation were related to existing documentation patterns. Our technique allows contributors to quickly adapt existing
documentation, so that they can focus their documentation effort on the new features.

Index Terms—Documentation, Maintainability, Frameworks

F

1 INTRODUCTION

Developers usually rely on libraries or application frame-
works1 when building applications. Frameworks pro-
vide standardized and tested solutions to recurring de-
sign problems.

To use a framework, developers must learn many
things such as the domain and design concepts behind
the framework, how the concepts map to the implemen-
tation, and how to extend the framework [1]. Various
types of documents are available to help developers
learn about frameworks, ranging from Application Pro-
gramming Interface (API) reference documentation to
tutorials and reference manuals.

In a previous study on the documentation process
in open source projects, we observed that adapting the
developer documentation to new releases of a project can
become a significant challenge over time [2]. Members of
documentation teams reported that developers released
undocumented code and that the documentation team
was always struggling to properly cover the new fea-
tures and adapt the existing documentation. This led
to frustration for both documentation team members
and users who were told about the changes in the code
without an easy way to learn about them. This previous
study considered developer documentation to include all
manually crafted documents and excluded automatically
generated documentation and reference documentation
extracted from source code (e.g., using the Javadoc tool).
We use the same definition in this article.

• B. Dagenais is CTO at Resulto Inc.

• M.P. Robillard is associate professor at McGill University.

1. Unless otherwise specified, we use the term framework to refer
to any reusable software artifacts including application frameworks,
libraries, development toolkits, etc.

Ideally, documentation should be comprehensive: sig-
nificant removals, changes, and additions of features
should be represented in the documentation. Because
there are usually no explicit traceability links between
documentation and the code, open source contributors
must rely on manual methods to ensure that significant
changes are not forgotten.

The Hibernate framework2 provides an example of
clear divergence between an evolving framework and
the corresponding reference manual. Between two major
releases, developers of Hibernate added 5 661 new code
elements, and deprecated 166 code elements (see Table 5).
A code element is a publicly accessible software unit, as
defined by the corresponding programming language.
For example, in Java, a code element can be a package,
a class, a method, or a field. When inspecting the Hiber-
nate manual for these two releases, we found that only
six of the 5 661 new code elements were documented.
There were also 26 references to deprecated code ele-
ments, without any mention of the code elements that
replaced the deprecated ones.

In previous work, we introduced RecoDoc, a technique
that automatically identifies code-like terms in developer
documentation. A code-like term is a word or a se-
quence of tokens that looks like a code element because
it follows its naming convention or syntactic properties
(e.g., CamelCase, parentheses, dot notation). RecoDoc
links these code-like terms to code elements [3]. For ex-
ample, RecoDoc can identify that the expression save() in
a sentence refers to the method org.hibernate.Session-

.save(). In this article, we report on AdDoc3, a recom-
mendation system that leverages RecoDoc to (1) auto-

2. References to projects are presented in Table 9 at the end of the
paper.

3. AdDoc is open source and available at http://cs.mcgill.ca/
∼swevo/recodoc

http://cs.mcgill.ca/~swevo/recodoc
http://cs.mcgill.ca/~swevo/recodoc

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 2

matically generate recommendations for recently-added
framework elements that needs to be documented, and
(2) identify references to deprecated or deleted code
elements that need to be corrected. We implemented
these new techniques in a recommendation system to
facilitate their evaluation.

To recommend new code elements that should be
documented, we propose to infer documentation patterns.
A documentation pattern is a coherent set of code
elements referenced by the documentation. For exam-
ple, the section “Pessimistic locking” of the Hibernate
3.3.2 manual referred to most constants declared in the
class LockMode. Knowing this documentation pattern is
important because if a new constant in LockMode is added
in the next release of Hibernate, we could recommend
to document this new constant in section “Pessimistic
locking”, because it matches the documentation pattern.

To identify references to deprecated or deleted code
elements, we propose to compare the traceability links
recovered between two releases of a manual. For exam-
ple, Section “Pessimistic locking” of the Hibernate 3.3.2
manual mentions the code-like term lock() which refers
to the method Session.lock(). This method was dep-
recated in Hibernate 3.5, but the manual still refers to
the code-like term lock() without mentioning a non-
deprecated replacement. We could thus recommend to
correct this code reference in the section on locking.

We evaluated our recommendation system in three
steps. First, we reviewed the documentation patterns
inferred on four Java open source projects and deter-
mined that they were representative of real patterns.
Then we performed a retrospective analysis on eight
consecutive versions of the documentation of four open
source projects and we found that our recommendation
system could identify 50% of new code elements that
were documented in further documentation versions.
Finally, the main contributor of one of the analyzed open
source projects reviewed our results and confirmed their
accuracy while providing insightful comments on their
potential use.

The contributions of this article include (1) the concept
of documentation patterns, a technique to infer docu-
mentation patterns, and detailed data on the accuracy of
documentation patterns on four open source projects, (2)
AdDoc, a technique to recommend documentation adap-
tations with a retrospective analysis on the documenta-
tion of these four open source projects to evaluate the
accuracy of the recommendations, and (3) the analyzed
results of a case study with one open source contributor
who evaluated both the documentation patterns and the
recommendations.

In the remainder of this article, we present a mo-
tivating example showing all the steps of our tech-
nique: finding traceability links, inferring documentation
patterns, and producing recommendations (Section 2).
We then describe our strategies and algorithms to infer
documentation patterns and produce recommendations
(Section 3). We present the evaluation of our recommen-

dation system in Section 4 with a retrospective analysis
of the documentation of four Java open source target sys-
tems and a case study with an open source contributor.
We discuss the related work in Section 5 and conclude
in Section 6.

2 GENERAL APPROACH

To illustrate how we can recommend documentation
improvements when the code evolves, let us take the
example of the Joda Time library. Joda Time is a Java
library that provides utility classes and methods to ma-
nipulate dates and times. In addition to the API reference
documentation, the Joda Time project includes a manual
with a user guide covering the main features of the
library, as well as a number of specific pages covering a
few selected features in depth.

Between versions 1.0 and 1.4, the developers of Joda
Time added more than 15 classes and 800 members to
the code, and they deprecated 20 members (see Table 5
in Section 4.2). We consider that a member is a public
or protected field or method. Before releasing the code,
the developers updated the documentation: at that point,
they had to determine (1) which new code elements to
document, (2) where to document these elements, and
(3) which documentation sections had to be corrected
due to the deprecated elements.4

Some of the classes introduced in version 1.4 were part
of a coherent set of code elements that were already doc-
umented in version 1.0. More precisely, the descendant
classes of the interface ReadablePeriod were documented
in the section “Using Periods in Joda-Time” on the page
“Period” in version 1.0. In version 1.4, the develop-
ers of Joda Time created seven classes implementing
ReadablePeriod. To keep the documentation consistent,
the developers added a reference to these seven new
classes in the appropriate section on the page “Period”.
When there are numerous new code elements added
as part of a release, finding which elements should be
documented to keep the documentation consistent can
be a tedious task.

Because the developers deprecated 20 members, they
also had to correct the documentation by remov-
ing reference to these members or by recommend-
ing alternatives. For example, the method Chronology.-

getBuddhist was deprecated, but it was referenced four
times on two different pages (“User Guide” and “Bud-
dhist calendar system”). The developers updated two
of the four references to point to the new method
BuddhistChronology.getInstance(), but the other two ref-
erences were left uncorrected. In a large release, track-
ing which members were deleted and deprecated and
whether they were mentioned in the documentation can
be a time-consuming task.

4. Documenting before releasing major code changes is one of the
three documentation workflows that we observed in our previous
qualitative study [2].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 3

We propose a recommendation system that can an-
alyze the documentation and the code of a software
project and suggest documentation improvements when
new code elements are added, deleted, or deprecated.
To produce these recommendations, we complete five
distinct tasks in sequence.

1. Retrieving Project Artifacts. We first retrieve the
documentation and the code from various releases of a
software project. We parse the artifacts and produce an
instance of a Documentation Meta-Model. For example,
we downloaded the documentation and the code of
JodaTime 1.0 and 1.4, and we parsed the documentation
to produce a model of pages, sections and code snippets.

2. Inferring Traceability Links between Documentation
and Code. We identify expressions that look like code
elements in the documentation, and link them to code
elements in a release. For example, the term year() in
the documentation could be linked to the code element
DateTime.year() in JodaTime 1.4.

3. Inferring Documentation Patterns. Using the fine-
grained traceability links inferred in step 2, we find co-
herent sets of code elements documented in a particular
release. For example, the section “Using Periods in Joda-
Time” in JodaTime 1.0 mentions the descendant (chil-
dren) types of the interface ReadablePeriod. We call these
sets of coherent code elements, documentation patterns.

4. Producing Addition Recommendations. We produce
addition recommendations by identifying documenta-
tion patterns that grow between two releases. For ex-
ample, in JodaTime 1.4, the number of non-abstract
ReadablePeriod descendants went from two to seven.
Because section “Using Periods in Joda-Time” was re-
ferring to the ReadablePeriod descendants in JodaTime
1.0, we can recommend for this section to refer to the
new descendants in JodaTime 1.4.

5. Producing Deletion Recommendations. Because we
have a model of the code, we can also identify which
code elements were deleted or deprecated between Joda-
Time 1.4 and 1.0. For example, we identified 20 dep-
recated members in the codebase of JodaTime 1.4, and
we recommended to correct the 16 references to these
deprecated members.

We perform the first two steps of our approach using
RecoDoc, a documentation analysis tool that we pre-
sented in earlier work [3]. We implemented the last three
steps in a new tool called AdDoc. We provide a brief
summary of the first two steps in the remainder of this
section and we present AdDoc in Section 3.

We devised both RecoDoc and AdDoc by studying the
Spring Framework, a large and complex Java project. We
wrote an initial prototype that analyzed various releases
of the Spring Frameork and once we were satisfied with
the results, we wrote the current version of RecoDoc and
AdDoc and evaluated them on four target systems.

 Project Project Release

 Document

 API

 Page

 Section

 Code-like Term

 Code Snippet

 CodeElement

*

*

*

*

parent/declare

*

refers to

*

parent

*

*

part of

*

*

*

*

Fig. 1. Documentation Meta-Model. The cardinality of an
association is one unless otherwise specified.

2.1 Collecting and Processing Artifacts
We previously proposed a technique called RecoDoc that
automatically analyzes the documentation and the sup-
port channel archives of an open source project and that
precisely links code-like terms such as year() to specific
code elements in the API of the documented framework
or library (e.g., DateTime.year()) [3]. RecoDoc considers
the context in which a term is mentioned and applies a
set of filtering heuristics to ensure that terms referring
to external code elements are not spuriously linked.

RecoDoc takes as input the source code of a system and
the URL of the documentation index such as the table of
contents of a reference manual. RecoDoc then crawls the
documentation to download the relevant HTML pages
(i.e., documentation pages, emails). All documentation
tools and archives we are aware of can produce an
HTML output.

Once the artifacts are collected, RecoDoc builds an
instance of a project artifacts meta-model (see Figure 1)
for each release of the code and documentation of a
project. We originally designed the meta-model based
on our previous study on developer documentation [2].
Project. A project may have different releases and each
release is associated with a particular codebase and doc-
umentation. For example, the HttpComponents project
has three major releases (2.0, 3.0, and 4.0).
Codebase. We consider that the API of a project consists
of all the accessible code elements of a project (public class,
method, field). A code element may have one or more
parents (e.g., a Java class implements multiple interfaces)
and may declare other elements (e.g., a Java package
declares a Java class and a Java class declares methods
and fields).
Document. The documentation of a project consists
of one or more documents. For example, the Http-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 4

Components project has two main documents: the
HTTPClient and HTTPCore tutorials. Each document
has a list of pages and each page has a list of sections.
A section may be part of a larger section and the
section hierarchy depth is unbounded. RecoDoc considers
a documentation page to be equivalent to an HTML
page, but this rule can be adapted for long, single-page
documents where chapters or main sections would be
considered to be pages. We assume that documentation
authors make a conscious decision when they divide
their documents into pages and sections, i.e., the content
from different sections of the same page is more related
than the content from sections of different pages.

