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Patterns of Knowledge in
API Reference Documentation

Walid Maalej and Martin P. Robillard

Abstract—Reading reference documentation is an important part of programming with APIs. Reference documentation
complements the API by providing information not obvious from the syntax of the API. To improve the quality of reference
documentation and the efficiency with which the relevant information it contains can be accessed, we must first understand
its content. We report on a study of the nature and organization of knowledge contained in the reference documentation of
the hundreds of APIs provided as part of two major technology platforms: Java SDK 6 and .NET 4.0. Our study involved the
development of a taxonomy of knowledge types based on grounded methods and independent empirical validation. Seventeen
trained coders used the taxonomy to rate a total of 5574 randomly-sampled documentation units to assess the knowledge
they contain. Our results provide a comprehensive perspective on the patterns of knowledge in API documentation: observations
about the types of knowledge it contains, and how this knowledge is distributed throughout the documentation. The taxonomy and
patterns of knowledge we present in this paper can be used to help practitioners evaluate the content of their API documentation,
better organize their documentation, and limit the amount of low-value content. They also provides a vocabulary that can help
structure and facilitate discussions about the content of APIs.
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1 INTRODUCTION
Application Programming Interfaces (APIs) enable the
reuse of libraries and frameworks in software devel-
opment. In essence, an API is a contract between the
component providing a functionality and the compo-
nent using that functionality (the client). The syntactic
information is, in all but the most trivial cases, insuffi-
cient to allow a developer to correctly use the API in a
programming task. First, interfaces abstract complex
behavior, knowledge of which may be necessary to
understand a feature. Second, even if the behavior
of a component could be completely specified by its
interface, developers often need ancillary knowledge
about that element: how it relates to domain terms,
how to combine it with other elements, etc. [27]. This
knowledge is generally provided by documentation,
in particular, by the API’s reference documentation.

We define API reference documentation as a set of
documents indexed by API element name, where each
document specifically provides information about an
element (class, method, etc.). For example, the API
documentation of the Java Development Toolkit (JDK)
is a set of web pages, one for each package or type in
the API. Although many forms of API documentation
exist, there is usually a clear distinction between ref-
erence documentation and other forms of documen-
tation with a more pedagogical intent (e.g., tutorials,
books, and FAQs).
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Reference documentation is a necessary and sig-
nificant part of a framework. For example, the ref-
erence documentation of the JDK 6 (SE and EE) totals
over three million words, or six times the length
of Tolstoy’s epic novel, “War and Peace”. Reference
documentation also plays a crucial role in how de-
velopers learn and use an API, and developers can
have high expectations about the information they
should find therein [13], [27]. Empirical studies have
described how developers have numerous and varied
questions about the use of APIs (see Section 8). Effi-
cient representation and access of knowledge in API
reference documentation is therefore a likely factor for
improving software development productivity.

Most technology platforms exposing APIs provide
a documentation system with a uniform structure
and look-and-feel for presenting and organizing the
API documentation. For example, Java APIs are docu-
mented through Javadocs, documentation for Python
modules can be generated with the pydoc utility,
and Microsoft technologies, whose documentation is
available through the MSDN website, follow the same
look-and-feel. Unfortunately, no standard and a few
conventions exist regarding the content of reference
documentation. For example, an early article explains
the rationale behind Javadocs and gives a set of
conventions for what should and should not be part of
Javadocs [18]. In practice, however, these conventions
are not generally adhered to. A cursory look at an API
reference documentation page will typically reveal
a mixed bag of information items, including defi-
nitions, code snippets, specifications, how-to guides,
implementation notes, references to other documents,
etc. An extreme example is offered by the package
overview pages of the JDK, which range from one



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 39(9):1264-1282, SEPTEMBER 2013 — AUTHOR-GENERATED VERSION 2

sentence about the functionality of the package to a
detailed specification of the package’s elements.

To reason about the quality and value of API refer-
ence documentation, we must first know about what
knowledge it contains, and how this knowledge is
organized. We refer to observations about these prop-
erties jointly as patterns of knowledge in API documen-
tation. Without a basis for studying documentation
content, we have no hope of measuring and improv-
ing it. To provide such a baseline, we undertook a
systematic empirical investigation of the patterns of
knowledge in the reference documentation of two
major technology platforms: JDK 6 and .NET 4.0.

The methodological cornerstone of our study is the
use of content analysis techniques [23], which involves
the systematic review of a document sample by hu-
man coders, who rate documents for various types
of contents according to a strict coding guide. Overall
our study involved 17 coders who independently
coded 5574 randomly-sampled documentation units
totaling 431 136 words. For each documentation unit,
two coders independently assessed whether the unit
contained a certain knowledge type, such as func-
tionality, implementation directives, or usage patterns.
Determining a reliable taxonomy of knowledge types
for API documentation was an important undertaking
of this research project.

Our study provides the first comprehensive per-
spective on the patterns of knowledge in API refer-
ence documentation, i.e., about the different types
of knowledge it contains and how this knowledge
is distributed among documents. Among others, we
made the following observations:

• Documentation for the JDK and .NET differ in
that JDK documentation contains more concep-
tual knowledge whereas .NET contains more in-
formation about the structure of the API and its
usage patterns (see Section 7.1).

• There is no major difference in the type of doc-
umentation content attached to classes vs. inter-
faces (see Section 6.1).

• 43.3% of documentation units attached to API
class members in the JDK and 51.0% in .NET
contain information of little or no value (see
Section 6.1).

Overview and Contributions
Section 2 formalizes our research questions and pro-
vides an overview of the research methods.

Section 3 presents our taxonomy of knowledge
types, and describes the methods employed to elab-
orate it. The taxonomy of knowledge types for API
documentation forms the first contribution of this
paper.

Section 4 describes how we designed the quanti-
tative part of the study following the principles of
content analysis, and the tools developed for this
purpose.

Section 5 describes how we evaluated the quality
of our data through systematic analysis of inter-coder
agreement. This analysis validated the taxonomy and
enabled us to clean the data from which we derive
our results. Our tools and methods for conducting
content analysis studies of software engineering
artifacts is the second contribution of this paper.

Section 6 analyzes the distribution of knowledge
types in Java and .NET along different dimensions.
The quantitative characterization of the distribution
of knowledge types across API reference documen-
tation (a set of knowledge patterns) is the third
contribution of this paper. This characterization sup-
ports the definition of the concept of documentation
style as a collection of knowledge patterns applicable
to a cohesive subset of documents.

Section 7 discusses the main outcomes of the study,
their implications for the software development prac-
tice related to API documentation, and the future
research they motivate.

Section 8 reviews the related work and compares
the categorizations of knowledge types in software
engineering, which forms the fourth contribution of
this paper.

Implications
The taxonomy and patterns of knowledge we present
in this paper can be used to help practitioners eval-
uate the content of their API documentation, better
organize their documentation, and limit the amount
of low-value content. They also provides a vocabulary
that can help structure and facilitate discussions about
the content of APIs. A more detailed discussion of
these implications can be found in Section 7.2.

2 STUDY DESIGN

We introduce our research questions and the process
we followed to answer them.

2.1 Research Questions
Our fundamental goal was to discover what is de-
scribed in API reference documentation, and how
this content is organized, independently of official
organizational templates imposed by documentation
systems. Our specific research questions were:

1) What are the different types of knowledge cap-
tured in API reference documentation?

2) Can we reliably identify these knowledge types
in free-form text?

3) How are these knowledge types distributed
across different groups of API elements (e.g.,
classes, interfaces, fields, and methods)?

4) How are different knowledge types combined?
5) Are there differences in the distribution of

knowledge types between different technology
platforms?
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Our research questions involve important concepts,
such as knowledge and knowledge types. Providing a
rigorous definition for such terms is in itself a non-
trivial problem. For an overview of the research
questions, the intuitive definition of the above terms
should be sufficient. The next section provides precise,
empirically-derived definitions.

In addition to knowledge types, our research ques-
tions rely on two other important concepts: documen-
tation page, and documentation unit. We consider a
documentation page to be a single web page or equiv-
alent document as supplied by the documentation
system for an API. In contrast, a documentation unit
defines the documentation specifically associated with
an API element (a class, method, field, etc.). How
documentation units relate to pages depends on the
documentation system. For example, in .NET most
units are on their own page, whereas in the JDK
documentation units of members are found directly
on the documentation page of their declaring type.
Our study is concerned with documentation units.

Finally, we note the overloading of the term type.
We distinguish between knowledge types as defined in
Section 3, and programming language types (i.e., classes,
interfaces, enums, etc.). We avoid ambiguity by using
the complete expression “knowledge type” when the
meaning is unclear from the context.

2.2 Overview of the Methodology
Our research is based on content analysis, a method-
ology for studying the content of recorded human
communications, and is inspired by Neuendorf [23].
Figure 1 summarizes the process we followed to
answer our research questions. The complete process
includes a mixture of qualitative and quantitative
methods organized in four sequential phases.
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Fig. 1. Overview of the research process

Phase 1 addressed the first research question using
a combination of grounded and analytical methods to
derive a taxonomy of knowledge types.

In Phase 2 we used the taxonomy as a coding guide
and had 17 trained coders review a random sample

of documentation units to assess whether each unit
contained knowledge of the different types in our
taxonomy. Each knowledge type became a variable that
had to be rated with the value True (if it is present in
the unit) or False (if not). We use the expression rating
a unit to mean rating all variables for the unit. In this
phase each documentation unit was independently
rated by two randomly-assigned coders. The result
was a database of ratings, which also contained dis-
agreements for some variables in some documentation
units (e.g., for the documentation unit of method m
coder 1 rated the presence of knowledge type T as
True and coder 2 coded it as False).

In Phase 3 we systematically analyzed the disagree-
ments to a) evaluate the work of the coders, b) eval-
uate the quality of the guide, and c) design a scheme
to resolve disagreements. This analysis allowed us to
answer our second research question. After applying
the data cleaning scheme, each rated variable in a unit
was reconciled into a single value: True or False.

In Phase 4 we conducted statistical analyses on the
clean data to answer the last three research questions.

Each study phase required making decisions about
the experimental design. These decisions involved
tradeoffs that impact the threats to the validity of
the results. We discuss our decisions and their impact
on the validity throughout Sections 3–6.

