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1. INTRODUCTION

Useful software systems need to change [Belady and Lehman 1976]. In gen-
eral, the effort spent repairing, adapting, and enhancing software systems to
ensure their continued value is significant because for each change task, a de-
veloper has to understand the existing software, modify it, and then validate
the changes [Boehm 1976].

A software modification task often addresses several concerns. The term con-
cern is loosely defined to represent anything that stakeholders of a software
project may want to consider as a conceptual unit. Typical concerns in a soft-
ware project include features, nonfunctional requirements, design idioms, and
implementation mechanisms (e.g., caching). To make it easier to evolve the code
base, software engineers generally try to keep concerns separate as they build
a system [Parnas 1972]. Unfortunately, in practice, it is not possible to separate
all concerns in a system due to a variety of reasons, including inadequate initial
design, the limitations that programming languages impose on the decomposi-
tion of software systems [Kiczales et al. 1997; Tarr et al. 1999], the emergence
of unforeseen concerns as a system evolves, and the decay of code structures
following repeated changes [Eick et al. 2001; Belady and Lehman 1976; van
Gurb and Bosch 2001]. As a result, many concerns end up scattered and tan-
gled throughout the code of a system [Tarr et al. 1999]. Scattered concerns
make it difficult for developers to reason about which pieces of code interact
to implement a concern, and about how different concerns interact with each
other. An incomplete understanding of a concern prior to a program change can
cause a developer to make incorrect or inefficient modifications [Letovsky and
Soloway 1986; Robillard et al. 2004], or modifications that do not respect an
existing design [Parnas 1994].

To make it easier to modify concerns that are not well modularized, we pro-
pose an approach in which the implementation of concerns is documented in
artifacts, called concern graphs [Robillard and Murphy 2002]. Concern graphs
are abstract models that describe which parts of the source code are relevant to
different concerns. A concern graph abstracts the implementation details of a
concern by recording the key structure implementing it. By recording structure,
a concern graph explicitly documents the relationships between the different
sections of code that play a role in the implementation of a concern. A concern
graph is based on a program model that can be extracted automatically from the
source code or similar forms. By staying close to the source in its abstraction, a
concern graph can remain tightly linked with the code.

To support our approach, we have created a tool, called FEAT, that helps
developers build concern graphs semiautomatically as they investigate a pro-
gram. Once a concern graph is available, the tool allows a developer to view only
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those parts of a software system that are relevant to a concern, to view them
easily in the context of the corresponding source code, and to perform analyses
on the concern description (e.g., to see how two concerns overlap in the code).

We claim that concern graphs and their supporting technology are:

— functional, supporting views and operations that facilitate the task of modi-
fying the code implementing scattered concerns;

—cost-effective, as they can be created as part of normal program investigation
activities; and

—robust, as they can tolerate changes to a code base, and can thus be reused
with different versions of a system. This property further reduces the relative
cost of the approach, since a single concern graph can be used to support
multiple tasks.

The need to document scattered concerns so as to support software evolu-
tion was identified by Soloway et al. [Letovsky and Soloway 1985; Soloway
et al. 1988]. Unfortunately, traditional documentation such as that proposed
by Soloway suffers from two principal drawbacks: It is costly to produce and
difficult to maintain consistently with the source code. Program understand-
ing and reverse engineering [Chikofsky and Cross II 1990] approaches have
also been developed to help a developer discover the code related to a program
change task (e.g., cross-reference search engines [Chen et al. 1990; Goldberg
1984; Object Technology International 2001; O’Brien et al. 1987; Sanella 1983],
or feature location techniques [Wilde et al. 1992; Wilde and Scully 1995]). These
approaches can help a developer track down the code relevant to a concern,
but have a limited capacity to help developers preserve, view, and manage the
knowledge discovered. As such, concern graphs not only help developers find
and view information about the implementation of concerns in source code,
but also enable them to preserve the information, opening new possibilities for
linking documentation to source code. Aspect-oriented programming (AOP) ap-
proaches [Kiczales et al. 1997] aim to modularize crosscutting structure explic-
itly in programs. Concern graphs complement AOP by providing an inexpensive
way to group scattered code, without requiring changes to the code base.

We have implemented our approach for the Java programming language,
and performed multiple empirical studies to validate whether our approach
meets the aforementioned claims. In Section 2 we motivate this research by
presenting a small practical example. In Section 3 we present the formal model
for concern graphs which is the foundation for our approach. Section 4 is a
description of the existing tool support. In Section 5, we present the validation
of the approach. Section 6 briefly discusses open questions arising from the
research. We conclude with a discussion of related work in Section 7 and a
summary of the article in Section 8.

2. MOTIVATION

To illustrate the challenge of finding and understanding the implementation of
scattered concerns and to introduce our approach, we describe what a developer
must consider and remember in order to extend a feature in the JHotDraw
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drawing program.1 JHotDraw is implemented in Java and comprises about
16kLOC of source code (not including comments and blank lines). In release 5.3
of JHotDraw, two different binary file formats are supported to store drawings
to disk. The task of our developer is to modify the “save” feature of JHotDraw
to support an additional file format. In this case, our concern of interest, SAVE

FEATURE, corresponds to the code implementing the saving of drawings to disk.
Conceptually, the SAVE FEATURE concern is trivial. However, its implemen-

tation is not: The code implementing SAVE FEATURE is scattered throughout at
least 35 classes, and interacts as well as intersects with other concerns, as the
following three examples demonstrate.