We process documents with an extensible parser in-
frastructure: each format has its own parser and if the
HTML of a document was written by hand, we create
an appropriate parser.
Code-like Terms and Code Snippets. Documentation
sections can refer to code-like terms and code snippets. A
code-like term is a series of characters that matches
a pattern associated with a code element kind (e.g.,
parentheses for methods, camel cases for classes). When
multiple code-like terms are joined together, we keep
that relationship. For example, in the expression Time-

Unit_SECONDS, we say that TimeUnit is a parent of SECONDS.
A code snippet is a small region of source code that can
be further divided into a list of code-like terms. We use
a specialized parser that infers missing types to parse
code snippets into code-like terms [4].

2.2 Linking Documentation with Code
Given a project artifacts meta-model, the main challenge
in linking code elements to code-like terms comes from
the inherent ambiguity of unstructured natural language.
For example, the user guide of the Joda Time library [5]
mentions in the middle of the Date fields section: “...
such as year() or monthOfYear()”. Although it is clear
from this sentence fragment that a method named year is
mentioned, there are 11 classes in Joda Time that declare
a year method, and not all of them are in the same
type hierarchy. In this case, a human reader would know
that the term refers to DateTime.year() because the class
DateTime is mentioned at the beginning of the section,
i.e., in the context of the method year(). However, at-
tempting to find the matching code element based on a
textual search of the method name would fail. In fact, in
the four open source projects we studied (see Section 4),
we found that a text match would have failed to find
the correct declaration of 89% of the methods mentioned
in the learning resources because these methods were
declared in multiple types.

Our link recovery process takes as input a collection of
code-like terms. RecoDoc associates each code-like term
with a kind (i.e., package, class, method and field) deter-
mined by the syntactic hints of the term (e.g., presence of
parentheses). The code-like term is also associated with
the other terms present in its context (e.g., the terms

attached to it, the terms in the same documentation sec-
tion, and the terms attached to the same documentation
page). The output of the link recovery operation is a
ranked list of code elements that are potentially referred
to by each code-like term. Because a code-like term may
match multiple code elements (e.g., the term year() may
match multiple methods named year()), Figure 1 shows
a many-to-many relationships between code-like terms
and code elements.

Given a collection of code-like terms, we perform the
following steps:
Step 1. Linking Types. Given a code-like term, we find
all object types (classes and interfaces) in the codebase
whose name matches the term. We use the fully qualified
name if it is present in the term. Otherwise, we search
for code elements using only the simple name.
Step 2. Disambiguating Types. A code-like term that
refers to a type may be ambiguous if multiple types
share the same simple name. When a term can be linked
to multiple types from different packages, we count the
number of types from each package mentioned in the
same documentation section. If a package is mentioned
more frequently, the type from that package is ranked
first. Otherwise, we rank the types by increasing order
of package depth: we assume that deep packages contain
internal types that are less often discussed than types in
shallow packages.
Step 3. Linking Members. Given a code-like term
referring to a member (method or field), we find all
code elements of the same kind that share the name of
the term. For example, for the term add(), we find all
methods named add in the API. Then, the potential code
elements go through a pipeline of filters that eliminate
some elements or re-order the list of potential elements.
Most filters rely on the terms mentioned in the context
of the code-like terms to filter out the code elements.
Step 4. Linking Misclassified Terms. Our parser may
occasionally misclassify code-like terms. For example,
the term HTTP found in a tutorial we studied (Http-
Client) may be classified as a field (e.g., Java constants
are written in uppercase). Although there is no such
field in the codebase, there is a type with that name
(org.apache.http.protocol.HTTP).

In this step, we process all terms that were not linked
to any code element in the previous steps. Then, we
search for code elements of any kind that have the same
name as the term. We group the potential code elements
by their kind and we attempt to link them in the order
they were processed in previous steps: types, methods,
fields. The linking technique used is the same as in the
previous steps (e.g., simple name matching for types).

We implemented the artifacts collection and linking
techniques in RecoDoc and applied it to four open source
systems. We found that our technique identified on
average 96% of the code-like terms (recall) and linked
these terms to the correct code element 96% of the time
(precision).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 5

2.3 Limitations

The adaptive maintenance of the documentation when
a code element is deprecated and the addition of new
code elements matching a pattern are only two examples
of documentation modifications. As we found out in a
previous qualitative study on developer documentation,
there are many factors that motivate the decisions to doc-
ument certain code elements and to ignore others. These
factors are complex and subjective, and cannot all be
systematically considered by a given tool. For example,
open source contributors consider learnability, market-
ing, their own experience, writing style guidelines, and
feedback from users when creating and maintaining the
documentation [2, Section 4].

We chose to focus our effort on adapting the docu-
mentation to code evolution because code changes can
be precisely detected, and must be reflected in the doc-
umentation. More over, systematically reviewing code
changes and documentation to detect inconsistencies is a
tedious, effort-intensive, low-creativity task and as such
it is a good target for additional automated support.

3 RECOMMENDING DOCUMENTATION IMPRO-
VEMENTS

We can suggest documentation additions and removals
as a framework evolves by leveraging fined-grained
traceability links recovered by RecoDoc and by inferring
documentation patterns from these links.

We first describe the concept of documentation pat-
terns, then we explain how we infer these patterns, how
we compute documentation addition recommendations,
and how we compute documentation removal recom-
mendations.

3.1 Documentation Patterns

The documentation of a framework sometimes systemat-
ically covers the code elements by following a documen-
tation pattern, i.e., a coherent set of code elements that
are mentioned in the documentation of a framework.
We consider that a code element is covered when it is
explicitly mentioned in a sentence or in a code snippet
of the documentation.

We can think of a documentation pattern as a con-
cern graph [6], which is a representation of program
structures as a redundant extension (discrete set of code
elements) and intension 5 (set of relations between the
elements). Concern graphs provide a representation of
a concern (e.g., a feature, a non-functional requirement)
that is robust to the evolution of the underlying codebase
because the relations captured by a concern intension
can be used to compute a new extension when the code
changes.

5. We use the term “intension” in the sense of Eden and Kazman, to
indicate a structure that can ”range over an unbounded domain” [7,
p.150]

For example, Section 13.3 of the Spring Frame-
work 3.1 documentation defines all the subclasses of
the DataSource interface. The intension of this docu-
mentation pattern is thus “all concrete subclasses of
DataSource”, and the extension would be {SmartData-
Source, SingleConnectionDataSource, ...}.

To be able to capture documentation patterns in a
variety of documents for different frameworks, the in-
tensions must be sufficiently general. We observed three
general kinds of intensions in the Spring Framework
documentation. Some sections and pages of the docu-
mentation cover (1) code elements declared in another
code element such as the classes declared in a package
or the methods declared in a class, (2) code elements in
the same hierarchy such as the classes extending another
class, and (3) code elements with similar names such as
all the code elements starting, ending, or containing a
similar token. We expect to find these intensions in other
projects as well because they were observed in prior code
evolution research [8], [9].

3.2 Inferring Documentation Patterns
Given a codebase and a documentation release, we
perform six steps to find documentation patterns:
Step 1. Computing Code Patterns. We compute all the
possible code patterns in a codebase. A code pattern is a
set of code elements structurally related by an intension.
Intuitively, a documentation pattern is a code pattern
whose elements are mentioned in the documentation.

For each code element C, we can compute code pat-
terns generated from eight intension templates. An inten-
sion template is a parameterized intension formed by
combining the three kinds of intensions we mentioned
in Section 3.1:

1) The set of code elements declared by C.
2) The set of concrete code elements declared by C.
3) The set of code elements whose immediate parent

is C (i.e., elements extending C).
4) The set of concrete code elements whose immediate

parent is C.
5) The set of code elements whose ancestor is C.
6) The set of concrete code elements whose ancestor is

C.
7) The sets of code elements starting, ending, or con-

taining a token in C’s name.
8) The sets of code elements declared by C that start,

end, or contain the same token.
A package can declare classes (e.g., package java.util

declares the class java.util.ArrayList) and a class can
declare methods and fields (e.g., the class java.util.-

ArrayList declares the method add(Object)). A class Y is
a parent of a class X if X inherits from Y. A class Z is
an ancestor of a class X if Y is a parent of X and Z is a
parent or an ancestor of Y.

A concrete code element is a class that is not ab-
stract (interface and annotations are considered abstract).
Methods in interfaces and abstract methods are abstract.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 6

This “concrete” subcategory is important because we
observed that abstract classes are sometimes completely
ignored by the documentation: in many cases only con-
crete classes are mentioned.

When we compute the sets of code elements sharing
a token (intensions 7 and 8), we group the elements
by their kind to avoid mixing elements of different
granularity. For example, if two classes and two methods
end with the same token, we compute two code patterns:
one for the classes, and one for the methods.

Computing the code patterns is straightforward be-
cause all the necessary relationships are already encoded
in our model (see Figure 1).

Although there are many code patterns, we expect that
only a few of these patterns will be actually documented
and that some of these patterns will overlap greatly.

Figure 2 shows an example of a codebase with five
classes. If we assume that C is the abstract class Abstract-

Bean, then the following code patterns are computed
with respect to C.

1) Code elements declared by AbstractBean:
{getProperty, setProperty, readProperty,

getFullName}.

2) Concrete code elements declared by AbstractBean:
{readProperty, getFullName}.

3) Children of AbstractBean:
{DefaultBean, DefaultAbstractBean}.

4) Concrete children of AbstractBean: {DefaultBean}.

5) Descendants of AbstractBean: {DefaultBean,
DefaultAbstractBean, SpecialBean}.

6) Concrete descendants of AbstractBean:
{DefaultBean, SpecialBean}.

7) Code elements ending with “Bean”: {DefaultBean,
DefaultAbstractBean, SpecialBean, TestBean}.

8) Code elements declared by AbstractBean end-
ing with “Property”: {getProperty, setProperty,

readProperty}.
Code patterns that contain only one element are no

longer considered by our algorithm. For example, the
pattern “Concrete children of AbstractBean” is filtered
out.
Step 2. Computing Code Pattern Coverage. Once we
have determined the set of code patterns, we compute
the coverage of each pattern in a documentation release.
Given the links between code-like terms and code ele-
ments recovered by RecoDoc, we can compute how many
elements in a pattern have been mentioned in a docu-
mentation release. At this point, we are not concerned
with the localisation of the coverage: the elements of a
pattern may be covered in different sections.

For each pattern, the output of this step is a value
in the unit interval. This value indicates the proportion
of code elements in a pattern that are mentioned in the
documentation. This step also outputs the sections and
pages mentioning each code element in the pattern.

AbstractBean

+<<abstract>> getProperty()

+<<abstract>> setProperty()

+readProperty()

+getFullName()

DefaultBean

+getProperty()

+setProperty()

SpecialBean

+getProperty()

TestBean

DefaultAbstractBean

+<<abstract>> getProperty()

+setProperty()

Fig. 2. Example of Code Elements

Step 3. Filtering Patterns with Low Coverage. We expect
that the documentation will only refer to a small subset
of all the potential patterns. We eliminate any pattern
whose coverage is below 50% because the intension
of these patterns clearly does not match the intent of
the documentation. We require the majority of the code
elements to be mentioned in the documentation.