3 A TAXONOMY OF KNOWLEDGE TYPES

The most challenging part of this research project
consisted of describing the different knowledge types
commonly found in API reference documentation.
Many authors have discussed the different types
of knowledge used in various software engineering
contexts, and in some cases provided empirically-
grounded taxonomies. Unfortunately, a careful review
of previous work (see Section 8) showed that exist-
ing taxonomies are neither directly applicable to API
documentation, nor sufficiently detailed to be directly
used as knowledge types definitions for our purpose.
We thus elaborated a taxonomy of knowledge types
for API reference documentation through an iterative
refinement process. Our goal was to produce a taxon-
omy that would be:

1) Reliable, in that different people consistently
come to the same conclusion about the knowl-
edge types contained in a documentation unit.

2) Meaningful, listing knowledge types relevant to
the practice of software development.

3) Fined-grained, providing more than just a few
high-level categories.

The outcome of this process was a detailed taxonomy
of knowledge types usable as a coding guide for the
quantitative analysis of the content of API documenta-
tion. Producing a coding guide that fulfilled the above
goals required over six months of on-going experi-
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mentation and revision to elaborate and is offered as
one of the main contributions of this paper.1

Table 1 summarizes our final taxonomy, in which
we differentiate between 12 types of knowledge. In
the title of each knowledge type, the text in bold
indicates the shorthand used throughout this paper.

We elaborated our taxonomy through numerous
iterations grouped into the following three steps, each
with its own methodological underpinnings.

3.1 Knowledge Type Identification

In the first step, we used a grounded approach to
elicit a preliminary list of knowledge types present in
API reference documentation. The idea of a grounded
approach is that [23, p.102]:

When existing theory or research cannot give
a complete picture of the message pool, the
researcher may need to immerse himself or
herself in the world of the message pool and
conduct a qualitative scrutiny of a represen-
tative subset of the content to be examined.

Each author independently selected sentences from
the reference documentation of two different open-
source systems: HttpComponents2 and Jena.3 These
systems were selected for their mature and extensive
reference documentation. To select sentences, we em-
ployed a process inspired by theoretical sampling [3].
This involves refining and adjusting the sampling
procedure as data is collected. A theoretical sample
is generally not representative of a population, but it
ensures the data set captures as many aspects of the
phenomenon of interest as possible. This was the goal
in this study phase.

API documentation is expressed in natural lan-
guage, and its overwhelming variety of style and
content escapes any obvious classification. Our initial
attempts at elaborating a classification for knowledge
types only based on sentences led to unsatisfactory,
ever-shifting, indistinct categories. To meet the classi-
fication challenge, we transformed each sentence into
the main question it answered. The use of questions to
model knowledge and information needs in software
development has been successfully used by other
researchers in the past to capture and reason about
similar types of information independently of their
context [8], [17], [30].

This step resulted in a collection of over 100 ques-
tions. We then reconciled similar questions, merged
groups of questions differing only in small variants,
and reworded the questions to achieve consistency in
style.

1. We submitted the coding guide as attachment to this paper. We
plan to publicly release the guide, the coding tool, and the samples.

2. http://hc.apache.org
3. http://jena.sourceforge.net

3.2 Analytical Structuring

A limitation of the grounded approach is that it does
not guarantee that all knowledge types will be uncov-
ered. In a second step we refined our catalog with a
detailed review of the literature (see Section 8) and
through analytical reasoning, expanding all variation
points for a question template. For instance if a ques-
tion was “what is the meaning of a return value?”,
we added variations like “what is the meaning of a
parameter?.

As part of this process we assessed the reliability
of our catalog by independently coding individual
sentences in randomly-selected sets of API elements
in open-source APIs others that those distributed as
part of the JDK 6.0 and .NET 4.0.4 The goal of this
evaluation was to determine if any obvious questions
had been left out, and assess the ease of associat-
ing sentences with questions that model knowledge
types. Each author tagged each sentence with the
question(s) that best represented the knowledge it
captured. During this phase, agreement between the
two authors varied between 58% and 84%. Based on
this experience and a study of the disagreements we
encountered, we made three major changes to our
taxonomy.

First, we gave up on the idea to associate knowl-
edge types to individual sentences, and instead an-
alyzed documentation units as a whole. Second, as
most units contained several knowledge types, we
decided to change our measurement scheme. We split
the single question (which knowledge types are con-
tained in this unit) into a set of individual knowledge
type questions (how much knowledge of type T is
contained in this unit). Third, because it is unreason-
able to expect coders to code 48 variables for each
documentation unit (and also because of the similar-
ity and overlap between questions), we grouped the
questions into 12 variables (roughly corresponding to
the 12 final types described in Table 1).

3.3 Testing and Reliability Assessment

In the last step, we tested the reliability of our taxon-
omy by iteratively coding various random samples
of 50 units, studying the disagreements, and mak-
ing improvements based on the findings. As part
of this process, we added an increasing number of
clarifications to the coding guide about how to code
different variables. The samples consisted of docu-
mentation units which were to be coded for about
12 variables that represent to what degree knowledge
of different types was present. We experimented with
different discrete scales, going from an initial 0–3
scale down to a binary one. We conducted three for-
mal reliability tests, measuring inter-coder agreement
for each variable. We measured the reliability using

4. We used HttpComponents, Jena, SWT, and Hibernate.

http://hc.apache.org
http://jena.sourceforge.net
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TABLE 1
Taxonomy of Knowledge Types (Summary)

Knowledge Type Description (Excerpt)

Functionality and Behavior Describes what the API does (or does not do) in terms of functionality or features. Describes
what happens when the API is used (a field value is set, or a method is called).

Concepts Explains the meaning of terms used to name or describe an API element, or describes
design or domain concepts used or implemented by the API.

Directives Specifies what users are allowed / not allowed to do with the API element. Directives are
clear contracts.

Purpose and Rationale Explains the purpose of providing an element or the rationale of a certain design decision.
Typically, this is information that answers a ”why” question: Why is this element provided
by the API? Why is this designed this way? Why would we want to use this?

Quality Attributes and Internal Aspects Describes quality attributes of the API, also known as non-functional requirements, for
example, the performance implications. Also applies to information about the API’s internal
implementation that is only indirectly related to its observable behavior.

Control-Flow Describes how the API (or the framework) manages the flow of control, for example by
stating what events cause a certain callback to be triggered, or by listing the order in which
API methods will be automatically called by the framework itself.

Structure Describes the internal organization of a compound element (e.g. important classes, fields,
or methods), information about type hierarchies, or how elements are related to each other.

Patterns Describes how to accomplish specific outcomes with the API, for example, how to
implement a certain scenario, how the behavior of an element can be customized, etc.

Code Examples Provides code examples of how to use and combine elements to implement certain
functionality or design outcomes.

Environment Describes aspects related to the environment in which the API is used, but not the API
directly, e.g., compatibility issues, differences between versions, or licensing information.

References Includes any pointer to external documents, either in the form of hyperlinks, tagged ”see
also” reference, or mentions of other documents (such as standards or manuals).

Non-information A section of documentation containing any complete sentence or self-contained fragment
of text that provides only uninformative boilerplate text.

Cohen’s Kappa metric, which accounts for chance
agreement (and only measures agreement over and
above chance) on a scale of 0–1. We note that there
is no universal agreement about how to interpret this
value. However, the measure is generally considered
very conservative, with values 0.61–0.80 considered
“substantial” and 0.81–1.00 “almost perfect” in one
influential paper [19, p.165].

The per-variable kappa agreement values increased
from an average of 0.31 in the first reliability test,
to 0.567 in the second, to 0.664 in the third. In each
iteration we studied disagreements and reorganized
the guide correspondingly. For example, after the
first iteration we merged the Purpose and Rationale
knowledge types. After the second iteration we intro-
duced the Non-information knowledge type; and after
the third iteration we reduced the scale to a binary one
(True and False).

The guide received its final structure with this last
step, but underwent additional cosmetic and clarifi-
cation improvements based on initial feedback from
the coders (as part of the training phase only).

4 SAMPLING AND CODING

We describe the sampling and coding procedures
to collect a data set of knowledge types found in
a representative sample of documentation units for
our two target systems, JDK 6 and .NET 4.0. We
chose to study two specific technology platforms to
address the challenge of representativeness. Although it
would be desirable to collect data that could represent
API reference documentation in general, this goal

is unachievable because the population of all APIs
is unknown and unbounded. By studying a well-
defined and understood population of API elements,
we can use simple statistical tools to ensure that our
observations are representative within this population.
We chose JDK and .NET as study targets because
they were very large fully-documented APIs, cover-
ing a broad spectrum of functionality, heavily-used,
roughly equivalent, and yet offering interesting con-
trasts. Although each technology has its own particu-
larities, the study of the documentation for the hun-
dreds of APIs in these two major technology platforms
already provides a strong basis for understanding the
content and organization of API documentation for
systems that benefited from major investments.

4.1 Unit of Sampling
The unit of sampling for our study is the documenta-
tion unit, which provides information associated with
a specific API element. The format of a documen-
tation unit varies depending on the nature of the
API element it describes. We distinguish between
three different types of documentation units, which
map to three different levels of containments for API
elements: modules (which corresponds to Java pack-
ages and .NET assemblies5), types (mostly classes and
interfaces), and type members (fields and methods).

We exclude module-units from the study because
they form a small and very heterogeneous population

5. In the .NET framework both assemblies and namespaces are high-
level units of containment. We chose assemblies because they form
a unit of both logical and physical code organization [10].
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TABLE 2
Population and sample sizes

Java Development Kit .NET Framework

Population Calculated Sample Population Calculated Sample

Number of Modules 297 78
Number of Types 5664 1209 1243 7736 1282 1283
Number of Members (Methods, Fields, etc.) 52 871 1493 1549 57 216 1496 1499

(Number of Types + Number of Members) 58 535 2702 2792 64 952 2778 2782
Average Number of Types per Module 19.1 (SD=28.4) 99.2 (SD=149.2)
Average Number of Members per Module 178.0 (SD=398.5) 733.5 (SD=1083.8)

of documents. Both JDK and .NET modules show
extreme variation in size (see the last two rows of
Table 2). Additionally, .NET module overview pages
typically provide no documentation and are rather
used as navigation hubs. Our study therefore investi-
gated type-level and member-level units.