—To understand where the action to save a drawing is triggered, the developer
must discover the implicit invocation mechanism responsible for creating
and triggering actions based on menu selections. In JHotDraw this mecha-
nism, which we call the COMMAND concern, is implemented as a variation of
the Command design pattern [Gamma et al. 1995], and involves at least 15
methods scattered in six classes (not counting concrete commands that have
nothing to do with SAVE FEATURE).

—To understand how different storage formats are managed, the developer
must investigate the details of the storage management mechanism. This
STORAGE MANAGEMENT concern involves many different interactions between
at least 15 methods scattered in four classes (e.g., StorageFormatManager and
StorageFormat). These interactions are necessary to carry out such tasks as
registering different file formats with a file chooser widget, and obtaining the
writer object representing the correct storage format.

—To understand how to actually write a drawing to a file, a developer will
need to realize that there exists a Storable interface, and that all the objects
in a drawing that can be written to a file must implement a write method,
which writes to a special type of object called StorableOutput. In version 5.3 of
JHotdraw, the interface Storable is implemented by 24 different classes. We
refer to this mechanism as the WRITING concern. In total, it is implemented
by about 39 methods scattered in 31 different classes.

The challenge of modifying SAVE FEATURE stems from having to discover, un-
derstand, and keep track of separate, but interacting, subsets of the code associ-
ated with different high-level concepts (i.e., concerns). In practice, the STORAGE

MANAGEMENT, COMMAND, and WRITING concerns all interact in the source code. For
the change task, the developer will likely need to understand the details of each
concern, including their interactions. As an example of interaction between the
three concerns, Figure 1 shows the code of a method called promptSaveAs().
This method is the callback executed by the save command described in
COMMAND, implements USER INTERFACE code (a fourth concern, lines 4 and 7),
uses the STORAGE MANAGEMENT mechanism (lines 5, and 9–15), and calls into
code implementing the WRITING concern (lines 14–15).

1What we call the JHotDraw program is technically the default application based on the JHotDraw
drawing framework, version 5.3. http://www.jhotdraw.org/
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Fig. 1. Method promptSaveAs() of class DrawApplication. The abbreviations to the left of line
numbers indicate the concerns implemented on each line: USER INTERFACE (UI), STORAGE MANAGEMENT

(SM), and WRITING (W).

Fig. 2. Partial view of a concern graph for STORAGE MANAGEMENT in the FEAT tool.

To allow developers to capture subsets of the system relevant to concerns
of interest, and to be able to work with the system in terms of the concerns,
we developed a representation called concern graphs. A concern graph is built
interactively while a developer investigates a program, shows only that subset
of the program associated with the implementation of a concern, and allows
developers to perform a number of analyses (e.g., to see how different concerns
interact in the source code).

Figure 2 presents a partial view of a concern graph for SAVE FEATURE as dis-
played in FEAT, a tool we developed to support the concern graph approach.
A concern graph represents the subset of a software system associated with
a specific concern. Concern representations can be organized in a hierarchy
(left window in Figure 2), where each subconcern specializes the parent con-
cern. For example, the COMMAND concern represents that subset of the program
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implementing specifically the save command in the Command design pattern.2

Selecting any concern or subconcern on the left displays the subset of the pro-
gram associated with the concern. For example, in Figure 2, the structure corre-
sponding to STORAGE MANAGEMENT is displayed in the right window; only seven
methods are visible from the 91 members and nine inner classes that make up
the DrawApplication class. From this simplified view, it is also possible to per-
form other operations on concern graphs, such as to drill down to the source
code and perform cross-reference queries and interaction analyses. For exam-
ple, if the developer does not remember the role that method open plays in the
implementation of the concern, selecting this method in FEAT will display (in a
separate view) a link labeled “accessing DrawApplication.fStorageFormatManager.”
This link provides explicit information about the connection of open to the con-
cern. Clicking on the link will automatically display and highlight the access
to fStorageManager, which is buried in one of the 45 lines of the open method.
Other aspects of FEAT that support software modifications are detailed in
Section 4.

3. THE CONCERN GRAPH MODEL

In our approach, the program subsets relevant to a concern are called concern
graphs. To provide a precise definition of a concern graph, we define it as a
programming language-independent mathematical model based on relational
algebra. This model underlies the operations that tools can provide on con-
cern graphs. Except where indicated, the notation and definition of relational
operators are taken from Schmidt and Ströhlein [1993].

3.1 Programs

The definition of a concern graph is linked to an underlying program model
that specifies which information about a program can be captured by a concern
graph. We model a program as a labeled, directed graph whose vertices are
elements declared in the program and whose edges are the different types of
relations between these elements.