Step 4. Combining Patterns. After we have computed
and filtered code patterns based on their coverage, we
combine the redundant ones. We consider that two code
patterns are redundant if one is a subset of the other
and the relative difference in the size of their extension
is within a certain percentage threshold. For example, in
the Spring Framework, the code pattern “All classes ex-
tending ApplicationContext” and the pattern “All classes
ending with the token Context” describe exactly the same
code elements.

Algorithm 1 presents the main steps performed to
combine patterns. We determined during early experi-
mentation with the approach that a difference of 0.40
(40%) in the size of the extension of two code patterns
enabled the combination of code patterns that have a
similar number of identical code elements while prevent-
ing very general and very specific code patterns from be-
ing combined. For example, consider the two following
patterns: (A) “All classes extending ApplicationContext”
and (B) “All classes extending ApplicationContext and
starting with the prefix Bean”. Although the second pat-
tern is a subset of the first one, the second pattern is a lot
more specific than the first pattern (smaller extension), so
they describe different concepts and they should not be
combined. We present in Section 4.1 a sensitivity analysis
demonstrating the linear impact that the threshold has
on the number of combined patterns. Figure 3 shows this
linear impact on all four systems.

As we show in Algorithm 1, we start by sorting the
patterns by the size of their extension in decreasing
order. The initial sorting ensures that the groups of
patterns are deterministic.

As part of the algorithm, once we have combined
redundant code patterns, we select the most representative
pattern within each group of redundant patterns, which

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 7

ALGORITHM 1: Combining Redundant Patterns

Input: List of code patterns
Output: List of doc patterns
patterns = sort by size(code patterns, reverse=true);
doc patterns = {};
processed = {};
for i in [0 .. patterns.size-1] do

pattern = patterns[i];
if pattern in processed then

continue;
end
add pattern to processed;
combined patterns = {pattern}
for j in [i+ 1 .. patterns.size-1] do

tpattern = patterns[j];
if 1.0 - (tpattern.size / pattern.size) >
THRESHOLD then

break;
end
if tpattern ⊆ pattern then

add tpattern to combined patterns;
add tpattern to processed;

end
end
doc pattern = select most representative pattern in
combined patterns;
doc pattern.patterns = combined patterns;
add doc pattern to doc patterns;

end
return doc patterns;

becomes a documentation pattern:

1) Among the redundant code patterns, we select the
pattern with the highest coverage.

2) If more than one pattern has the highest coverage,
we select from these patterns the one with the
highest number of code elements in its extension.

3) Finally, if more than one pattern has the highest cov-
erage and the highest number of code elements in its
extension, we select from these patterns the one with
the most general intension, i.e., with the intension
declared first in the list of intensions presented in
the section “Computing Code Patterns”.

In summary, we select in order of importance the
pattern (1) with an intension whose extension is well
covered in the documentation, (2) that represents more
code elements, and (3) that is the most general.

Step 5. Linking Documentation Patterns to Sections
and Pages. We link each documentation pattern to the
most fined-grained documentation unit that covered the
code elements in the pattern. In this step, we determine
whether the elements of a pattern are mainly covered in
a single section, in many sections of the same page, or
in the sections of many pages.

Algorithm 2 shows the main steps required to link
a documentation pattern to a specific location in a
documentation release. As shown in the algorithm, we
consider that a documentation unit mainly covers a docu-
mentation pattern if the coverage in the documentation
unit is more than 0.75 (COVERAGE THRESHOLD) of

the coverage of the extension of the pattern. A documen-
tation unit is a section or a page. For example, if the eight
code elements of a documentation pattern were covered
in all sections of the documentation, but a section X

covered seven of these elements, we would consider
that section X mainly covered the pattern because its
coverage, 0.875 (7/8), is superior to the threshold of 0.75.
The relatively high threshold, 0.75, enables the selection
of documentation units that cover a large proportion of
the documentation pattern while allowing these units to
ignore uninteresting or redundant code elements in the
pattern. We analyze the impact of this coverage thresh-
old on the inferred locations in Section 4.1. Figure 4
illustrates the impact of the threshold on all four systems.

As the algorithm shows, a pattern may also be mainly
covered in multiple locations. For example, if two sec-
tions in different pages each present most of the elements
of the documentation pattern, our algorithm will link the
pattern with these two distinct sections.

ALGORITHM 2: Linking Patterns to Sections and Pages
Input: doc pattern, map of elements per section,

map of elements per page
Output: locations
locations = list();
coverage = number of elements covered by doc pattern;
for (elements, section) in map of elements per section do

relative coverage = number of elements / coverage;
if relative coverage > COV ERAGE THRESHOLD
then

add section to locations;
end

end
if locations is not empty then

return locations;
end
multi pages = list();
for (elements, page) in map of elements per page do

add page to multi pages;
relative coverage = number of elements / coverage;
if relative coverage > COV ERAGE THRESHOLD
then

add page to locations;
end

end
if locations is not empty then

return locations;
else

add multi pages to locations;
return locations

end

3.3 Recommending documentation additions
Given the models of the API and the documentation
generated by RecoDoc for each release of a framework,
we propose to identify all the new code elements that
fit an existing documentation pattern. We assume that if
the documentation pattern is relevant, the new elements
fitting the pattern are associated with a feature worth
documenting and omitting these new elements would
make the documentation less comprehensive.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 8

In a previous example (see Section 3.1), we identi-
fied in Section 13.3 of the Spring manual a documen-
tation pattern that covered all concrete subclasses of
DataSource. If a new subclass of DataSource is added in
the next release of the Spring Framework, we should
recommend to mention this subclass in section 13.3. Such
recommendations would help documentation maintain-
ers by (1) ensuring that a new code element matching
a previous documentation decision is not forgotten, and
(2) speeding up the process of deciding whether a new
code element should be documented.

The main limitation of recommending new code ele-
ments that fit existing documentation patterns is that we
cannot recommend code elements that are part of a new
documentation pattern. For example, a new category
of features (cache abstraction) was added in Spring
Framework 3.0. This new set of features required its own
documentation page and it did not fit an existing docu-
mentation pattern because a new high-level package was
introduced with many classes and annotations that did
not inherit from existing classes.

We perform four steps to identify the new code el-
ements in a release that should be mentioned in the
documentation. These steps are based on the inference
of documentation patterns as explained in Section 3.2.
Recall that a code pattern is a coherent set of code
elements with an intension and an extension, and that
a documentation pattern is a set of redundant code pat-
terns with high coverage in the documentation, which is
represented by one code pattern.

For the purpose of recommending documentation ad-
ditions, we combine high-coverage code patterns into
documentation patterns only after we have identified
patterns for both releases of the documentation.

Step 1. Inferring Code Patterns.
We reuse the process presented in Section 3.2 to de-

tect code patterns with high coverage in two releases.
Given two releases of a codebase, N and N+1, and the
initial release of the documentation, N, we compute
two collections of code patterns: one for codebase N
with documentation N, and one for codebase N+1 with
documentation N.

Code patterns in release N that have a coverage less
than 50% are discarded because they are not considered
to match the intent of the documentation.

We do not combine the code patterns into documen-
tation patterns at this step to ease the matching of code
patterns between the two releases (see next step).

Step 2. Comparing Pattern Coverage.
In this step, we match the code patterns from the

releases N and N+1 based on their intension and we
compare their coverage. We match code elements in the
intension of code patterns by using their fully qualified
name.

For example, the code pattern “all classes extending
DataSource” contained 5 code elements in Spring Frame-
work 2.0. Three of these elements were mentioned in the

documentation of 2.0 (coverage = 60%). In the Spring
Framework 3.0, the same pattern now contains eight
elements and three of these elements are mentioned in
the documentation of 2.0 (coverage = 37.5%).

From these numbers, we can infer that the coverage
of this code pattern decreased and the documentation
maintainer should probably document the new code
elements.

In this example, we can match the code patterns
in both releases because they have the same inten-
sion and they point to the same element. RecoDoc has
linked the code-like term DataSource to the code element
javax.sql.DataSource in both releases of the documen-
tation.

We discard patterns whose coverage stays constant
or increases (this can happen if the number of code
elements in the pattern decreases in the new version) be-
cause they are not interesting for addition recommenda-
tions: we address removed code elements in Section 3.4.

We also discard code patterns that do not have a
matching pattern in the previous or current version. For
example, if the DataSource hierarchy had been deleted
in release 3.0 of the Spring Framework, the initial code
pattern would have been discarded.

Finally, we do not attempt to match intensions
whose code elements have been renamed or moved
between two releases. If the code element of an in-
tension is renamed, the corresponding code pattern
is discarded, but other redundant patterns might still
be matched across the two releases. For example, if
the code element javax.sql.DataSource is renamed to
javax.sql.DataSource2 between two releases, we will not
be able to match the code patterns we provided as an
example. There might be though another intension that
has not changed (e.g., all classes ending with the token
Source) and that has a similar extension.

If the code elements in the extension of a code pattern
are renamed, the coverage of the code pattern will
decrease in the new release.
Step 3. Computing Recommendations.

For each code pattern whose coverage decreased be-
tween two releases, we produce a recommendation. Each
recommendation contains three components:

1) The initial and new coverage. This indicates how
representative the code pattern was and how much
changes occurred between the two releases.

2) The new code elements that are part of the code
pattern and that are not mentioned in the documen-
tation.

3) The location of the pattern, which provides an in-
dication to where the new code elements should
be mentioned. We use Algorithm 2 presented in
Section 3.2 to find the location of the pattern.

Step 4. Combining Recommendations.
Finally, we combine redundant recommendations that

are a subset of a larger recommendation in Algorithm 3.
This process is similar to Algorithm 1 with one key

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 9

difference: we select the recommendation with the most
new code elements instead of selecting the recommenda-
tion with the highest initial coverage because we want
the documentation maintainer to consider all potential
code elements.

ALGORITHM 3: Combining Redundant Recommendations

Input: List of redundant recommendations
Output: List of final recommendations
recommendations = sort by initial coverage(
redundant recommendations, reverse=true);
final recommendations = {};
processed = {};
for i in [0 .. recommendations.size-1] do

recommendation = recommendations[i];
if recommendation in processed then

continue;
end
add recommendation to processed;
combined recommendations = {pattern}
for j in [i+ 1 .. recommendations.size-1] do

trecommendation = recommendations[j];
if trecommendation ⊆ recommendation then

add trecommendation to
combined recommendations;
add trecommendation to processed;

end
end
recommendation.sub recommendations =
combined recommendations;
add recommendation to final recommendations;

end
return final recommendations;

3.4 Recommending documentation removals

Code elements may be removed, deprecated, or refac-
tored between releases and the documentation needs
to be updated accordingly. For example, a tutorial that
mentions a class that has been deprecated in the new
release could be updated by removing the reference to
the class and mentioning a more appropriate class.

Finding references to removed or deprecated code
elements in a document is straightforward with RecoDoc
as can be seen in Algorithm 4. We first recover the
set of links between the codebase at release M and the
documentation at release N. Then, for each code element
that was deprecated or deleted in the codebase between
release M and N, we produce a recommendation if the
code element is part of a link.