4.2 Target populations

For the purpose of sampling, we consider that type-
level and member-level documentation units form
distinct populations. We can easily make hypotheses
about why the content of documentation units for
these two element types would be different, and
indeed the quantitative results presented in Section 6
provide overwhelming evidence of significant differ-
ences between them. For this reason, it would be an
experimental mistake to consider them equivalent for
the purpose of sampling. Hence, conceptually, our
study targets four distinct populations: Java types,
Java members, .NET types, and .NET members. The
Java populations include the documentation units
for all the types and members defined in the 297
packages forming the union of the Java 6 SE and
EE specifications. The .NET populations include the
documentation units for the types and members de-
fined in all 78 assemblies comprising the .NET 4.0
framework. Table 2 shows the size of the type and
member populations for both Java and .NET (column
Population). The last two rows describe the distribu-
tion of types and members across modules.

4.3 Sampling

Our primary concern was to produce samples
that are as representative of their respective
population as possible. We thus randomly
sampled Np elements from each population.
For each of the four populations p ∈
{JavaType, JavaMember, .NETType, .NETMember},
Np was chosen so that questions asked on the sample
would be representative of the population within a
2.5% confidence interval and 95% confidence level.
That is, we are 95% confident that our results are
generalizable to the entire population within a 2.5
error rate [28, p.210]. Column “Calculated” in Table 2

shows the sample size calculated in that way for each
population.

For a study of reference documentation, the repre-
sentativeness of a uniform random sample is threat-
ened by the distribution of types and members among
modules (Java packages and .NET assemblies). Under
the reasonable assumption that modules cluster API
elements that support similar functionality or domain
tasks, we can expect that the documentation for the
elements in a module can be influenced by the mod-
ule in which they are defined. Because in both JDK
and .NET, the number of types and members within
modules shows extreme variability (see the last two
rows of Table 2), a uniform random sampling strategy
has the risk that small modules with only a few types
will not be represented at all. To mitigate this threat,
we adopted a stratified random sampling strategy [23,
p.85]. Within each module we randomly sampled
units from the types and members populations in
proportion to the number of types and members in
the module, respectively. This ensured that the sample
included units from all modules, while respecting
the overall distribution among modules. If the calcu-
lated fraction of units for a module, after rounding
to the closest integer, resulted in a zero value, we
systematically increased this value to 1 to ensure that
all modules are represented. This procedure slightly
increased the size of the samples. Columns “Sample”
in Table 2 show the final sample sizes, taking into
account the adjustment for the stratification.

4.4 Coding Procedure

Our sample consists of 5574 documentation units.
With the redundancy required to measure inter-coder
agreement, we needed to collect a total of 5574× 2 =
11 148 ratings of individual documentation units. The
data collection task consisted of reading a documen-
tation unit and, for each knowledge type described
in Table 1, indicating whether this knowledge type
was present or not in the unit. With an estimate of 90
seconds per rating, this task would require an effort
of 279 person-hours, or about 36 days of full-time,
highly-focused, and specialized work. Collecting the
data required a large team of coders.
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4.4.1 Coder Recruitment and Training

Seventeen coders participated in the data collection
effort: the two authors, 9 M.Sc. students and part-time
developers from the Technische Universität München
(TUM), 5 researchers who are pursuing their Ph.Ds
from the same institution, as well as one M.Sc. student
from McGill University. All coders had at least two
years of programming experience and were familiar
with the use of APIs and the reading of their docu-
mentation. All coders intensively used the develop-
ment environments Eclipse and/or Visual Studio for
at least one year.

To train the coders, we provided them with the
coding guide and an exercise consisting of 30 doc-
umentation units to rate. The training set was com-
posed of documentation units that were not in the
sample and combined class, interface, method, and
field documentation units. After the coders completed
the exercise, we sent them an answer key. The coders
were then asked to compare their answers with the
answer key and clarify any misunderstanding by
either studying the differences or asking questions.
Finally, we held a 75-minute plenary training session
with all the coders present either in person or by
video-conference. During the session we clarified the
issues encountered during the exercise. We then inte-
grated these clarifications in the official coding guide
used for the study. The training session was video-
recorded and made available to coders.

All coders were compensated for their work. Six
of them were hired specially to perform the coding.
The rest were already employed as research assistants
in one of the authors’ institution. As an additional
incentive to do the task carefully, we promised a 200
EUR gift card for an on-line store to the coder with
the highest overall agreement (see Section 5).

4.4.2 Coding Tool and Data Collection

We integrated all aspects of sampling and data collec-
tion in a tool called CADo (Content Analysis for API
Documentation), developed as part of this research
project. CADo is a distributed application built on top
of a database. The database stores the entire popula-
tion of documentation units from which it can gener-
ate random samples. The database also stores the list
of coders. CADo can then automatically generate ran-
dom assignments of documentation units to coders.
Finally, CADo includes a rich client that allows coders
to log in and view their assigned units one-by-one,
enter their ratings, and store them in the database. The
client also presents the description of all knowledge
types, to facilitate coding. Figure 2 shows a screenshot
of the CADo client used by coders. The single coding
window includes a view of the documentation unit
(A), containment and structural information about the
associated element (B), 12 checkboxes corresponding
to the 12 knowledge type variables (C), and a tool-tip

window showing the description of a knowledge type
extracted from the coding guide (D).

Fig. 2. A screenshot of our Content Analysis for API
Documentation tool (CADo) used by a coder

Each unit in the database was randomly assigned
to two coders while balancing the overall number of
units per coder, and keeping the proportion of Java
and .NET units per coder roughly equal. Each coder
received 628–790 units to code.6 Once all coders were
informed of their assignment, we collected the data
over a period of approximately three months. We note
that this does not mean that each coder took three
months to complete their assignment. Rather, coders
completed their task according their availability in
a total time-span of three months. During this time,
all preparatory and reference material for their task
remained available.

5 CODER AGREEMENT

Before turning to a detailed analysis of the patterns
of knowledge in reference documentation, we first
provide an analysis of the agreement between coders.
Inter-coder agreement measures the extent to which
different coders provided the same rating (True or
False) for a given knowledge type. An analysis of
inter-coder agreement (or agreement, for short) pro-
vides us with the answer to three important questions.
First, agreement per coder (Section 5.1) helps us assess
the quality of the work done by each coder, and
ensures that all coders performed their task in earnest.
Agreement per variable (Section 5.2) assesses to what
extent the presence of different knowledge types as
described in our coding guide can be reliably and
independently assessed by humans. Finally, we use
agreement data to draw conclusions about potential
causes of disagreements between coders through a qual-
itative analysis (Section 5.3), and to derive measures
to clean the data (Section 5.4).

6. The differences were caused by meeting all coding constraints,
and since a small number of corrupted data had to be re-coded.
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TABLE 3
Agreement by Coder

Variable Min Median Max Worst Best

Functionality 0.618 0.701 0.749 C10 C5

Concepts 0.658 0.794 0.844 C8 C2

Directives 0.753 0.830 0.864 C6 C2

Purpose 0.598 0.764 0.813 C4 C10

Quality 0.770 0.909 0.944 C14 C4

Control 0.816 0.887 0.904 C8 C13

Structure 0.624 0.703 0.781 C8 C17

Patterns 0.802 0.877 0.915 C8 C4

Examples 0.956 0.969 0.981 C6 C15

Environment 0.450 0.923 0.952 C4 C16

References 0.309 0.826 0.890 C4 C17

Non-info 0.595 0.712 0.770 C1 C16

Overall 0.723 0.820 0.840 C4 C16

5.1 Agreement by Coder
Any documentation unit coded by one coder was
also coded by a second, randomly-selected co-coder.
The assignment randomization was done per unit.
That is, a coder Ci could in theory have up to 16
different co-coders for his assigned units. For a given
variable, we calculated the agreement score for Ci by
dividing the number of ratings which agree with the
second coder by the total number of units coded by
Ci. For example, if C1 coded 500 units, and 400 of their
Functionality ratings were the same as the ratings of
the co-coder, C1’s agreement score for Functionality
would be 400/500 = 0.80. We calculated the overall
agreement by summing all agreements over all vari-
ables and dividing by the number of units times 12
(the number of variables).

Table 3 reports on the coders’ performance. The
first three numeric columns report on the minimum,
median, and maximum agreement observed for all
coders for a variable. The last two columns show
the identification number of the coder with the worst
(minimum) and best (maximum) agreement.

Overall, we conclude that the performance of
coders is adequate for the purpose of the study and
that all coders performed their task in earnest. In par-
ticular, the median agreement is above 0.7 for all vari-
ables and the overall median agreement is above 0.8.
Although some coders did not perform very well, no
single coder systematically under-performed across
all variables. From this analysis, the only problem
we detect is that coder 4 did not correctly interpret
the guide for variables Environment and References.
Except for this one outlier (representing about 1.9%
of the ratings),7 all coders had agreement above 0.87
for Environment and 0.63 for Reference.

5.2 Agreement by Variable
Agreement by variable measures to what extent two
independent coders will agree on the value of a

7. Coder 4 rated 637/5574 units ×2/12 problem variables =
1.9% of all ratings.

TABLE 4
Agreement by Variable

Variable Frequency (f) Chance Agreement

Functionality 0.681 0.566 0.702
Concepts 0.179 0.706 0.762
Directives 0.186 0.698 0.821
Purpose 0.217 0.660 0.749
Quality 0.070 0.869 0.898
Control 0.102 0.817 0.878
Structure 0.289 0.589 0.703
Patterns 0.097 0.825 0.876
Examples 0.132 0.770 0.969
Environment 0.069 0.871 0.897
References 0.183 0.701 0.796
Non-info 0.268 0.608 0.706

knowledge type variable for a given unit. This mea-
sure is important because it is a direct assessment of
the reliability of the coding guide. If two independent
coders usually agree on the presence or absence of
a given knowledge type, then we can be confident
that this type, as described, corresponds to a cohesive
concept easily understood by documentation readers.

We measure agreement for a variable by dividing
the number of units for which the two coders agreed
(i.e., both rated True or both rated False), over the total
number of units. This measure of raw agreement is one
among many alternatives for measuring agreement
by variable [23]. The advantage of the raw agree-
ment measure is that it is simple to interpret. The
disadvantage is that it does not take into account that
coders might agree by chance. With binary variables
the probability of chance agreement is 0.5. Other
measures of agreement, such as Cohen’s Kappa [23],
take the distribution of ratings by coders into account.
Although calculating the Kappa metric for two coders
is simple, it is unclear how this can be done for
multiple coders. Independently of the strategy chosen,
the interpretation of the metric is tenuous [23].

We therefore report raw agreements, along with a
conservative estimate of chance agreement that is sen-
sitive to the distribution of True values in the sample.
Indeed, a baseline of 0.5 for chance agreement implies
that two coders would choose blindly one of two
values with probability p = 0.5. In practice, if coders
are aware that certain knowledge types are either very
pervasive or very rare, they can increase their chances
by erring on the side of the more popular value (True
or False). If coders can “guess” the relative frequency
of a certain knowledge type in the sample, they can
rate that variable as True with the probability that
corresponds to this frequency. Given this behavior
model, the chance agreement increases above 0.5. For
example, if both coders correctly guess that Control
is only present 10% of the time and rate this variable
randomly as True with p = 0.10, the chance of random
agreement becomes p2 + (1− p)2 = 0.82.

Table 4 reports on the agreement by variable. The
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TABLE 5
Disagreement rates: JDK vs. .NET and members vs. types

Variable JDK .NET p |φ| Members Types p |φ|

Functionality 0.271 0.324 0.00002 0.057 0.278 0.321 0.00055 0.047
Concepts 0.229 0.246 0.14 0.205 0.277 0.00000 0.085
Directives 0.186 0.171 0.18 0.150 0.213 0.00000 0.081
Purpose 0.248 0.254 0.63 0.175 0.343 0.00000 0.193
Quality 0.093 0.111 0.030 0.076 0.134 0.00000 0.095
Control 0.119 0.124 0.62 0.081 0.171 0.00000 0.136
Structure 0.268 0.326 0.00000 0.063 0.232 0.375 0.00000 0.155
Patterns 0.105 0.143 0.00002 0.058 0.072 0.187 0.00000 0.174
Examples 0.023 0.038 0.00174 0.043 0.022 0.041 0.00005 0.055
Environment 0.079 0.128 0.00000 0.081 0.067 0.147 0.00000 0.131
References 0.183 0.224 0.00015 0.051 0.174 0.239 0.00000 0.080
Non-info 0.264 0.325 0.00000 0.067 0.360 0.215 0.00000 0.159

first numeric column reports the frequency f of the
knowledge type (number of True values for that vari-
able divided by the number of ratings). The second
numeric column shows the distribution-aware prob-
ability of chance agreement (f2 + (1 − f)2). The last
column shows the actual observed agreement.8

The results show that all raw agreements are well
above the basic threshold of 0.5 (all values are above
0.7). Moreover, all agreement values are above the
much more conservative threshold of distribution-
aware chance agreement. We conclude that coders
were able to reliably assess the presence or absence
of different knowledge types in API documentation.

5.3 Analysis of Disagreements
Disagreements between coders are interesting because
they can reveal the difficulty of rating a variable for
a documentation unit. This can be caused by either
properties of the coding guide (e.g., unclear, ambigu-
ous), or properties of the units themselves (unclear,
badly organized, etc.).

We investigated, for each variable, the frequency
of disagreement between coders and whether there
exists a bias in the rate of disagreement in JDK
vs. .NET and types vs. members.

Table 5 reports on the analysis. The first two nu-
merical columns show, respectively, the frequency
of disagreement in the JDK and .NET populations.
For example, for the Functionality knowledge type,
coders disagreed over 27.1% of the elements in the
JDK and over 32.4% of the elements in .NET. We
estimated the significance of the difference between
proportions using a χ2 (chi-squared) test of indepen-
dence. Our test is applied to a 2-by-2 contingency
matrix for the variables Platform { JDK, .NET } and
Disagreement {Yes, No}. The χ2 test of independence
computes the probability of obtaining a given distri-
bution of values in a contingency table if the two
variables are truly independent. The third column

8. The agreement numbers in Table 4 represent a single aggregated
value, whereas the numbers in Table 3 represent a distribution of
agreement values across coders.

reports the p-value of the test. For example, if the
variable “Platform” was independent from the vari-
able “Disagreement”, the probability of observing the
proportions 0.271 and 0.324 would be 0.00002. Follow-
ing the usual tradition for interpreting p-values, we
consider that differences with p < 0.01 are statistically
significant [28]. For statistically significant differences,
we highlight the greatest ratio in bold.

For all statistically significant results, we also report
the effect size in terms of the φ (phi) coefficient. The
φ-coefficient is a special case of Pearson’s R product
moment coefficient for two dichotomous variables.
The φ-coefficient ranges between -1 and +1 indicating
inverse or direct perfect association, respectively. In
our case, a φ value of 1 means that there is a dis-
agreement for all JDK elements, and no disagreement
for any .NET element (and vice-versa for a value of
-1). A φ-coefficient of 0 means that exactly the same
proportion of disagreements is observed for JDK and
.NET. The meaning of intermediate values is open to
interpretation, but generally 0.1 is considered a small
effect, 0.3 a medium effect, and > 0.5 a strong effect [9,
p. 474]. For ease of interpretation, we provide the
absolute value of the φ-coefficient. The direction of
the difference is obvious from the magnitude of the
proportions.

We observe that .NET units consistently involve
more disagreement than JDK units. The effect size
is small, but the fact that there are significant dif-
ferences for seven variables that consistently show
more disagreement for .NET, supports the hypothesis
that .NET units are more difficult to rate. In Sec-
tion ?? we comment on differences that may be a
factor of documentation clarity. In the case of types
vs. members, we observe that types are consistently
more difficult to rate than members with the ex-
ception of Non-information. This observation can be
explained by the fact that type-level documentation
is usually longer and much richer than member-level.
For Non-information, this knowledge type is usually
more present in members (where, e.g., the name of a
method is simply repeated in the documentation), so
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TABLE 6
Causes of Disagreements (FP: % of false positives,

FN: % of false negatives, A: % of Ambiguous)

Variable # FP FN A Problematic Coders

Functionality 34 29 21 50 {1,12}(3);{2,15}(2)
Concepts 27 37 4 59 {4,8}(2)
Directives 20 35 20 45 11(4)
Purpose 28 68 21 11 12(8);4(4);8(3);{10,11}(2)
Quality 12 50 8 42 15(2)
Control 14 43 5 21 1(3)
Structure 33 24 45 30 {1,9,11}(3);{3,8,17}(2)
Patterns 14 7 71 21 {2,4,8,9}(2)
Examples 5 0 60 40
Environ. 13 69 15 15 4(6);11(2)
References 22 45 41 14 4(5);11(4);13(3);15(2)
Non-info 33 21 58 21 16(5);11(4);{9,14}(3);{1,2,3}(2)

Total 255 31 36 32

coders have to make a greater number of decisions in
these cases.

To gain further insight into the nature of disagree-
ments, we manually inspected, for each variable, a
random sample of 2% of all units with a disagree-
ment (i.e., 2% of Functionality disagreements, 2% of
Concepts disagreements, etc.). This calculation led to
an overall sample of 255 documentation units. One
of the authors manually inspected each unit in the
sample and classified the disagreement as follows:

• False negative: One coder clearly made a mistake
by not indicating the presence of a knowledge
type when clear evidence of that type is present.

• False positive: One coder clearly made a mistake
by indicating the presence of a knowledge type
when no clear evidence of that type is present.

• Ambiguous: Both interpretations are possible.
Either the guide did not cover the situation at
hand, the language of the documentation was
ambiguous or vague, or a combination of both.

In the case of a mistake, the inspector noted the
responsible coder and potential sources of problems.

Table 6 summarizes our findings. For each vari-
able, the table reports: the number of units in the
sample of disagreements (#), the percentage of false
positive (FP), false negative (FN), and ambiguous (A)
units recorded, and a list of problematic coders. This
list includes all coders who were responsible for at
least two mistakes in the sample for one variable,
together with their number of mistakes. For example,
for Directives, we had 20 documentation units in the
disagreement sample, 35% of these were caused by
false positives, and Coder 11 was responsible for 4 of
the 20 disagreements.

Our qualitative analysis of the 225 sampled docu-
mentation units associated wiht a coder disagreement
provided us with a wealth of information. First, it
gave overall tendencies, for example that coders tended
to over-eagerly classify units as containing Purpose.
Second, it confirmed our quantitative estimate of

coder performance, for instance by pointing out that
Coder 4 is responsible for a large number of disagree-
ments for the Environment variable (which corrobo-
rates the data in Table 3). This kind of knowledge
was invaluable in the design of our disagreement
reconciliation scheme (see Section 5.4). Finally, the
qualitative analysis surfaced specific writing issues
that make documentation difficult to understand, and
areas where the clarity of the coding guide can be
improved. We provide one example of each.

In the .NET documentation, the sentence “This class
cannot be inherited” appears in the documentation
of sealed classes, which by definition cannot be
inherited. It was not clear whether coders were ex-
pected to interpret this sentence as a Directive (see
Table 1) or whether this was automatically-generated
boilerplate text. This issue can easily be addressed
with additional instructions in the coding guide.

In the JDK documentation we find the sentence
“[Class] AccessibleJToggleButton provides an im-
plementation of the Java Accessibility API appropriate
to toggle button user-interface elements.” Use of the
term “appropriate” is confusing in this context. Does
this describe a feature of the API (Functionality), a
recommendation on when to use it (Purpose), or does
it simply point to the inheritance relation (Structure)?

5.4 Disagreement Reconciliation
To investigate the distribution of knowledge types
in API documentation based on our data set, we
needed to reconcile all disagreements to one of the
two binary values.9 The observations collected in the
analysis of disagreements provided us with the strate-
gies necessary to reconcile them. For each knowledge
type, we implemented a procedure that inspects each
disagreement and selects the value most likely to be
correct, using one of the following strategies in order:

1) If the disagreement is in our disagreement sam-
ple, select the value manually determined.

2) If the disagreement involves only one problem-
atic coder for the knowledge type at hand (see
Table 6), select the value of the other coder.

3) If the disagreement involves a variable that
shows a general tendency toward either false
positives or negatives, correct accordingly. We
consider a knowledge type to have a general
tendency toward false positives or negatives if,
and only if, more than 50% of the disagreements
are caused by false positives or false negatives.