4 EVALUATING DOCUMENTATION IMPROVE-
MENT RECOMMENDATIONS

We evaluated the different steps of AdDoc on four open
source projects: Joda Time, HttpComponents, Hibernate,
and XStream. We selected the same four projects that
we used to evaluate RecoDoc, the tool that recovers the
fine-grained traceability links, because we demonstrated
that RecoDoc had a high accuracy on these projects and

ALGORITHM 4: Recommendation documentation removals
Input: version m, version n, code releases, doc releases
Output: List of recommendations

links n = get links(code releases[version m],
doc releases[version n]);

rem elements = get removed elements(
code releases[version m], code releases[version n]);

recommendations = {};
for element in rem elements do

for link in links n do
if element in link then

add link to recommendations;
end

end
end

return recommendations;

therefore, it should not heavily influence the results of
our recommendation strategies.

The four open source systems are written in Java and
they vary in size, domain, and documentation style. Of
the four target systems, only Joda Time can be consid-
ered as involving exclusively the Java programming lan-
guage, i.e., the documentation only contains references
to the Java API. The other systems include reference to
other languages such as XML or SQL.

We first evaluate the accuracy of our documentation
pattern inference strategy. Then we evaluate the accuracy
of the documentation addition recommendations and
the documentation removal additions. Finally, we eval-
uate the documentation patterns and the recommender
system by asking a contributor from one of the target
systems to review our recommendations.

4.1 Evaluation of Documentation Patterns Infer-
rence

We investigated whether the documentation of the four
open source systems contained documentation patterns
that matched the topics of documentation units (sections
and pages). Intuitively, for each documentation pattern,
we assessed whether each documentation unit linked
to a documentation pattern was genuinely describing
the code elements in the pattern, or whether the code
elements were present only by accident, e.g., because
they were needed to instantiate a more important code
element.

For example, the documentation pattern “all descen-
dants of DataSource” matches the topic of Section 13.3
in the Spring Framework (the title of this section is
“Controlling database connections”). In contrast, the
documentation pattern “all classes starting with URL”
covered in the page titled “Chapter 1. Fundamentals”
of the HttpClient manual, does not match the topic of
the page, which is about HTTP protocol concepts such
as requests and responses. The code elements in this
documentation pattern are used throughout the page to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 10

support the construction of the more important objects
(e.g., requests).

To provide background context for the qualitative as-
sessment of the relevance of the detected documentation
patterns, we answered four research questions:

1) How many documentation patterns can AdDoc find
in documents? How representative are these pat-
terns (coverage)?

2) What kinds of intensions are the most frequent? Are
they all useful to find documentation patterns?

3) How are the patterns usually covered (sections,
pages, multi-pages)?

4) How sensitive is our approach to the thresholds we
selected?

We then focused on the more crucial question:

5) How meaningful are the patterns? Are the elements
accidentally covered or are the patterns the real
focus of the documentation units they are in?

Question #1 - Generation of Patterns. We executed
all the steps presented in Section 3.2 on a release of
the four open source projets. Table 1 shows for each
project’s documentation (1) the number of code patterns
generated, (2) the number of code patterns with a high
coverage (> 50%), (3) the number of documentation
patterns once the most representative high coverage code
pattern has been selected, and (4) the average, standard
deviation, and median of the coverage of the most
representative pattern in each documentation pattern.
For example, for the JodaTime documentation, AdDoc
generated 3 120 code patterns, 103 of these patterns had
a coverage higher than 50%, and after having combined
the code patterns, AdDoc found 47 documentation pat-
terns (1.5% of the code patterns). On average, the most
representative pattern of the documentation patterns had
a coverage of 81.9%.

As we expected, the number of documentation pat-
terns is much lower than the number of code patterns
and the code patterns that are mentioned in the doc-
umentation usually overlap with at least another code
pattern. For example, in the JodaTime documentation,
each documentation pattern came from the combination
of 2.2 code patterns on average (103 divided by 47).

According to the coverage distribution, high coverage
patterns exhibit a wide range of coverage, therefore ac-
cepting patterns with a coverage above a low threshold
(50%) seemed necessary to yield enough patterns to
study.

Question #2 - Pattern Intensions. Table 2 shows for each
of the eight kinds of intensions (see Section 3.2) how
many documentation patterns AdDoc detected in the
documentation of the four target systems. For example,
in HttpClient, AdDoc detected 32 documentation pat-
terns that described code elements declared in another
code element. The table only considers the intension of
the most representative pattern for each documentation
pattern.

The distribution of the documentation patterns is
mostly consistent across the target systems. For example,
the intension with the most documentation patterns in
all target systems are code elements declared by another
code element and sharing a common token. This partic-
ular intension is useful in identifying small sets of meth-
ods (e.g., all methods declared by HttpClientConnection

and starting with the token “receive”). All intensions
were used to identify at least one documentation pattern,
which provide evidence that they all capture relations
that actually exist in the documentation.

Question #3 - Relationship between Patterns and Sec-
tions. Table 3 shows for each document: (1) the number
of documentation patterns located in a single section
with the number of sections with at least one pattern
in parentheses, (2) the number of patterns located on a
single page with the number of pages with at least one
pattern in parentheses, and (3) the number of patterns
located in multiple pages. In Table 3, the single-page
patterns add to the single-section patterns (which are
by default single-page patterns), while the multi-page
patterns consist of the rest of the patterns. Again, only
the most representative pattern of each documentation
pattern was considered.

For example, in the JodaTime documentation, AdDoc
found 25 patterns that were mainly covered in a single
section. Sixteen sections out of 125 in the Joda Time doc-
umentation covered such documentation patterns (one
section can cover more than one pattern).

The documentation patterns were linked to different
documentation units, which indicates that patterns can
match topics at different levels of granularity. For ex-
ample, the documentation pattern “All fields declared
in ConnRoutePNames” was entirely covered by Section 2.4
“HTTP route parameters” in the HttpClient manual. In
contrast, the documentation pattern “All classes declared
in package hbm2ddl and starting with token Schema”
represents multiple tools that are explained in a full page
in the Hibernate Documentation (Chapter 21. Toolset
Guide).

If we exclude the multi-page patterns, less than half of
the sections and pages were linked to a documentation
pattern. Although some sections do not refer to Java code
elements and could not potentially be linked to a docu-
mentation pattern, we believe that more intensions, such
as those taking into account call relationships, should be
investigated in the future to cover more sections in the
documentation.

Question #4 - Sensitivity to thresholds. AdDoc used
two threshold values that could not be analytically
justified and that were derived from early experimen-
tation with the approach on the Spring Framework
(THRESHOLD=0.40 in Algorithm 1 and COVERAGE -
THRESHOLD=0.75 in Algorithm 2).

The first threshold, 0.40, was used to combine re-
dundant code patterns. In summary, for two patterns
extensions Ae and Be where |A| > |B|, we consider

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 11

TABLE 1
Generation of Patterns

System Gen. High Doc. Average Std. Dev. Median
Patterns Coverage Patterns Coverage Coverage Coverage

JodaTime 1.6 3 120 103 (3.3%) 47 (1.5%) 81.9% 19.2% 83.3%
HttpComponents 4.1 4 762 232 (4.9%) 139 (2.9%) 74.7% 20.0% 66.6%
Hibernate 3.5 17 619 149 (0.8%) 92 (0.5%) 77.0% 20.1% 75.0%
XStream 1.3.1 2 133 143 (6.7%) 64 (3.0%) 77.7% 20.5% 75.0%

TABLE 2
Types of Intensions

System Decl. Concrete Child of. Descendant Concrete Shared Decl. & Total
Decl. of Desc. Token Token

Joda Doc. 1 1 1 3 5 2 34 47
HC Doc. 32 4 4 5 8 27 59 139
Hib. Doc. 10 1 6 8 5 3 59 92
XSt. Doc. 10 2 5 5 4 13 25 64

Total 15.5% 2.3% 4.7% 6.1% 6.4% 13.2% 51.8% 100.0%

TABLE 3
Patterns and Sections Linking

System Section Page Multi-Page Total

Joda 25 (16/125) 10 (1/25) 12 47
HC 79 (40/100) 30 (5/9) 30 139
Hib. 61 (47/338) 17 (10/30) 14 92
XSt. 32 (18/203) 17 (3/24) 15 64

Total 57.6% 21.6% 20.8% 100.0%

that the corresponding patterns A and B are sufficiently
different and can be kept distinct if 1.0 − |B|/|A| > 0.4.
Analytically, we can determine that a threshold of 0
would result in many, highly similar, patterns and a
threshold of 1.00 would result in fewer documentation
patterns.

We computed the number of documentation patterns
produced when using different thresholds. As Figure 3
shows, there is an almost linear decrease in the number
of documentation patterns as the threshold increases. Be-
cause we want to avoid combining patterns that are not
related, but we also want to avoid generating too many
similar recommendations, a threshold of 0.40 represents
a good compromise, but could be modified by the users
of AdDoc.

The second threshold we used, 0.75, was used to
determine the location of a documentation pattern (sec-
tion, page, multi-page). For example, a threshold of
0.75 requires that more than 75% of the elements in a
documentation pattern must be in a section to consider
that this pattern is located in this particular section.

Analytically, we can determine that a threshold of 0
will result in all patterns being located in many sections,
and a threshold of 1.00 will require all code elements of
a pattern to be in a section.

We computed the location of the documentation pat-

terns when using thresholds from 0.50 to 1.00. Figure 4
shows the number of patterns that were located in a
section when using different thresholds. The number of
sections quickly stabilize when the threshold is between
0.70 and 0.80. The number of documentation patterns lo-
cated on multiple pages follows an inverse relationship.

Although the four target systems were unrelated, the
two thresholds had a similar impact on the results and
we expect these results to hold on other systems. The
goal of this sensitivity analysis was not to find the best
thresholds for all systems, because the exact impact may
vary slightly, but to make sure that the thresholds did
not have unexpected effect on a particular system and
that their impact was clearly understood.

Question #5 - Relevance of Documentation Patterns.
Although we found that documentation patterns exist in
the documentation of the four target systems, we wanted
to evaluate qualitatively whether the extension of these
patterns were described in the documentation units or
whether they were mentioned together by accident or
to support more important elements. We randomly se-
lected 25 documentation patterns in each project and we
manually inspected the sections and pages that covered
their most representative pattern. We only inspected the
most representative pattern because we consider all code
patterns in a documentation pattern to be redundant:
they cover the same subset of code elements and if we
consider one pattern to be relevant, the other patterns
should be relevant too. During our inspection, we as-
sessed whether the coverage of each pattern was:

1) Meaningful and exclusive: the section or page cov-
ered the pattern and it was the main focus of the
documentation unit. There was a sentence or a
group of words that matched the intension of the
pattern.

2) Meaningful, but shared: the section or page covered

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 12

●
●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8

30
40

50
60

Joda Time

Threshold

N
um

be
r o

f P
at

te
rn

s

● ●

●

●

●

●
●

●
●

●

0.0 0.2 0.4 0.6 0.8

11
0

13
0

15
0

17
0

HttpClient

Threshold

N
um

be
r o

f P
at

te
rn

s

●
●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8

30
40

50
60

Hibernate

Threshold

N
um

be
r o

f P
at

te
rn

s

●
●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8

30
40

50
60

XStream

Threshold

N
um

be
r o

f P
at

te
rn

s

Fig. 3. Sensitivity analysis on the effect of the threshold on the number of patterns after merging.