4) If the disagreement involves two problematic
coders, but one made more mistakes than the
other, select the value of the less problematic
coder.

5) If the agreement ratio of one coder is clearly su-
perior to the agreement ratio of the other coder,

9. Other schemes are possible, such as averaging the values.
However, the validity of these schemes is dubious in our case.
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select the coder with the higher agreement ratio
(see Table 3). As our definition of “superior”,
we tested that the difference between the ratios
was greater than the standard deviation of all
pairwise agreement ratios for the knowledge
type.

6) The case is ambiguous. Select False.
Using this algorithm, we reconciled a total of 12 493

disagreements, i.e., (12 493/11 148 coded documenta-
tion units × 12 knowledge types =) 9.3% of all ratings
in our data set (see Table 7).

TABLE 7
Conflict resolution results

Conflict resolution strategy # ratings

1) Manual correction 255
2) Only one coder is problematic 5005
3) Strong tendency of the variable 2663
4) One coder is more problematic than the other 148
5) Default order of coders 2121
6) Ambiguous (use 0 as default) 2301

Total 12 493

6 PATTERNS OF KNOWLEDGE

The fundamental motivation for our inquiry was
to discover how different knowledge types are dis-
tributed through API documentation, a type of ob-
servation we call a knowledge pattern (in documen-
tation). We investigated this question by analyzing
the distribution of knowledge types from three dif-
ferent perspectives: relative proportions in different
subpopulations, co-occurrence of knowledge types in
documentation units, and relationship between docu-
mentation length and incidence of knowledge types.

6.1 Comparisons of Proportions
Figure 3 shows the relative proportion of each knowl-
edge type across all documentation units, weighted
by the proportion of the element type (class, method,
field) in the total population (see Table 2). This barplot
allows us to distinguish between three classes of
knowledge types: Pervasive (Functionality), Common
(Structure, Non-information), and Rare (all others).
We also notice that, although at first glance the distri-
butions of knowledge in the JDK and .NET reference
documentation follow the same trend, there are some
important differences. In particular, .NET documen-
tation includes a noticeably larger amount of Struc-
ture, Patterns, and Examples knowledge, three types
generally related to the question of how to engineer
solutions with an API. Based on this observation, we
define the concept of documentation style as collection
of knowledge patterns applicable to a cohesive subset
of documentation units (e.g., all those pertaining to a
technology platform, all those pertaining to classes,
etc).

From this overview we proceed with a detailed
analysis, comparing the proportions of different
knowledge types in the different subpopulations. Ta-
ble 8 reports on this investigation (the top of the
table for the JDK, the bottom for .NET). For a given
knowledge type, the table compares the proportions
of Types vs. Members (left), Classes vs. Interfaces
(center), and Methods vs. Fields (right). For a given
group, the table reports the relative proportions of
units with the knowledge type, the p-value from a
χ2 test of independence, and the φ-coefficient rep-
resenting the size of the difference (see Section 5.3
for explanations on the χ2 test and φ-coefficient). For
differences with a p-value less than 0.05, we indicate
the largest ratio in bold.

For example, we observe that in the JDK, the pro-
portion of classes10 with Purpose is 0.185 and the
proportion of interfaces with Purpose is 0.258. The
difference is statistically significant (p=0.003) and in
our context the magnitude is notable (7.3% absolute
difference, φ = 0.085). In other words, JDK interfaces
are more likely to contain Purpose knowledge than
classes. This makes sense in that interfaces are in-
tended to represent high-level abstractions and are
often primary elements in a framework. Surprisingly,
this difference is not observed in .NET.

Overall we observe that classes and interfaces con-
tain significantly higher proportions of all knowledge
types than members, with the exception that JDK
members contain Functionality as often as classes and
interfaces. The difference in proportions for Quality is
not notable because it is based on a very low number
of units.

Comparing between classes and interfaces we no-
tice that, in the JDK, interfaces have significantly more
knowledge of type Directives, Purpose, Quality, and
Examples. This was expected given that interfaces
tend to model higher-level concepts and main points
of interaction in a framework. Surprisingly, not only
are these differences not significant in .NET, but in
fact Directives and Examples are less frequent in .NET
interfaces than in .NET classes. Hence, expectations
about the location of such knowledge types do not
generalize across technologies.

Significant differences between fields and methods
relate to other knowledge types. Not surprisingly,
Control knowledge is rarely found in fields (JDK and
.NET), as is the case for Structure (JDK). However,
in .NET, relatively many fields also contain Structure
knowledge, probably because of the concept of prop-
erties, which offer additional composition features
besides basic data storage.

The distribution of Non-information deserves spe-
cial mention. In both the JDK and .NET, Non-
information is overwhelmingly present in members

10. In the rest of the section we use structural terms (e.g., “class”)
to refer to “the documentation unit associated with” the term.
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Fig. 3. Proportion of knowledge type by documentation unit

TABLE 8
Proportions of knowledge types in different subpopulations

JDK Types vs. members Classes vs. interfaces Methods vs. fields

Variable Type Member p |φ| Class Interface p |φ| Method Field p |φ|
Functionality 0.638 0.640 0.925 0.642 0.631 0.733 0.706 0.277 0.000 0.322
Concepts 0.167 0.049 0.000 0.194 0.165 0.172 0.811 0.048 0.055 0.788
Directives 0.179 0.101 0.000 0.113 0.158 0.215 0.015 0.071 0.109 0.059 0.024
Purpose 0.212 0.055 0.000 0.237 0.185 0.258 0.003 0.085 0.052 0.071 0.287
Quality 0.060 0.019 0.000 0.105 0.072 0.039 0.022 0.068 0.021 0.013 0.570
Control 0.094 0.052 0.000 0.081 0.093 0.097 0.898 0.059 0.013 0.004 0.076
Structure 0.345 0.128 0.000 0.259 0.345 0.345 0.967 0.140 0.063 0.001 0.083
Patterns 0.198 0.046 0.000 0.238 0.190 0.210 0.437 0.050 0.021 0.068
Examples 0.130 0.022 0.000 0.221 0.115 0.157 0.040 0.061 0.024 0.008 0.190
Environment 0.050 0.007 0.000 0.133 0.051 0.047 0.841 0.005 0.021 0.018
References 0.089 0.027 0.000 0.136 0.094 0.082 0.522 0.026 0.034 0.649
Non-info 0.136 0.433 0.000 0.321 0.144 0.122 0.316 0.455 0.311 0.000 0.039

.NET

Variable Type Member p |φ| Class Interface p |φ| Method Field p |φ|
Functionality 0.739 0.676 0.000 0.068 0.732 0.875 0.016 0.071 0.685 0.667 0.503
Concepts 0.100 0.045 0.000 0.108 0.100 0.094 0.960 0.031 0.060 0.011 0.068
Directives 0.127 0.087 0.000 0.064 0.128 0.109 0.808 0.099 0.074 0.101
Purpose 0.166 0.049 0.000 0.191 0.164 0.203 0.518 0.053 0.046 0.598
Quality 0.016 0.014 0.724 0.017 0.000 0.580 0.015 0.013 0.878
Control 0.102 0.039 0.000 0.124 0.105 0.047 0.198 0.060 0.016 0.000 0.115
Structure 0.493 0.168 0.000 0.348 0.498 0.406 0.192 0.172 0.164 0.710
Patterns 0.241 0.093 0.000 0.200 0.244 0.188 0.382 0.098 0.088 0.574
Examples 0.326 0.139 0.000 0.223 0.332 0.203 0.044 0.060 0.132 0.147 0.458
Environment 0.019 0.007 0.007 0.054 0.019 0.031 0.814 0.008 0.007 0.836
References 0.178 0.087 0.000 0.135 0.180 0.125 0.335 0.097 0.075 0.169
Non-info 0.235 0.510 0.000 0.282 0.239 0.156 0.171 0.535 0.481 0.040 0.054

(as opposed to types), reaching more than 50% of
members in the case of .NET. We also observe that
Non-information is mostly a problem with methods.
For both types and members, the amount of Non-
information is significantly larger in .NET (Types
p = 2.7× 10−10, |φ| = 0.127; Members p = 2.4× 10−5,
|φ| = 0.077).

6.2 Co-occurrence of Knowledge Types

The analysis described in Section 6.1 tells us about
the probability of occurrence of different knowledge
types in different subpopulations of documentation
units, but does not provide any insight about patterns
of co-occurrence of knowledge types. For example,
is the Structure knowledge necessarily accompanied
by Functionality knowledge? To answer this question,

we systematically investigated the statistical relation-
ships between the presence of knowledge types in
documentation units using correlation and frequent-
itemset mining techniques.

6.2.1 Correlation
We analyzed the correlation between knowledge
types in our four populations. In other words, we
investigated how often certain knowledge types co-
occur in documentation units. Because we use binary
variables to capture the presence of knowledge types,
we use the φ-coefficient to measure the association
between knowledge types. In contrast to previous
sections, here we use the φ-coefficient directly as a cor-
relation measure, as opposed to using it to represent
the magnitude of a difference between proportions.
Nevertheless, its interpretation and calculations are
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identical (see Section 5.3 for details).
Figure 4 shows the correlation matrix for JDK and

.NET types. In each cell, the circle area is proportional
to the φ-coefficient between the two knowledge types.
Black circles indicate positive correlation, whereas
gray circles indicate negative correlation.

Overall, absolute correlations levels vary from neg-
ligible to medium [0.0–0.285]. For JDK types the
maximum correlation is 0.276 (between Structure and
Patterns) and for .NET 0.285 (between Patterns and
Examples). The nature of patterns is different for JDK
and .NET types. In the JDK we notice a cluster of
types that tend to co-occur with one another with
some frequency, including Structure, Examples, Con-
trol, Patterns, and Directives (each being involved
in at least one association with φ > 0.2). In .NET
associations are much weaker. Except for the relatively
strong association between Patterns and Examples,
the only other associations with φ > 0.19 are between
References and Examples (φ = 0.195), and between
Concepts and Purpose (φ = 0.194). Although the asso-
ciation between Concepts and Purpose seems logical,
we do not observe this association in the JDK (φ =
0.094). Finally, for both JDK and .NET the presence of
Non-information is negatively correlated with most
other knowledge types, in particular, Functionality
and Structure. This observation implies that, in an
aggregated sense, Non-information is mutually exclu-
sive with the other (effective) knowledge types, which
supports the hypothesis that documentation might
sometimes be produced as an end in itself, possibly
to meet completeness requirements.

The correlations observed in members popula-
tions are much weaker, and for this reason we do
not include the correlation matrix. For JDK mem-
bers the most strongly correlated knowledge types
are Functionality and Structure (φ = 0.186) and
Functionality and Control (φ = 0.162). No other as-
sociation is noteworthy. For .NET members we again
note a correlation between Examples and Patterns
(φ = 0.216), Patterns and Structure (φ = 0.199) as well
as between Functionality and Structure (φ = 0.170).
Interestingly this cluster is a subset of the one ob-
served for JDK types. This indicates that patterns
present in JDK types may exist in members in the
case of .NET. Finally, for both JDK and .NET members
negative correlation between Non-information and all
other types is very weak (|φ| < 0.09) except in one
case in .NET, where we observe (φ = −0.225) between
Functionality and Non-information.

6.2.2 Frequent Itemset Mining
Correlation provides an aggregated perspective on
the relationships between knowledge types but it is
limited to relations between pairs of variables. To gain
a different view of co-occurrences between knowledge
types, we applied Frequent Itemset Mining to our data
set [11].

Frequent Itemset Mining is a data mining tech-
nique that computes frequent subsets in a data set.
A Frequent Itemset is defined as a recurring subset of
the set of all possible elements that is also a subset
of a high number of instances in a data set. In our
case, elements are the 12 knowledge types and dataset
instances are documentation units. There are two
important parameters for computing frequent item-
sets: minimum support (minsup) and minimum length
(minlen). The minimum support is the minimum
number of instances that must contain an Itemset for
it to be considered frequent. This parameter is often
expressed as a ratio of the total number of items in a
dataset. Minimum length is simply the minimum car-
dinality of an itemset. For example, if items “bread”
and “milk” are found in at least 10 of the instances in
a data set consisting of 100 purchase transactions and
Frequent Itemset Mining is applied with minsup=0.1
and minlen=2, the set {“bread”, “milk”} would be
reported as a frequent itemset.

There are two major differences between frequent
itemsets and correlation. First, frequent itemsets de-
scribe a subset of the data (represented by the sup-
port value), whereas correlation summarizes the en-
tire data. Second, frequent itemsets describe relations
between potentially more than two knowledge types,
as opposed to pairs only.

Applying Frequent Itemset Mining to our data sets
is straightforward because we can trivially convert
our database of documentation units × ratings into a
binary incidence matrix, where rows are documenta-
tion units in one of our four populations, and columns
(12 in total) contain a value of 1 if the knowledge type
corresponding to the column was found in the docu-
mentation unit. We applied Frequent Itemset Mining
by using the Eclat algorithm as implemented by the
arules package of the R statistics program [11].

Table 9 reports the frequent itemsets in the popula-
tions of JDK and .NET types, and Table 10 provides
the same information for the member subpopulations.
The tables lists all the itemsets with support ratio
above 0.1. To obtain the exact number of documen-
tation units with the corresponding knowledge types
requires simply to multiply the reported support
ratio with the number of instances in the data set
(listed in the first row). For example, 0.265 × 1243 =
330 JDK type documentation units contained both
Functionality and Structure. In the tables, the frequent
itemsets in bold are the ones found in both JDK and
.NET.

Because most frequent itemsets are pairs, we also
obtained itemsets with minsup=0.08 and minlen=3.
This configuration allowed us to discover larger item-
sets with a comparable level of support. Larger item-
sets provide a better insight on how knowledge types
tend to cluster.

Not surprisingly, the relation between Functionality
and Structure discovered through the correlation anal-
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Fig. 4. Correlation analysis of JDK and .NET types

TABLE 9
Frequent Itemsets in JDK and .NET types (minsup = 0.1, minlen=2) *(minsup=0.08, minlen=3)

JDK Types (1243 Items) .NET Types (1283 Items)

Itemset Support Itemset Support

{Functionality, Structure} 0.265 {Functionality, Structure} 0.394
{Functionality, Patterns} 0.160 {Functionality, Examples} 0.255
{Functionality, Purpose} 0.154 {Structure, Examples} 0.192
{Functionality, Directives} 0.141 {Functionality, Patterns} 0.184
{Structure, Patterns} 0.121 {Functionality, Structure, Examples} 0.163
{Functionality, Concepts} 0.120 {Structure, Patterns} 0.155
{Functionality, Examples} 0.112 {Functionality, Non-information} 0.154
{Structure, Purpose} 0.104 {Patterns, Examples} 0.136
{Structure, Directives} 0.103 {Functionality, Purpose} 0.133
{Functionality, Structure, Patterns}* 0.099 {Functionality, References} 0.133
{Functionality, Structure, Directives}* 0.090 {Functionality, Structure, Patterns} 0.125
{Functionality, Structure, Purpose}* 0.083 {Structure, Purpose} 0.105

{Functionality, Directives} 0.104
{Functionality, Patterns, Examples} 0.104
{Structure, Non-information} 0.104
{Functionality, Structure, Purpose}* 0.090
{Structure, Patterns, Examples}* 0.088
{Functionality, Structure, Non-information}* 0.081

TABLE 10
Frequent Itemsets in member subpopulations (minsup = 0.1, minlen=2)

JDK Members (1549 Items) .NET Members (1499 Items)

Itemset Support Itemset Support

{Functionality, Non-information} 0.267 {Functionality, Non-information} 0.292
{Functionality, Structure} 0.112 {Functionality, Structure} 0.142

{Functionality, Examples} 0.113

ysis is also represented here. However, the other
frequent itemsets illustrate the difference in style
between the JDK and .NET documentation. .NET
is richer in examples. Its documentation units that
include Functionality and Structure also include Ex-
amples much more often. For instance, the itemset
{Functionality,Examples} is more than twice as com-
mon in .NET documentation than in the JDK. In

contrast, the JDK conveys more of this knowledge
through Directives. For example, in the JDK we find
the {Functionality, Directives} itemset to be more
frequent than in .NET, and that Directives is also
part of the larger itemset {Functionality, Structure,
Directives}.

For itemsets that exclude Functionality, we notice
that {Structure, Patterns} and {Structure, Purpose}
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TABLE 11
Distribution of element lengths (word count)

1st Q. Med. Mean 3rd Q. 0 Out.

JDK types 20 51 107.2 120 37 7
.NET types 23 55 95.0 121.5 16 3
JDK mem. 14 32 48.7 65 140 2
.NET mem. 21 34 54.9 59 23 3

occur in slightly more than 10% of the type documen-
tation units for both JDK and .NET.

Finally, in the case of members, the results are very
similar for both the JDK and .NET. Over 25% of the
member documentation units show a combination of
Functionality and Non-information.

6.3 Length Analysis
We also studied the relation between the length (in
number of words) of each documentation unit in our
sample and its relation to the number of knowledge
types it contains. This analysis contributes additional
evidence for the distinctiveness of knowledge types
(research question 1).

The text of a documentation unit consists of the
entire content of the document except automatically-
generated content (e.g., syntax summaries), source
code, and sections irrelevant to this study (e.g., ver-
sion information in .NET). Overall, our study in-
volved the close reading of 431 136 words, or roughly
the size of a very long novel.

Table 11 summarizes the distribution of element
lengths in our sample. For each subpopulation, the
table shows the values of the mean and the different
quartiles, along with the number of 0-length elements
(“0”), and the number of outliers (types longer than
1000 words and members longer than 500 words).
Overall, the JDK and .NET distributions are very
similar, with only a larger number of extremely long
elements in the JDK. The distributions of member
lengths have similar exponential shapes, but with
smaller values.

Figure 5 explores the relation between the number
of distinct knowledge types found in a documentation
unit and the length of the unit. It shows a boxplot
of the distribution of lengths for each subpopulation
containing a certain number of knowledge types. Note
the change in scale between the top two (types) and
bottom two rows (members). For example, the top
row shows the distribution of lengths of JDK types
containing, respectively, zero knowledge types, one
knowledge type, two knowledge types, etc. We ex-
clude data for types with more than seven knowledge
types and members with more than five knowledge
types as these subgroups are very small, all containing
less than 13 elements.

As the figure shows, the documentation units con-
taining more knowledge types tend to be longer. We

statistically tested this hypothesis through sets of one-
tailed Wilcoxon rank sum tests with continuity correc-
tion. We chose a non-parametric test given the obvious
non-normality of the length distributions. For each of
the four populations, we performed a set of tests to
verify that in terms of overall population the length
of an element containing n distinct knowledge types
was significantly less than that of an element contain-
ing n + 1 distinct knowledge types.11 This analysis
revealed that the comparative increase in length for
types (both JDK and .NET) is statistically significant
for all pairs in the sequence up to and including 4→ 5
(which has the highest p-value of 0.00020 for JDK and
6.30×10−5 for .NET). In the case of the population for
members documentation, the relations are significant
up to and including 3 → 4 (p = 0.002 for both JDK
and .NET). Interestingly, if we omit contributions to
the total number of knowledge types from References
and Non-information knowledge types, the statistical
differences are much more significant, and in the case
of types the sequence 5 → 6 also shows a signifi-
cant difference. This observation makes sense from
a theoretical perspective, because describing cross-
references and non-information typically involves a
few words.

That very small documentation units would contain
few knowledge types (and vice-versa) is not surpris-
ing. However, step-wise increase in length related to
the number of knowledge types confirms the intuition
that longer documentation units are longer because
they discuss many different aspects of the API (as
opposed to long developments in one type of knowl-
edge).

7 DISCUSSION

The content analysis research method is fundamen-
tally quantitative, and the insights it provides answer
general questions of distributions across populations.
Through multiple dimensions of analysis comple-
mented by focused qualitative investigations, we de-
rived from our study a number of primary outcomes,
implications for API documentation practices, and
future research research directions.