0.5 0.6 0.7 0.8 0.9 1.0

0
5

10
15

20
25

30
35

Threshold

Lo
ca

tio
n

of
 D

oc
um

en
ta

tio
n

Pa
tte

rn
s

●
● ●

●

● ● ●

● ● ● ●

Joda Time

0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

80
10

0

Threshold

Lo
ca

tio
n

of
 D

oc
um

en
ta

tio
n

Pa
tte

rn
s

● ● ● ●
● ● ● ● ● ● ●

HttpClient

0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

Threshold

Lo
ca

tio
n

of
 D

oc
um

en
ta

tio
n

Pa
tte

rn
s

● ● ● ●

●
● ● ● ● ● ●

Hibernate

0.5 0.6 0.7 0.8 0.9 1.0

0
10

20
30

40

Threshold

Lo
ca

tio
n

of
 D

oc
um

en
ta

tio
n

Pa
tte

rn
s

● ●
● ●

●
●

●
● ● ● ●

XStream

●Sections Pages Multi−Pages

Fig. 4. Sensitivity analysis on the effect of the threshold on the localisation of documentation patterns.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 13

the pattern, but there were also other patterns or
elements that were covered by the documentation
unit and that were as important as the pattern.
There was a sentence or a group of words that
matched the intension of the pattern (or a more
general intension).

3) Supportive: the elements in the pattern were all
related, but they were not the focus of the section
and they appeared only to instantiate or contex-
tualize the elements that were the focus of the
documentation unit.

4) Accidental: there was nothing in the documentation
unit that matched the intension of the pattern. The
code elements were mentioned together by accident.

Table 4 shows for each document the number of
sections, pages, and sets of pages that were covering the
25 patterns we randomly selected. Note that a pattern
can be covered by more than one section (e.g., a tutorial
section and a reference section can both discuss the code
elements of a pattern), and a pattern can be covered in
a set of pages (e.g., each subclass of a pattern can be
discussed on its own page). The table then shows the
categorization of the units. In the last column, the table
shows the lowest coverage of all meaningful (shared or
exclusive) patterns.

For example, in Joda Time, the 25 patterns that we
randomly selected were discussed in 16 sections, 6 pages,
and 7 sets of pages (multi-pages) for a total of 29
documentation units. Out of these 29 units, we judged
that 6 had a meaningful coverage of the pattern and that
the pattern was the sole focus of the section. 20 had
a meaningful coverage of the pattern but these docu-
mentation units also focused on code elements that were
not covered by a pattern. One unit covered the elements
of a documentation pattern to support more important
elements. Two units accidentally covered the elements
of a documentation pattern. Some of the meaningful
patterns had a coverage of 50% which provide evidence
that a higher threshold to classify high coverage patterns
would have eliminated these meaningful patterns.

Eighty-two percent (17.9% + 64.1%) of the documenta-
tion units covered a documentation pattern that matched
the topic of the unit. This result provides evidence that
our technique can identify with a relatively high preci-
sion the structural relationships (intensions) discussed in
a documentation unit.

Exclusive and Meaningful Coverage. We found that
when a documentation pattern involved all the constants
in a class, the pattern was always the main focus of a
section. For example, AdDoc identified the pattern “all
fields in ExecutionContext” that was covered in Section
1.2 “HTTP Execution Context” of the HttpClient manual.

Although in the previous example, the section’s title
and the intension shared a common name (Execution-
Context), this was not always the case. For instance, in
Joda Time, AdDoc identified the documentation pattern
“All methods declared in AbstractDateTime that starts

with the prefix to” in section “JDK Interoperability”. In-
deed, the methods toCalendar and toGregorianCalendar

are the main interoperability points between Joda Time
and the Java Standard Library.

A documentation pattern was rarely meaningfully
covered by multiple pages (three exclusive and mean-
ingful multi-page patterns out of 21), except when each
page described a single element of the pattern. This was
the case of the pattern “All descendants of Assembled-

Chronology” in Joda Time. Each class of this pattern is
presented in a single page (e.g., Islamic calendar system,
Julian calendar system, etc.).
Shared and Meaningful Coverage. As shown in Table 4
most of the documentation patterns were not the sole
focus of a documentation unit. In 18 documentation
units (out of 75 shared and meaningful), we found
that the documentation pattern was a proper subset
of a larger documentation pattern, hence the incom-
plete coverage. For example, Section “Converters” of the
XStream manual presented all the classes implementing
the Converter interface, but our technique generated
many subpatterns such as “all descendants of Abstract-
ReflectionConverter”. These patterns are usually com-
bined together unless the size of their extension differs
greatly (see Section 3.2).

The other reason for shared coverage was when more
than one distinct documentation pattern was mentioned
in a documentation unit. For example, section 16.4 “As-
sociations” in the Hibernate manual covered both the
pattern “all methods of Restrictions that starts with
the prefix eq” and “all methods of Criteria that ends
with suffix alias”. Each documentation pattern, taken
individually, incompletely covered the section.
Supportive. Only a few documentation patterns con-
tained related code elements that were not the focus of
the documentation units. For example, in the XStream
manual, AdDoc identified the documentation pattern
“all descendants of AbstractFilePersistenceStrategy”.
Although the classes in this pattern were clearly related
(FileStreamStrategy and FilePersistenceStrategy), they
were covered by multiple pages for different reasons.
The former was mentioned while discussing perfor-
mance strategies and the latter was mentioned while
discussing object conversion strategies.
Accidental. 12.8% of the documentation units we in-
spected accidentally covered a documentation pattern.
This was the case of the pattern “All fields starting with
prefix ignore” in the Hibernate manual. Although the
two fields that matched this intension were covered by
multiple pages, they were mentioned in different con-
texts and they had different meaning: CacheMode.IGNORE
is about query caching while ReplicationMode.IGNORE is
about replicating data between databases.

4.2 Recommender Evaluation
To objectively estimate the usefulness and accuracy of
our recommendations, we performed a retrospective

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 14

TABLE 4
Relevance of Documentation Patterns

System Single Single Multi Total Mngfl. Mngfl. Supportive Accidental Min.
Section Page Page Excl. Shared Coverage

Joda Doc. 16 6 7 29 6 20 1 2 50%
HC Doc. 11 7 7 25 6 13 1 5 53%
Hib. Doc. 21 8 2 31 4 22 0 5 50%
XSt. Doc. 23 4 5 32 5 20 4 3 50%

Total 48.2% 21.4% 30.4% 100.0% 17.9% 64.1% 5.2% 12.8% -

analysis on the documentation of four open source
projects. We computed recommendations for an old doc-
umentation release from each project and then compared
our recommendations with the newer documentation re-
leases. This comparison provided a baseline to evaluate
our recommendations: if one of the subsequent docu-
mentation releases contains the changes proposed by our
recommender, it is evidence that the recommendations
could have been useful. In contrast, if the documentation
release does not contain the change proposed by our
recommendations, we will conservatively judge that the
recommendations would not have been useful, even
though it may just be that the documentation maintainer
forgot to document the recommended code elements.

We selected all the minor releases (second digit of the
release number) for which we could build the docu-
mentation. Although the meaning of major and minor
releases vary between projects, we avoided major re-
leases because they often introduce significant structural
changes in the code or in the documentation. For exam-
ple, between releases 3 and 4, HttpClient was split into
two projects, most classes and packages were renamed
and moved and the documentation was rewritten from
scratch. We could still apply AdDoc to major releases if
there is no significant changes in the structure of the
documentation and the code.

Tables 5 and 6 show the main changes that occurred
in the code and in the documentation of the selected
project releases. In the first table, we show the number
of public or protected types and members before and
after the code release, and the total number of deprecated
types and members after the code release.

The second table shows the number of pages, sections,
and links to code elements before and after the docu-
mentation release. We removed pages that were related
to project news and change logs, because they provide
information that is not integrated with the main docu-
mentation, and these pages do not need to be corrected
between releases.

As a second step to our evaluation, we contacted the
contributors of these four open source projects to ask
them to evaluate our recommendations. One contributor
positively replied to our invitation and we report in Sec-
tion 4.5 the contributor’s evaluation on the correctness,
the usefulness, and the cost of false positives.

4.3 Addition recommendations evaluation
AdDoc generated addition recommendations for each
documentation release: our recommendation system
computed a list of code patterns, compared their cov-
erage, and indicated the patterns whose coverage had
decreased. To evaluate the usefulness and accuracy of
these recommendations, we were interested in answer-
ing these research questions:

1) How precise are the recommendations? Do the rec-
ommendations correctly identify new code elements
that should be documented given the previous doc-
umentation choices?

2) How much of the documentation additions can be
explained by documentation patterns? Why did our
approach miss some documentation additions?

To answer the first research question, we evaluated
our recommendations by manually inspecting the doc-
umentation releases that were published after the doc-
umentation release for which we generated the recom-
mendations.

For example, AdDoc generated addition recommen-
dations for the Joda Time 1.0 documentation based on
the changes in the code between 1.0 and 1.4. We first
inspected the documentation at version 1.0 to ensure
that the links and documentation patterns inferred by
AdDoc were accurate. We then manually inspected the
documentation at version 1.4 to check if it mentioned
the code elements that AdDoc had recommended. We
looked at each section that had referred to an existing
code element in the pattern. If we could not find the
references to the new code elements, we inspected the
next documentation releases (1.5, 1.6.2, and 2.0, the
release on the web at the time of writing).

AdDoc also computed a list of links to new code
elements that were introduced in each documentation
release to address the second research question. We used
this list to determine how many links to new code
elements were explained by a documentation pattern
and how many links we missed. We also used this list
to make sure that our manual inspection did not miss
any new links.

Table 7 shows the results of our inspection. The first
part of the table, “Precision”, indicates how many rec-
ommendations were actually implemented in the new
release of the documentation. Specifically, the column
“Rec. Doc Patterns” shows the number of documentation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 15

TABLE 5
Evolution of codebase

System Release Release Types Types Members Members Types Members
Old New Old New Old New Deprec. Deprec.

Joda 1.0 1.4 200 219 3 120 3 937 0 20
Joda 1.4 1.5 219 221 3 937 3 974 4 25
Joda 1.5 1.6.2 221 221 3 974 3 991 4 26
HttpClient 4.0.1 4.1.1 512 618 3 276 4 066 33 68
Hibernate 3.3.2 3.5.5 1 327 2 124 12 860 17 724 40 126
XStream 1.0.2 1.1.3 117 192 439 1 069 1 23
XStream 1.1.3 1.2.2 192 273 1 069 1 558 7 55
XStream 1.2.2 1.3.1 273 309 1 558 1 779 20 98

TABLE 6
Evolution of documentation

System Release Release Pages Pages Sections Sections Links Links
Old New Old New Old New Old New

Joda 1.0 1.4 20 19 113 114 496 564
Joda 1.4 1.5 19 24 114 124 564 604
Joda 1.5 1.6.2 24 25 124 125 604 607
HttpClient 4.0.1 4.1.1 8 9 84 100 1 099 1 302
Hibernate 3.3.2 3.5.5 29 30 320 338 1 788 1 879
XStream 1.0.2 1.1.3 12 17 55 80 69 124
XStream 1.1.3 1.2.2 17 25 80 146 124 511
XStream 1.2.2 1.3.1 25 24 146 203 511 659

TABLE 7
Evaluation of Documentation Patterns Recommendations.

Precision Recall
System Rec. Doc. Patterns Code Elem. New New Types Members

Patterns Correct Elem. Correct Types Members Found Found

Joda 1.0-1.4 4 3 21 15 13 6 13 2
Joda 1.4-1.5 1 0 1 0 0 0 0 0
Joda 1.5-1.6.2 0 0 0 0 0 0 0 0
HttpClient 4.0.1-4.1.1 14 9 27 11 10 11 6 5
Hibernate* 3.3.2-3.5.5 13 8 52 14 0 5 0 1
XStream* 1.0.2-1.1.3 1 1 10 10 1 4 0 0
XStream* 1.1.3-1.2.2 6 5 32 13 13 12 8 2
XStream 1.2.2-1.3.1 7 3 19 9 9 6 8 0

Total 46 29 162 72 46 44 35 10

patterns that generated at least one recommendation for
each release. The next column shows the number of
documentation patterns for which at least one recom-
mendation was implemented in the next release of the
documentation. The column “Code Elem.” shows the
number of new code elements that we recommended
and the next column shows the number of these code
elements that were actually mentioned in the next re-
lease.