7.1 Outcomes
A primary outcome of this work is the validation
of our knowledge type taxonomy. Although it is
trivial to come up with arbitrary labels for what
one might find in a documentation page, our coding
guide has by now undergone empirical validation.
The agreement analysis (Section 5.2) showed that
different coders can independently agree on classi-
fications based on it. The correlation analysis (Sec-
tion 6.2) showed no systematic co-occurrence. Finally,

11. Using Bonferroni corrections for multiple comparisons, with
n = 7 and n = 5 for types and members, respectively.
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Fig. 5. Length (word count) of documentation units by
contained number of knowledge types

the length analysis (Section 6.3) showed how knowl-
edge types are generally additive. These are important
properties for a taxonomy of knowledge types.

In Section 6.1 we reported on the relative pro-
portions and frequency of co-occurrence of different
knowledge types in the API reference documentation
of two major technology platforms. We refer to such
observations as patterns of knowledge in API docu-
mentation. Given our use of random sampling, these
patterns of knowledge are expected to be representa-
tive of the documentation for the two entire platforms.

Some findings were expected but others, much less
so. In particular, we were surprised to observe such
low frequencies of Concepts, especially in .NET (only
present in 10% of types). Given that an underlying
principle of object-oriented programming is to have
objects roughly map to domain concepts, type-level
API reference documentation could be a reasonable
location for this knowledge. At the limit, we could ex-
pect that most type-level documentation units should
contain some explanation of the concept it represents.

Apparently, it is not the case. A potential explanation
is that this knowledge is instead found in conceptual
overviews, such as the Microsoft Developer Network
Library and the Java Tutorial.

Both the JDK and .NET are large, general-purpose
object-oriented frameworks and our stratified random
sampling scheme ensured that all major functional
units from both frameworks were represented. We
can thus claim that to a large extent the target of the
documentation is reasonably equivalent for both JDK
and .NET. In addition, the distribution of the length
of documentation units is remarkably similar between
JDK and .NET. For this reason, major differences
between platforms in how knowledge types appear
in documentation units are indicative of differences
in documentation styles. A few trends are evident:

• The JDK contains more “conceptual” types
of knowledge, namely Concepts and Purpose,
whereas .NET contains more “structural” types
of knowledge, namely Structure and Patterns.

• .NET contains more Examples whereas the JDK
contains more Directives.

• The JDK tends to provide more Concepts, Pur-
pose, and Quality in interfaces (vs. classes),
whereas in .NET this is not true.

• The JDK and .NET document Directives differ-
ently. In the JDK types are correlated with Struc-
ture (φ = 0.225) and Examples (φ = 0.218)
whereas in .NET not really (φ < 0.105).

7.2 Implications

The outcomes of this study have a number of practical
implications on the development and use of API
documentation.

First, practitioners can evaluate the content of their
API documentation in relation to the knowledge types
described in our taxonomy. The patterns of knowl-
edge in the JDK and .NET API documentation offer a
point of reference for the amount of content of each
knowledge type that would be expected by users of
the respective technologies. These ratios are by no
means prescriptive, but they can help API documen-
tation teams think about whether their documentation
covers all necessary aspects of the API.

Second, practitioners can use our definitions of
knowledge types to better organize their documenta-
tion, for example by creating templates that explicitly
highlight specific knowledge types. The patterns of
knowledge we document can also help reason about
what knowledge types are most appropriate for dif-
ferent types of API elements.

Third, our taxonomy provides a vocabulary that
can help structure and facilitate discussions about the
content of API documentation, for example between
development and documentation teams. The patterns
of knowledge further complement this vocabulary by
describing typical combinations of knowledge types
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that may be adopted by documentation teams (e.g.,
the “Structure and Examples” pattern).

Finally, documentation quality can potentially be
improved by the detection and removal of non-
information. In previous work, we observed that
many professional developers were hindered by “boil-
erplate documentation that merely rehashes the name
of an API method, bloats the presentation with de-
rived information such as inherited members, or
provides overly trivial examples...” [27, p. 722]. The
proportions of Non-information we report motivate
the need to address this concern, and our taxonomy
provides a detailed description of this problematic
knowledge type that can be used as a starting point
for avoiding or removing it from documentation.

7.3 Future Work
For researchers, our taxonomy and the patterns of
knowledge we report have implications that motivate
further research in three main directions.

First, the study represents the first step toward a
systematic identification of knowledge types in docu-
mentation. Each of the knowledge types implies an in-
dividual research question: How can we automatically
detect the presence of that knowledge type in a doc-
umentation unit? Monperrus et al. recently studied
the detection of Directives in framework documen-
tation [21]. However, to the best of our knowledge,
this question is unanswered for the eleven remaining
knowledge types.

Second, our taxonomy helps to study the gap be-
tween information seekers and information providers.
Several studies summarized in Section 8.1 focused
on types of knowledge sought by developers during
their work. Our taxonomy provides a dimension of
analysis that can be used to assess the balance be-
tween information sought by users and provided by
documentation writers.

Finally, we plan to continue this work by qual-
itatively studying documentation units that present
unusual combinations of features. For example, meth-
ods with Concepts and without Functionality, ele-
ments with short documentation and many knowl-
edge types, or singleton knowledge types with no
Functionality. In addition, our analysis of disagree-
ments between coders provided a way to detect con-
fusing documentation snippets (see Section 5.3). From
these observations we expect to identify a number
of deviant documentation patterns that will help us
automate the detection of low-quality documentation
and eventually develop quality instruments for API
documentation.

8 RELATED WORK

As part of the contributions of this paper, we pro-
vide a detailed comparative analysis of ten different
categorizations of software engineering knowledge

(Section 8.1). We also discuss related studies of API
documentation (Section 8.2).

8.1 Knowledge Categorization

Other researchers have attempted to categorize
knowledge in software engineering. This section ex-
plains how previous work relates to and informs our
taxonomy of knowledge types (Section 3). Table 12
provides an overview of the comparison.

Mylopoulos et al. discussed how knowledge rep-
resentation techniques from the field of Artificial In-
telligence can be applied to software engineering.
The authors presented a categorization of different
knowledge types [22], presumably derived from their
experience. The categorization includes the follow-
ing types: Domain knowledge, requirements knowl-
edge, design knowledge, implementation knowledge,
programming knowledge, quality factors, design ra-
tionale, and historical knowledge. This categoriza-
tion has helped orient our taxonomy. Our notion of
Concepts relates to their notion of Domain knowledge.
Our notion of Structure and Control are both spe-
cialization of their category Design. Finally, we both
share a Purpose (Rationale) category. Our adaptations
have mostly to do with the differences between API
documentation (for reusable components) and general
software documentation (including the internal imple-
mentation aspects).

Herbsleb and Kuwana classified questions asked
during design meetings to study the kinds of knowl-
edge that may benefit from explicit capture at the
requirements and design stages [12]. The six example
questions provided in the paper point to our Struc-
ture, Control, Functionality, and Patterns knowledge
types.

Based on their general experience, Erdös and Sneed
proposed seven questions developers ask when per-
forming software maintenance [7]. All the questions
have to do with understanding the behavior of the
program, and thus relate to our Functionality type.

Johnson and Erdem classified 249 questions asked
on the comp.lang.tcl newsgroup in 1995. The authors
analyzed various characteristics of the person asking,
of the related task, and of the type of questions [15].
They categorize questions as Goal-oriented, Problem-
oriented, or System-oriented. Goal-oriented questions
map to both our Patterns type (“How can I read
a file into an array?”) and our Functionality type
(“Is it possible to display a picture on a button
widget?”). The notion of problem-oriented question
(e.g., “Tcl installation fails [...] What am I doing
wrong?”) is interesting because, although it represents
seeking knowledge about a software component, the
knowledge is context-specific, not general. Since trou-
bleshooting questions will generally be answered by
variants of the “How do I do...” question, we asso-
ciate them to our Patterns type. Finally, their System-
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TABLE 12
Knowledge categorization studies in software engineering

Reference Focus Structure Origin

Mylopoulos et al. 1997 [22] Software engineering 8 Question categories General experience
Herbsleb & Kuwana 1993 [12] Software design Question and attributes Design meetings
Erdös & Sneed 1998 [7] Software maintenance 7 Questions General experience
Johnson & Erdem 1995 [15] Tcl/Tk programming 3 Question categories 1250 newsgroups
Erdem et al. 1998 [6] Software engineering Question model Literature, newsgroups, theoretical
Butler at al. 2000 [2] Framework usage 6 Documentation primitives General experience
Hou et al. 2005 [13] 2 Swing components Questions mapped to features Swing forum
Ko et al. 2007 [17] Software engineering 21 General information needs Observation of 17 developers
Kirk et al. 2007 [16] JHotDraw 4 Categories of reuse problems Various data from user studies
Sillito et al. 2008 [30] Software maintenance 44 Questions in 4 categories Think-aloud utterances
Maalej & Happel [20] Work description 9 categories and 10 granularities Computer-based analysis of informal artifacts
Maalej & Robillard (this paper) API documentation 12 knowledge types Content analysis of reference documentation

oriented category is very broad, encompassing ques-
tions related to design rationale, conceptual questions
mapping system with domain objects, and questions
on the internal behavior of the system. Noticing that
their questions do not encompass the entire range
of potential questions that can be asked in software
engineering, Erdem et al. refined their catalog into
a more extensive framework [6] that can be used
to systematically construct questions by combining
predefined elements, such as a question type (e.g.,
What vs. How), with a question topic (e.g., output
vs. structure). This results in generalized questions
such as “How is it structured?” Erdem et al. were
inspired by a number of older question models and
followed a theoretical approach, exploring the set
of possible questions. Our work is complementary
and has an empirical nature, reflecting the reality of
programming with modern APIs and tools.

Based on their general experience and research
on frameworks, Butler et al. proposed a “frame-
work for framework documentation” [1], [2], which
includes six “framework documentation primitives”.
These correspond to basic information one may need
to document a framework. The six proposed prim-
itives are exclusively system-focused. They include
the name of the framework participants, their static
and dynamic specifications, and the dependencies be-
tween primitives. We observed in reference documen-
tation additional knowledge types such as Purpose or
Concepts.

Hou et al. studied 300 questions related to two
specific Swing widgets (JButton and JTree) posted
on the Swing forum [13]. They then mapped the
questions to the different design features of the wid-
gets. The study provides insights about the types of
features that are not well understood in a framework.
However, the classification focuses more on the target
of the question (e.g., inherited vs. widget-specific) and
less on discovering the different types of knowledge
provided to and sought by API users.

More recently, Ko et al. observed 17 developers
at Microsoft for a 90 minutes session each, studying
their information needs as they perform their software

engineering tasks [17]. From the observation data
the authors collected 334 specific information needs,
which they abstracted into 21 general (or abstract)
information needs. These were then partitioned into
seven categories based on the type of work they
pertain to. The information needs collected by Ko
et al. cover a broad range of tasks, from writing
code to submitting a change or reproducing a failure.
Interestingly, the three questions they collected under
the “writing code” category all have a strong “how
to” flavor, in some case very closely matching our
Patterns-related questions (e.g., “how do I use this
data structure or function?”). In their category “Rea-
soning about Design”, the question (“Why was this
code implemented this way?” could also be related
to API usage. In brief, while the Ko et al. catalog
captures a much broader range of information needs,
it is sparse in terms of information needs associated
with API usage. Our catalog reflects what is being
documented in API reference documentation as op-
posed to what is being sought be developers when
programming with API.

Kirk et al. investigated the knowledge problems
faced by them and their students when trying to de-
velop applications by extending the JHotDraw frame-
work [16]. After collecting 209 instances of “reuse
problems” from notebooks, newsgroup postings, and
student assignments, the authors identified four main
categories of framework reuse problems: Mapping
(converting the abstract solution to a concrete im-
plementation), Interactions (understanding how the
framework works), Functionality (determining the fea-
tures offered by different parts of the framework),
and Architecture (understanding the general design
of the framework and its rationale). The authors
hypothesized that specific types of documentation
formats are better suited to address different types of
problems. They conducted a second empirical study
to investigate how these types of documentation
formats help mitigate the problems discovered. The
categorization of Kirk et al. provides insights into
the type of knowledge that can be useful to capture
in API documentation and that may be expected
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therein. We notice very close relationships between
the categories of Kirk et al. and ours, which may be
explained by the facts that both categorizations were
obtained from grounded methods focusing on API
(or frameworks). The Mapping category corresponds
to our Patterns and Concepts types. According to
Kirk et al. the mapping category is represented by
questions such as “How do I achieve...?”, which is
our landmark question for the Patterns type. Their
Interaction category closely matches our Functionality
type, and likewise their Architecture our Structure and
Control types. They also have a Functionality category
very similar to ours. In summary, given their different
origin (user- vs. documentation-centered) the close
similarity between our categorization and that of Kirk
et al. provides confirmatory evidence that this clus-
tering represents a meaningful distinction between
knowledge types describing APIs. Our study also
presents the distribution of these knowledge types
across a documentation system.

Similarly to Ko et al.’s study, Sillito et al. produced
a catalog of 44 types of questions developers ask
during software evolution tasks [30]. This catalog was
elaborated through grounded theory techniques based
on the think-aloud utterances of participants involved
in two user studies. The questions in the catalog do
not focus exclusively on API usage, but rather relate
to software evolution and maintenance tasks. Sillito
et al. cluster their questions into four categories based
on “the amount and type of information required to
answer a question” [30, p.438]. Their categories are:
Finding focus points, Expanding focus points, Understand-
ing a subgraph, and Questions over groups. In the cat-
egory Finding a focus point the question “Which type
represents this domain concept or this UI element or
action?” is related to either our Concepts or Patterns
types, depending on how the answer is expressed.
The category Expanding Focus Points overlaps with
our notion of Structure. For example, their questions
in this category include “What are the parts of this
type?”, or “Who implements this interface or these
abstract methods?”. Their Understanding a Subgraph
category is most closely matched to our notion of
Patterns knowledge, with questions such as “How
are instances of these types created and assembled?”,
or “What is the ’correct’ way to use or access this
data structure?”. Other questions in this category map
instead to our notion of Functionality (e.g., “How
does this data structure look at runtime?”). Finally,
their last category, which clusters questions having to
do with groups of elements, presents questions mostly
unrelated to APIs (e.g., impact analysis questions).
The questions of Sillito et al. shows no obvious ab-
sence in our catalog. However, it is interesting to note
that many questions asked by developers about the
structure or design of a class hierarchy will find their
answer implicitly in the structural organization of
reference documents for OO frameworks, as opposed

to explicit mention in the documentation. For example
“What are the parts of this type?” would be obvious
from the list of all public members for a type.

Finally, Maalej and Happel analyzed the content
of informal artifacts such as commit messages and
work logs, and identified nine information entities
and ten granularity levels. They also quantified the
frequencies of these categories in the informal docu-
ments. Despite the different goals, we note interesting
overlaps and differences between informal documents
and formal API reference documentation. On the one
hand, their Rationale and Reference entities corresponds
to our knowledge types Purpose and References.
Their Requirement granularity level corresponds to
our type Functionality. On the other hand, while the
authors identified knowledge describing the program-
ming tasks, our focus is on ancillary knowledge for
component interfaces.

To summarize, although many taxonomies of
knowledge types in software engineering have been
proposed, researchers have mainly focused on the in-
formation needs of developers and their encountered
questions when programming with API—targeting
the perspective of the knowledge seekers. Our study
investigates the nature of the information included
in the API documentation, its distribution in the
documentation system and its quality—-targeting the
perspective of the knowledge providers.

8.2 Studies of API Documentation

There exists numerous studies on APIs, their de-
sign [31], their learnability [32], and their usability [5].
In this section we discuss studies of API documentation,
which are rarer.

Nykasa et al. [24] performed a study to assess the
documentation needs for a domain-specific API, using
surveys and interviews of developers. This study
identified, among other requirements, the importance
of an overview section in API documentation.

More recently, Jeong et al. conducted a lab study
with eight participants to assess the documentation
of a specific service-oriented architecture [14]. This
study identified 18 guidelines they believe would lead
to increased documentation quality for the system
under study, including “explaining starting points”
for using the API. Our quantitative results on the
frequency and distribution of Non-information also
reveal similar insights about the quality of status-quo
reference documentation and how it can be improved.

Through a set of surveys and interviews with Mi-
crosoft developers, Robillard and DeLine investi-
gated the obstacles faced by developers when trying
to learn new APIs [26], [27]. The study revealed
that many obstacles were related to aspects of the
documentation, but did not include the systematic
analysis of API documentation content. Dagenais and
Robillard [4] also used surveys and interviews to
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understand how open-source contributors make deci-
sions about the development and maintenance of API
documentation.

Similarly, Shi et al. reported on a study of API
documentation evolution [29]. The authors apply data
mining techniques over the source repository of five
open-source APIs. Their study provides various quan-
titative measures of which parts of the API docu-
mentation are most frequently revised, and how often
API documentation is changed consistently with the
corresponding elements. Although these studies also
elicited insights related to the documentation content,
they focused on the evolution of the content, not its
nature.

In a case study of the JQuery API, Parnin and
Treude investigated the types of documentation avail-
able on-line for each of the JQuery functions [25]. They
conducted their study by executing a Google search
query for each function, one-by-one, documenting in
each case the nature of the top ten results. Among
their observations, 99.4% of the searches, the official
reference API documentation “was part of the first
10 search results and usually appeared on top ” [25,
p. 3]. One potential interpretations of this observa-
tion is that for JQuery developers the API reference
documentation is highly visible and available even
through general web searches, and thus is likely to
be a heavily used source of information. This finding
provides additional motivation for research aimed at
understanding and improving the content and orga-
nization of reference documentation.

Finally, Monperrus et al.’s recent study of API
directives is the closest to this work, in that it also
studies the content of reference documentation [21]. In
their work, the authors elicited a number of linguistic
patterns indicative of the presence of different types
of “programming directives”. They then automatically
applied heuristic searches to detect such patterns in
three Java APIs (a subset of the JRE, Eclipse JFace,
and the Commons Collection). The findings can be
used to automatically detect directives in existing API
documentation. We also share the ultimate goal of
automatically detecting knowledge types in documen-
tation by first establishing empirical evidence on its
content. The qualitative results also confirms that Di-
rectives are an important and meaningful type of API
documentation, which is included in our taxonomy.
However, our quantitative results show that Direc-
tives are not the dominant form of documentation
found in reference pages. Finally, while the authors
focus on an in-depth analysis of one knowledge type
in API reference documentation, our study provides
rather a comprehensive analysis of the general content
of reference documentation and its relation with the
API structure.

9 CONCLUSION

Developers read API reference documentation to learn
how to use the API [27] and answer specific questions
they have during development tasks [30]. To advance
the field toward evidence-based improvement in API
documentation, we report on the first empirical study
to systematically investigate the knowledge contained
in API reference documentation. By using a combina-
tion of qualitative grounded methods and quantitative
content analysis techniques, we elaborated a taxon-
omy of 12 distinct knowledge types found in API
documentation. We then analyzed the distribution of
these knowledge types in different subset of docu-
ments. We call individual observations about such dis-
tributions patterns of knowledge in API documentation.

We found that Functionality knowledge is perva-
sive and Structure is common, while other types,
such as Concepts and Purpose, and much rarer. We
also found that Non-information, a deviant type of
knowledge representing low-value content, is preva-
lent in the documentation of methods and fields of
the JDK and .NET APIs. Comparisons of patterns
of knowledge types in different populations revealed
many significant differences on, e.g. how classes are
documented vs. methods, how knowledge types tend
to co-occur, and how these patterns take different
forms in different technology platforms. Collections
of knowledge patterns applicable to a cohesive subset
of API documentation unit can be seen as a form of
documentation style.

Our findings can inform software development
practice in four different ways. First, they allow prac-
titioners to evaluate the content of their API documen-
tation in relation to well-defined knowledge types.
Second, they can guide the development of documen-
tation templates that are adapted to the knowledge
commonly associated with different types of API el-
ements. Third, our taxonomy provides a vocabulary
that can facilitate discussions about the content of API
documentation. Finally, they document the extent of
low-value content in documentation units which we
hope will serve as a motivation for curtailing this
practice.

Our study also motivates additional research in at
least three areas. First, our taxonomy provides a foun-
dation for the automated classification of knowledge
types in API documentation. Second, it provides a
framework for studying the gap between the knowl-
edge provided by different types of documents and
the information needs of software developers. Finally,
classifying documentation according to knowledge
types can support quantitative analyses linking pat-
terns of knowledge with more subjective quality fea-
tures. In general, we hope that this study will serve
as a stepping stone toward a more systematic study
of API documentation.
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