The second part of the table, “Recall” shows the
number of new types and members (in existing types)
that were mentioned in the newer documentation release
and the number of these types and members that our
recommendations covered.

For example, we found that between releases 1.0 and
1.4 of Joda Time four documentation patterns had a
coverage that decreased. New code elements from three

of these documentation patterns were mentioned in 1.4.
In total, these four documentation patterns contained
21 new code elements and 15 of these code elements
were mentioned in the 1.4 release. Between, 1.0 and 1.4,
the documentation added one or more reference to 13
types and 6 members: 13 of these types and two of these
members were covered by our recommendations.

In Hibernate and XStream (annotated with a star in
Table 7), we found documented code elements from
our recommendations in a documentation release that
was not immediately following the code release. For
example, in XStream 1.1.3-1.2.2, AdDoc recommended to
document the class XMLArrayList, but it was documented
only in 1.3.1 instead of 1.2.2. In Table 7, we report that
9 recommended code elements were correct (precision
over all future releases), but that we only recommended

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 16

8 of the 9 new types in release 1.2.2 (recall on the
release 1.2.2 only). In total, we found 5 recommendations
in future documentation releases of Hibernate and 2
recommendations in future releases of XStream.
Precision of Recommendations. Considering that the
releases we studied introduced 7 865 new members and
1 116 new types, the 46 recommendations (for a total
of 162 recommended code elements) of AdDoc clearly
represents an improvement over manually reviewing
each code addition. Moreover, because our evaluation
strategy was conservative, the low precision of our rec-
ommendations (29 / 46 = 63%) represents a lower bound
on the accuracy of our technique.

Our recommendations were particularly accurate
when they concerned types, and when the intension of
the documentation pattern was not related to a common
token. For example, for Joda Time 1.0, AdDoc found
the multi-page documentation pattern “all descendants
of BaseChronology” and it correctly recommended to
document the new members of this pattern (Islamic-
Chronology, EthiopicChronology, etc.) in release 1.4: when
manually reviewing release 1.4, we found that the docu-
mentation maintainer had created a new page for these
new classes.

In HttpClient 4.0.1, AdDoc found the single-section
documentation pattern “All classes declared in the http-

.conn.scheme package” and it correctly recommended to
document the new classes in this package (e.g., Layered-
SchemeSocketFactory) in release 4.1.1.

AdDoc was also accurate when it detected a doc-
umentation pattern related to constants. For example,
in XStream 1.1.3, AdDoc found the pattern “All fields
(constants) declared in the XStream class” and it correctly
recommended to document the new constants in 1.2.2.

AdDoc correctly recommended methods associated
with a token. For example, in Joda Time 1.0, AdDoc found
the single-page documentation pattern “All methods
declared in DateTime and ending with the token Year”
and correctly recommended to document the three new
members in release 1.4.

Regarding the false positives, AdDoc found nine doc-
umentation patterns whose extension in future releases
were related to internal implementation. For example,
in Hibernate 3.3.2, AdDoc found the pattern “All non-
abstract classes in package org.hibernate.stat”. These
classes were refactored in 3.5.5 and an interface was
extracted for each of these classes. AdDoc recommended
to document all the new non-abstract classes in 3.5.5
(e.g., QueryStatisticsImpl), but because these classes
were now part of the internal implementation, they were
not documented and the recommendation was incorrect.

We observed only two documentation patterns in-
ferred by AdDoc that were spurious (e.g., “All classes
starting with X” in XStream 1.2.2). Unsurprisingly, the
recommendations from these patterns were incorrect.

Finally, we found that six inferred documentation
patterns and their resulting recommendations made
sense but were not implemented by the documenta-

tion maintainers. For example, in HttpClient, AdDoc
recommended to document the class CookieRestriction-

ViolationException because it was part of the docu-
mentation pattern “All classes declared in org.apache-

.http.cookie and starting with Cookie”. Although the
documentation discusses policies and cookie validation,
it never mentions that HttpClient can throw exceptions,
which is not a good documentation practice [10].
Examination of False Negatives. We found that 90 (46
+ 44) new types and members had been documented
in the documentation release following a code release.
Documentation patterns inferred by AdDoc covered 50%
(35 + 10 / 90) of these new types and members. In other
words, 50% of the new types and members documented
in the new release were not recommended by AdDoc
(false negatives).

We manually inspected the documentation of these
false negatives and we found that five types (out of 11
not recommended by AdDoc) and three methods (out of
34) were added together in a section. They were part
of a new documentation pattern that did not exist in
the previous release. The other types and members were
added in isolation of each other and were not part of any
documentation pattern we could find.

Because there are many factors influencing the docu-
mentation decisions of a contributor, AdDoc focused on
ensuring that new code elements matching an existing
documentation pattern would be recommended. We did
not find evidence that we missed such a recommenda-
tion in the seven documentation releases we studied.

4.4 Removal recommendations evaluation
For each project release, AdDoc computed the list of
code elements that had been deprecated or deleted and
automatically produced a recommendation when these
elements were mentioned in the documentation. For
each recommendation, we inspected the next documen-
tation releases to check if these references to deprecated
or removed elements had been corrected. We conserva-
tively considered that the documentation had addressed
the deletion or deprecation of a code element if it: (1)
referred to a new replacing element, (2) it mentioned
that the element had been deprecated, or (3) it no longer
mentioned the element.

We also compared AdDoc with a traditional textual
search tool (grep). For each deprecated class, we per-
formed a case-sensitive search of the class name (e.g.,
“TimeOfDay”) in the documentation. For each depre-
cated method, we performed two case sensitive search:
one with the name of the method, and one with the
opening parenthesis (e.g., “getISO” and “getISO(”). Be-
cause the first search (without the opening parenthesis)
yielded hundreds of false positives, we only kept the
second search for comparison.

Finally, we performed a case insensitive search and we
manually inspected the results to determine the number
of references to deprecated code elements.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 17

Table 8 shows the results of our inspection for each
release. The “Deprecated Code Elem.” column shows the
number of deprecated elements for which AdDoc found
at least one reference in the documentation. The “Found
References” column shows the number of references to
deprecated or deleted elements that we found between
each release (one deprecated element can be mentioned
multiple times).

Then, the table shows the number of these references
that were indeed pointing to a deprecated element (True
Positive), the precision (true positives divided by found
references), and the recall computed from a manual
inspection (true positives divided by references to dep-
recated elements). The numbers in parentheses represent
the results for the textual search with grep.

Finally, at the end of the table, we show the number
of references that had been corrected in one of the
next documentation releases (Corrected Ref) and the
number of references that had been left unchanged (Not
Corrected)

For example, for HttpClient, we found that 13 depre-
cated elements were referenced in the documentation.
AdDoc found 32 references to these 13 elements and
the textual search found 38 references. Thirty-three of
these references were pointing to a deprecated elements:
AdDoc thus missed one reference (1 false negative) and
the textual search produced five false positives. Out
of these 33 references, 32 had been corrected in the
next release of the HttpClient documentation, but one
reference had not been corrected. The incorrect reference
was identified by both tools.

It is clear from these results that AdDoc can automate
the process of finding references to deprecated code
elements with a higher accuracy than a simple textual
search. Textual search was particularly imprecise when
we searched for short and common method names. For
example, in Hibernate, searching for “get(” yielded 27
results.

Additionally, textual search tools lack the relationships
with the codebase, so the user has to manually identify
all the deprecated elements first, and then execute the
textual search tool for each of the deprecated element.

Finally, we found that the identification of references
to deprecated elements can uncover documentation er-
rors that are misleading. For example, in Hibernate, the
documentation is still telling readers to call Session-

.lock() instead of the new Session.buildLockRequest().
Producing these recommendations with AdDoc takes a
few seconds.

4.5 Assessment by a Core Contributor
To provide a basic validation of the format and potential
usefulness of the recommendations we compute with
AdDoc, we contacted the primary author of each of the
four projects involved in our evaluation to ask them to
assess the recommendations. For our purpose, we esti-
mate that only an expert with a complete and authorita-
tive knowledge of the documentation would be suited to

make reliable comments on the value of documentation
adaptation recommendations. Specifically, peripheral de-
velopers without a deep tie to the documentation could
not be expected to be aware of the challenges involved
in its creation and maintenance.

Only the core contributor of Joda Time positively
replied to our invitation and accepted to review the ad-
dition and deletion recommendations. We asked several
questions that aimed at answering these three research
questions:

1) Would the contributor have followed the recommen-
dations?

2) Did the recommendations match the contributor’s
intent?

3) What is the cost of a false positive?
We sent to the Joda Time contributor a list of addition

and deletion recommendations. The addition recommen-
dations presented the inferred documentation pattern,
the coverage difference, the new code elements to docu-
ment, and the location where the code elements should
be added (more than one location could be displayed
if our algorithm returned multiple locations). We also
provided the intension that had ranked second as the
most representative pattern of the documentation pat-
tern: we wanted to elicit feedback about the accuracy
of the intension and not just about the recommended
elements. Because the contributor was not rewarded for
his evaluation, we found that providing one alternative
intension struck the balance between evaluation effi-
ciency and completeness. Figure 5 shows an example of
the addition recommendations that we provided to the
contributor.

The deletion and deprecation recommendations that
we provided presented the code elements that had been
deprecated and the locations of these code elements in
the documentation.

Because the contributor reviewed the raw results, the
evaluation is conservative and provides a lower bound
on the accuracy and usefulness of the recommendations.

Correctness and Usefulness. Out of the five addition
recommendations that we made for the three releases of
Joda Time, the contributor judged that one was correct,
two were partially correct, and the last two were false
positives, which match our own evaluation. For the two
partially correct recommendations: (1) the contributor
judged that the pattern was too inclusive (all descen-
dants of BaseChronology), but that some of the pattern
elements needed to be documented, and (2) the token
inferred by the pattern was the wrong one, but the code
elements had to be documented (the pattern was “All
methods declared in DateTime ending with the token
year”, but the right token according to the contributor
was with).

For the 21 (16+5) deletion and deprecation recommen-
dations that we suggested (see Table 8), the contributor
judged that they were all correct. The contributor noted
that two recommendations identified old documentation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 18

TABLE 8
Removed and Deprecated Elements Recommendations

System Deprecated References True Precision Recall Corrected Not
Code Elem. Found Positive Ref. Corrected

Joda 1.0-1.4 6 16 (16) 16 (16) 100% (100%) 100% (100%) 14 2
Joda 1.4-1.5 2 5 (5) 5 (5) 100% (100%) 100% (100%) 4 1
Joda 1.5-1.6.2 0 0 0 100% (100%) 100% (100%) 0 0
HttpClient 13 32 (38) 32 (33) 100% (87%) 97% (100%) 32 1
Hibernate 18 38 (123) 29 (29) 76% (24%) 100% (100%) 3 26
XStream 1.0.2-1.1.3 0 0 0 100% (100%) 100% (100%) 0 0
XStream 1.1.3-1.2.2 2 2 (5) 1 (1) 50% (20%) 100% (100%) 0 1
XStream 1.2.2-1.3.1 8 21 (24) 20 (19) 95% (79%) 100% (95%) 20 0

Total 49 114 (211) 103 (103) 90% (49%) 99% (99%) 72 31

Recommendation #2

Pattern: All descendants of BaseChronology

Change: Coverage dropped by 13%: 6 classes were
covered (out of 12).
Now there are 17 classes.

New classes to document in 1.4:
org.joda.time.chrono.BasicGJChronology
org.joda.time.chrono.IslamicChronology
org.joda.time.chrono.BasicFixedMonthChronology
org.joda.time.chrono.BasicChronology
org.joda.time.chrono.EthiopicChronology

Where to document:
Each class should be documented in its own page.

Similar pattern: All descendants of Assembled-
Chronology (16 classes, 5 new)

1. If you were about to release a new version of Joda
Time, would you follow this recommendation and
document most of the suggested code elements?

2. Does the documentation pattern match your
documentation intent? If not, does the similar
documentation pattern match your documentation
intent?

3. If this recommendation is incorrect, how much
time would it take you to dismiss it? In other words,
what is the cost of this false positive?

Fig. 5. Example of an Addition recommendation sent to
the Joda Time Contributor

bugs that still needed to be fixed in the current release
of Joda Time. The contributor thought that the third
documentation bug we identified was technically an
issue, but that it did not need to be fixed because the
sentence about the deprecated element was still true.

Documentation Intent. The contributor found that the
three correct documentation patterns that we identified
in the addition recommendations partially matched the
documentation intent.

The main issue with the addition recommendations
was that most patterns were associated with more than
one location and each location had a different intent: the
contributor did not think that a single pattern should be
reported for different locations. For example, the pattern
“All descendants of ReadablePeriod” was matched to
the two following pages and sections: Period/Using
Periods in Joda Time and User Guide/Periods. The
Period page presents the period concept in details and
is appropriate for this pattern. The user guide is a
general overview of all the features in Joda Time and
the contributor thought that the guide was already long
and was not the appropriate place to discuss all the
descendants of ReadablePeriod (only a manually selected
subset were mentioned). Nevertheless, if a new descen-
dant of ReadablePeriod is created in a new release, we
believe that the contributor would still consider referring
to it in both sections because most of the descendants
are already mentioned and the sections were adapted in
previous releases. It is thus more likely that the problem
with the addition recommendation was the disagree-
ment on what ”documentation intension” means.

Cost of False Positives. The contributor reported that he
instantaneously identified the false positives in one par-
tially correct and one incorrect recommendation because
the false positives were related to internal classes. For
example the last recommendation suggested to recom-
mend the class BaseLocal, which was an internal class.

For the other false positives, the contributor had to
quickly read the related documentation sections, which
took less than five minutes for a partially correct rec-
ommendation and less than a minute for an incorrect
recommendation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 19

We consider that the cost of the false positives is
acceptable, given the low number of recommendations
and the time it takes to read them and discard the false
positives.

4.6 Discussion
We showed in this section how we could use high-
level documentation structures and low-level links to
produce documentation improvement recommendations
when the underlying codebase evolves.

A total of 8 981 code elements were introduced in the
target codebase between the releases we studied, but
only 90 of these code elements were mentioned in the
documentation release following the code release. The 46
documentation patterns AdDoc inferred recommended to
document 45 of the 90 code elements mentioned in the
documentation. Eight of the code elements not covered
by our recommendations were part of new documenta-
tion patterns while the 37 others were added in isolation
and did not seem to be related to any kind of pattern.

It is clear from these numbers that the documentation
does not change much compared to the underlying code
base and that larger projects are more likely to benefit
from these recommendations than smaller ones that have
little new code elements and documentation pages to
consider.

Our addition recommendations achieved our goal to
detect new code elements that were part of existing
documentation patterns, but as we found in the eval-
uation, there will always be code elements that are doc-
umented for other reasons that may not lend themselves
to be automatically recommended. Moreover, we need to
improve these recommendations by putting them into
context. For example, some pages and sections are more
focussed than others and are more appropriate locations
for addition recommendations (e.g., the Period page vs.
the User Guide page in Joda Time).

Out of the 114 deletion and deprecation recommen-
dations AdDoc made, 103 were correct and AdDoc only
missed one reference to a deprecated code element.
Additionally, our recommendations found 31 references
to deprecated code elements that were still not corrected
in the current documentation releases of the four open
source projects. When we compared our recommenda-
tions with those from a textual search tool (grep), the
precision of AdDoc was clearly superior: AdDoc produced
11 false positives against 107 by the textual search tool.

We could complement our deletion and depreca-
tion recommendations with additional recommendations
from change detection tools such as SemDiff [11]. SemD-
iff analyzes the source history of a framework and
recommends method replacements when a method is
deleted or deprecated between two releases. For exam-
ple, when we identify the location of a deprecated code
element, we could recommend to replace this reference
with the replacement element identified by SemDiff.

Adaptive changes are only one type of recommenda-
tions that can improve the quality of documentation. As

we found out in our qualitative study [2] and confirmed
in this section, recommending adaptive changes can be
useful in identifying documentation issues, but other
strategies are required as well to cover the full spectrum
of potential documentation improvements. For example,
other recommendations based on what we know about
developers needs and learning theory (e.g., presence
of examples, task-oriented) would identify other types
of issues and would require a different approach to
evaluation.

4.7 Threats to Validity
The target systems we evaluated were different than
the one we used to devise RecoDoc and AdDoc. Specif-
ically, we manually inspected the Spring Framework
code and documentation and we wrote an initial pro-
totype to link code-like terms to code elements and to
make recommendations on a few of its releases. We
then implemented and evaluated RecoDoc on four target
systems and published a paper reporting the results [3].
Finally, we completed the implementation of the current
version of AdDoc and evaluated it on the same four
target systems as RecoDoc.
Choice of target systems. We selected the same target
systems used to evaluate RecoDoc because their docu-
mentation format, application domain, size, and usage
scenarios vary widely. These differences provide evi-
dence that AdDoc is not constrained to a single type of
framework.

The accuracy of the traceability links recovered by
RecoDoc directly impacts the ability of AdDoc to infer
documentation patterns: incorrect traceability links may
result in false positives and missed traceability links
may result in false negatives. Having access to a corpus
of validated traceability links was essential to indepen-
dently evaluate the accuracy of AdDoc. RecoDoc makes
two assumptions about the documentation: (1) two code-
like terms mentioned in close vicinity are more likely
to be related than terms mentioned further apart, and
(2) methods and fields are unlikely to be mentioned
without their declaring type in their context. The second
assumption made by RecoDoc matches the Java type
system, but would not be directly applicable to other
programming languages such as Go and JavaScript that
use duck typing or prototypes. The population of sys-
tems to which our results are applicable is therefore
limited to those built using statically-typed languages
with a declarative structure like Java. Within this target
population both of the assumptions above are general
and can be expressed independently of any project-
specific attributes; As such they impose no major con-
straint on the type of projects for which RecoDoc and
AdDoc could function as expected.

Finally, we used the same eight generic intension
templates across the four projects, but the intensions
were different. For example, an intension template may
be “All code elements declared by class C”, but class C

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 20

will be different for each project. The generalizability of
our approach is thus not limited to specific intensions,
but as we mentioned in Section 4.1, we cannot infer
documentation patterns that do not match our eight
intension templates.
Evaluation of Documentation Pattern Inference. Deter-
mining whether a section and a documentation pattern
discuss the same topic is inherently a subjective, but
highly informative assessment. To mitigate investigator
bias, we based this assessment on explicit and verifiable
criteria (e.g., the presence of a sentence summarizing the
topic). Our assessment of each link is publicly available
for inspection along with the artifacts we collected for
each project.6 Given the difficulty in recruiting open
source contributors [2] and the time required to man-
ually inspect these results, we believe that inspection of
the results by the authors represented an appropriate
trade-off. Additionally, given that the documentation
was intended for users, there is no reason to believe that
contributors would be more rigorous or systematic than
researchers for this task.

The quantitative results (e.g., number of code patterns
detected) are dependent on the accuracy of RecoDoc. We
demonstrated that for these four target systems, RecoDoc
was highly accurate in linking code-like terms to code
elements, but there were still a few errors that likely im-
pacted our results: we may have missed links or inferred
erroneous links. During our qualitative assessment of the
links, we never encountered a missing or erroneous link.

In our evaluation of the documentation patterns, we
did not study recall, i.e., the number of detected links out
of the total number of links in a target system release.
We wanted to focus our effort on the links we could
uncover instead of the links we missed. Additionally,
because of the large number of potential links, the cost
of computing an oracle would have outweighed its
value. In Section 4.3, we studied one aspect of recall
by investigating documented changes in a codebase that
were not captured by documentation patterns.
Recommender Evaluation. To evaluate the precision of
our recommendations, we analyzed the evolution of the
documentation. Because we used historical data, we can
only speculate on why the code elements we recom-
mended were referenced or modified by documentation
maintainers and we cannot assess how the documen-
tation maintainers would have used our recommenda-
tions. To mitigate this threat, one core contributor of an
open source project we studied reviewed our results and
confirmed most of our observations.

We evaluated the recall of our recommendations by
computing a list of links to code elements that were
added between each documentation release and by per-
forming a textual search (grep) to find references to
deprecated code elements. The former metric is depen-
dant on the precision of RecoDoc and the latter may
miss references with typos (e.g., a deprecated class name

6. http://cs.mcgill.ca/∼swevo/recodoc

starting with a lower case). Given the high precision
and recall of RecoDoc and the low number of typos
in the documentation of these four projects, we are
confident that these were not significant limitation to our
evaluation of recall.

Similarly to the evaluation of the documentation pat-
tern inference, the accuracy of the links recovered by
RecoDoc impacts the accuracy of AdDoc’s recommenda-
tions. The impact is direct for deletion recmmendations:
a link to a deprecated element missed by RecoDoc would
result in a missed deletion recommendation. Addition
recommendations are more resilient to RecoDoc accuracy
because a documentation pattern involving many code
elements would still be inferred if RecoDoc missed a few
links.

As it was the case with our previous evaluation
studies, the external validity is limited by the docu-
mentation standards and practices of the systems we
studied. Documentation without regular documentation
patterns or systems that do not deprecate or remove code
elements between releases would not benefit from our
recommendations.

5 RELATED WORK

Most of the related work on developer documentation
has focused on studying how developers use documen-
tation and on devising techniques to document pro-
grams.

API Documentation. Magyar described an early attempt
to maintain the links between API documentation and
code [12]. The tool alerted documentation writers when
the documentation of a function was no longer rep-
resentative of the code (e.g., a parameter was added)
and could update the documentation (e.g., by adding
a parameter). Nowadays, these functionalities are pro-
vided by standard documentation tools such as Javadoc
and Doxygen. Zhong and Su proposed an API docu-
mentation checker that locates code elements that are
deprecated or that do not exist in a codebase [13]. Their
approach does not perform any type inference and does
no try to link the documentation between two releases
of the codebase so they discard (and potentially miss)
code elements that their approach cannot resolve.

Mining Code Examples. Many documentation tech-
niques rely on mining code examples to infer usage
information about libraries and frameworks. For ex-
ample, SpotWeb mines code examples found on the
web to recommend framework hotspots, i.e., classes and
methods that are frequently reused [14]. MAPO mines
open source repositories and indexes API usage patterns,
i.e., sequence of method calls that are frequently invoked
together [15]. Then, MAPO recommends code snippets
that implement these patterns, based on the program-
ming context of the user. A complete review of such
techniques can be found in the survey published by Ro-
billard et al. on API property inference techniques [16].

http://cs.mcgill.ca/~swevo/recodoc

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 21

Augmenting Existing Documentation. Dekel and Herb-
sleb devised eMoose, a tool that enables framework de-
velopers to annotate the API documentation of a frame-
work to highlight “directives” such as preconditions [17].
When a developer writes code that calls a method with
an annotated directive, eMoose highlights the method
call in the code editor. Contrary to our technique, the
links between the documentation and the API must be
encoded manually by the framework developers.

We believe that tools can be useful to complement the
documentation, but they cannot replace human-written
documentation. As we observed in our qualitative study,
some documents are used for marketing purposes so
they cannot be generated, and writing documentation
introduces a feedback loop that is beneficial for the
program’s usability.

Information Retrieval. Many researchers have experi-
mented with the use of information retrieval techniques
to recover the links between source code elements and
free-text documents. Early attempts include the work of
Antoniol et al., who applied two information retrieval
techniques, the probabilistic model and the vector space
model, to find the page in a reference manual that
were related to a class in a target system [18], and the
work of Marcus and Maletic, who experimented with
latent semantic indexing (LSI) for similar purposes [19].
Information retrieval techniques work best when the
entities to be linked can be expressed by several words
(e.g., entire documents and complete class definitions),
but they cannot be successfully employed to resolve
links to elements described by only a few tokens (e.g.,
method signatures).

Recently, Bacchelli et al., compared both the vector
space- and LSI-based information retrieval techniques
with a simple pattern-matching approach [20]. They
concluded that, for the purpose of linking emails with
type-level source code entities, the lightweight approach
was consistently superior. Although the pattern-based
approach does not suffer from the imprecision of IR-
based techniques, it too cannot easily handle fine-
grained code elements; these must be scoped within a
declaring element, and often have a common name (such
as “add”). In contrast, RecoDoc was designed specifically
to link single code-like terms to fine-grained elements
as accurately as possible. Rigby and Robillard provide a
systematic comparison of the three approaches described
above with RecoDoc [21, Section 3].

Hipikat is a tool that generates a project memory from
a set of coarse-grained artifacts: bug reports, support
messages, source code commits, and documents [22].
The tool stores and indexes the artifacts and then de-
termines whether the artifacts are related. Hipikat uses
several strategies to recover the links between the arti-
facts: presence of bug numbers, textual similarity (using
a vector space model), similarity of titles, etc. The tool
enables developers to query the project memory by
returning a set of artifacts related to the query.

Identifying Code Snippets. The need to identify code
elements in natural language documents is not recent
and several techniques have been devised to this end.
One technique and one study have particularly influ-
enced our parsing infrastructure.

Island Grammars is a general technique that en-
ables the identification of structured constructs such
as code elements in arbitrary content (e.g., an email
message) [23]. The main idea is to separate the content
into small recognizable constructs of interest (islands)
and everything else (water). Our parser implements a
similar approach by first identifying the code snippets
(big islands) and then, by identifying the smaller code
elements (small islands) in the English paragraphs (wa-
ter).

Bacchelli et al. compared various techniques to iden-
tify code elements and code snippets in email mes-
sages and found that lightweight techniques based on
regular expressions performed better than information
retrieval techniques such as latent semantic indexing
and the vector space model [20]. We implemented our
documentation and support channel parsers with regular
expressions based on the observations of this study.

Inferring Intensions. The addition recommendations
that we generate is based on a commonly-used strategy:
from a set of discrete elements, an approach tries to infer
a structural pattern and reports violations of this pattern.

Examples of such approaches include LSdiff, a tool
devised by Kim and Notkin that analyzes change sets
to infer structural differences as logic rules [9]. The goal
of LSdiff is to produce a logical summary that is easier
to understand for software engineers than a textual
difference (such as the one produced by the GNU diff
tool) or a list of changed code elements. Once a logic
rule is inferred, LSdiff can report all violations of this
rule. For instance, LSdiff could detect that in a changeset,
methods starting with the token “delete” were replaced
by methods starting with the token “remove”: all meth-
ods starting with “delete” that were not renamed would
be reported as an error.

ISIS4J automatically infers a set of intensions from a
set of code elements manually selected by a software
developer (i.e., a concern’s extension) [8]. As the under-
lying software system evolves, ISIS4J uses the inferred
intensions to augment the concern’s extension with rele-
vant code elements. The intensions supported by ISIS4J
are similar to the ones inferred by our documentation
analysis tool chain: all descendants of a type, all mem-
bers declared by a type, etc. As opposed to ISIS4J, we
compute intensions based on tokens, but we do not
support yet intensions based on callers and accessors.

Natural Language Processing. Natural Language Pro-
cessing (NLP) and information extraction techniques
frequently rely on the context of a term or the distance
between two terms to extract relevant relationships [24].
The presence of a term in the context of another term is
called a discourse feature. As opposed to our technique,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 22

TABLE 9
Open source projects mentioned in this paper

Projects

Hibernate hibernate.org
HttpComponents hc.apache.org
Joda Time www.joda.org
XStream xstream.codehaus.org

users of general NLP techniques typically need to train
the techniques on a corpus first to develop a reliable
classifier for a specialized task.

6 CONCLUSION

Reusing libraries and frameworks is a complex task that
requires intimate knowledge about the various features
offered by a framework. As frameworks grow in size
and complexity, the need for concise but comprehensive
documentation increases as well.

We devised a technique that can help documentation
maintainers and users by making adaptation recommen-
dations based on the links between the code base and
the learning resources of a software development project.
We built on our previous work to recover these implicit
links, and we proposed algorithms to infer documenta-
tion patterns and detect violations of these patterns.

When we executed our approach on the documenta-
tion of four open source projects, we found that 82% of
the inferred documentation patterns were meaningful,
i.e., the intension of the patterns matched the topic of the
documentation unit. We then conducted a retrospective
analysis on the documentation history of four open
source projects and found that at least 50% of all the
additions in the documentation could be predicted with
documentation patterns. The other additions were either
related to documentation patterns that did not exist in
previous releases or unrelated to any pattern we could
think of.

Finally, our recommendation technique also detected
99% of references to deleted or deprecated elements and
found 31 incorrect references in the documentation of
four open source projects.

ACKNOWLEDGMENTS

The authors would like to thank the open source contrib-
utor who accepted to review our results and the readers
who commented on the first paper. This project was
supported by NSERC.

REFERENCES
[1] D. Kirk, M. Roper, and M. Wood, “Identifying and addressing

problems in object-oriented framework reuse,” Journal of Empirical
Software Engineering, vol. 12, no. 3, pp. 243–274, 2007.

[2] B. Dagenais and M. P. Robillard, “Creating and Evolving De-
veloper Documentation: Understanding the Decisions of Open
Source Contributors,” in Proceedings of the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2010, pp.
127–136.

[3] ——, “Recovering Traceability Links between an API and its
Learning Resources,” in Proceedings of the IEEE/ACM International
Conference on Software Engineering, 2012, pp. 47–57.

[4] B. Dagenais and L. Hendren, “Enabling Static Analysis for Partial
Java Programs,” in Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications,
2008, pp. 313–328.

[5] “Joda Time User Guide,” http://joda-time.sourceforge.net/
userguide.html, accessed 31-Aug-2011.

[6] M. P. Robillard and G. C. Murphy, “Representing concerns
in source code,” ACM Transactions on Software Engineering and
Methodology, vol. 16, no. 1, pp. 1–38, February 2007.

[7] A. H. Eden and R. Kazman, “Architecture, design, implementa-
tion,” in Proceedings of the IEEE/ACM International Conference on
Software Engineering, 2003, pp. 149–159.

[8] B. Dagenais, S. Breu, F. W. Warr, and M. P. Robillard, “Inferring
structural patterns for concern traceability in evolving software,”
in Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering, 2007, pp. 254–263.

[9] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in Proceedings of the 31st International Conference on
Software Engineering, 2009, pp. 309–319.

[10] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A. Mazur-
Rimetz, “The minimal manual,” Journal of Human-Computer Inter-
action, vol. 3, no. 2, pp. 123–153, 1987, erlbaum Associates.

[11] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” ACM Transactions on Software
Engineering and Methodology, vol. 20, no. 4, pp. 19:1–19:35, 2011.

[12] M. Magyar, “Automating software documentation: a case study,”
in Proceedings of the ACM SIGDOC International Conference on
Computer Documentation, 2000, pp. 549–558.

[13] H. Zhong and Z. Su, “Detecting API documentation errors,” in
Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems, Languages, and Applications,
2013, pp. 803–816.

[14] S. Thummalapenta and T. Xie, “SpotWeb: Detecting framework
hotspots and coldspots via mining open source code on the
web,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 2008, pp. 327–336.

[15] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining
and recommending API usage patterns,” in Proceedings of the
European Conference on Object-Oriented Programming, 2009, pp. 318–
343.

[16] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford, “Automated API property inference techniques,”
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 613–
637, May 2013.

[17] U. Dekel and J. D. Herbsleb, “Improving API Documentation Us-
ability with Knowledge Pushing,” in Proceedings of the IEEE/ACM
International Conference on Software Engineering, 2009, pp. 320–330.

[18] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Transactions of Software Engineering, vol. 28, no. 10, pp. 970–
983, 2002.

[19] A. Marcus and J. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Pro-
ceedings of the 25th ACM/IEEE International Conference on Software
Engineering, 2003, pp. 125–135.

[20] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and
source code artifacts,” in Proceedings of the ACM/IEEE International
Conference on Software Engineering, 2010, pp. 375–384.

[21] P. C. Rigby and M. P. Robillard, “Discovering essential code
elements in informal documentation,” in Proceedings of the 35th
ACM/IEEE International Conference on Software Engineering, 2013,
pp. 832–841.

[22] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A Project Memory for Software Development,” IEEE Transactions
on Software Engineering, vol. 31, no. 6, pp. 446–465, 2005.

[23] L. Moonen, “Generating robust parsers using island grammars,”
in Proceedings of the Working Conference on Reverse Engineering,
2001, pp. 13–22.

[24] M.-F. Moens, Information Extraction: Algorithms and Prospects in a
Retrieval Context. Springer, 2006.

http://joda-time.sourceforge.net/userguide.html
http://joda-time.sourceforge.net/userguide.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , JANUARY 2007 23

Barthélémy Dagenais is CTO at Resulto Inc.
a web application development startup. He re-
ceived his Ph.D. and M.Sc. in Computer Science
from McGill University and a B.App.Sc. from
Université du Québec à Montréal. http://infobart.
com/

Martin P. Robillard is an Associate Professor
of Computer Science at McGill University. His
research focuses on problems related to API
usability, information discovery, and knowledge
management in software engineering. He re-
ceived his Ph.D. and M.Sc. in Computer Science
from the University of British Columbia and a
B.Eng. from École Polytechnique de Montréal.
http://www.cs.mcgill.ca/∼martin

http://infobart.com/
http://infobart.com/
http://www.cs.mcgill.ca/~martin

	Introduction
	General Approach
	Collecting and Processing Artifacts
	Linking Documentation with Code
	Limitations

	Recommending Documentation Improvements
	Documentation Patterns
	Inferring Documentation Patterns
	Recommending documentation additions
	Recommending documentation removals

	Evaluating Documentation Improvement Recommendations
	Evaluation of Documentation Patterns Inferrence
	Recommender Evaluation
	Addition recommendations evaluation
	Removal recommendations evaluation
	 Assessment by a Core Contributor
	Discussion
	Threats to Validity

	Related Work
	Conclusion
	References
	Biographies
	Barthélémy Dagenais
	Martin P. Robillard