Definition 1 (Program Model). A program model P = (E, L, {Rl }l∈L) con-
sists of a set E of program elements, a set L of relation labels, and a set of
relations Rl , a distinct one for every label. Formally, ∀ l ∈ L ∃! Rl ⊆ E × E.

This definition ensures two important properties for the program model.
First, the unique existential quantifier ensures that no two relations have an
identical name. Second, although two vertices can have more than one edge
between them, because the relations Rl are distinct, each edge must have a
different label.

Definition 1 states that anything that can be known about a program ac-
cording to our model must be expressed in terms of labeled relations between

2Note that the COMMAND box in Figure 2 only represents the code implementing the save command,
not the entire Command design pattern. However, in a different context, it might be useful to
describe the entire implementation of the Command design pattern in a concern graph.
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elements. Given a concrete program P in some programming language, a model
of this program is obtained by applying a language-specific mapping function
M to the program. A model of program P , according to the mapping function
M , can be represented by PM when the specific mapping function matters (in
the rest of this article, we will omit this subscript when the specific mapping
function is irrelevant). Different mapping functions can be defined for a sin-
gle programming language. In practice, the step of extracting a model from a
program is performed via standard static analyses. Additional details concern-
ing the specification of mapping functions can be found in a separate report
[Robillard 2003c].

3.2 Fragments

Concern graphs are defined as a collection of building blocks, called fragments,
which are assembled to form concern descriptions of increasing complexity.
To facilitate the creation of concern graphs, we designed fragments to be con-
ceptually similar to the queries that developers perform when investigating
source code. Formally, a fragment describes a relationship between two sets
of elements in a program model. A fragment consists of an intension and its
corresponding extension (using terminology as applied to software engineer-
ing by Mens et al. [2002]). The intension of a fragment captures a high-level
description of what we wish to describe about a program (e.g., “all the sub-
classes of class C”). The extension describes that actual subset of the program
corresponding to the intension (e.g., “classes A and B”). The purpose of this re-
dundancy is for fragments to tolerate software evolution, as will be shown in
Section 3.5.

The definition of a fragment requires a program subset specification (or spec-
ification, for short). Specifications can be applied to a program model and result
in a set of program elements.

Definition 2 (Program Subset Specification Application). Let P = (E, L,
{Rl }l∈L) be a program model and S be a program subset specification. The
function apply(P, S) returns a set of elements R ⊆ E. We say that S is defined
on P .

Technically, for a program model P = (E, L, {Rl }l∈L), any specification re-
sulting in a set R ⊆ E constitutes a valid domain (or range). Although many
different types of specification are possible, this article describes those two that
have been the most useful to date:

—An extensionally-specified nonempty set of elements (e.g., Dom = {A}, Ran =
{A, C, D}). Applying this type of specification produces the specified set.

—The universal domain (or range), represented by the symbol E . The universal
specification intuitively means “all applicable elements in a given program
model.” Applying this specification to a program model produces the set of ele-
ments for this model. In other words, for a program model P = (E, L, {Rl }l∈L),
apply(P, E) = E.
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To define the intension of a fragment, we use a specification for a domain, a re-
lation label, and a specification for a range.3 For example, to specify a fragment
representing calls from method a to methods b and c, we would specify {a} as
the domain specification, Calls as the relation label, and {b, c} as the range
specification.

To describe the extension of a fragment, we define a projection operator on
the specifications and label defining the intension of a fragment and a program
model.

Definition 3 (Projection Operator). Let P = (E, L, {Rl }l∈L) be a program
model, Dom and Ran a domain and a range specification, and l ∈ L.

proj(Dom, l , Ran, P ) = apply(P, Dom)�Rl�apply(P, Ran).4

In other words, the projection operator takes the intension of a fragment
(a domain specification, relation label, and range specification) and a program
model, and produces the relation corresponding to the intension for the spe-
cific program model. In practice, the projection operator corresponds to a query
mechanism, and the result of the projection is the query result.

We now have all of the tools required to formally define a fragment.

Definition 4 (Fragment). Let P = (E, L, {Rl }l∈L) be a program model. Let
Dom and Ran be two specifications defined on P , and l ∈ L. We define a fragment
as f P = (Dom, l , Ran, Proj ), where Proj = proj (Dom, l , Ran, P ). We say that f P

is defined on P .

Creating a fragment thus consists in specifying a domain, a range, and a
relation label, and applying the projection operator on a program model. The
result describes a subset of the program model.

We illustrate different possibilities for fragment specification through a se-
ries of examples based on a mapping function J for the Java language. The
J mapping function only considers types (classes and interfaces), and meth-
ods. The relationships modeled are restricted to the identity relation (I), the
declarative structure of the program (Declares), and static method calls (Calls
and CalledBy).5 Based on this mapping function, we can specify fragments on
program P1 (Figure 3).

A model for program P1 is shown in Figure 4.6

To describe a single program element as a fragment, we use the identity
relation I. In the examples, fragments are named with a phrase describing
their intension.

Class A := ({A}, I, {A}, {(A, A)})

3The domain and range of a fragment are specifications, not to be confused with the relational
operators dom() and ran().
4The symbols � and � denote the domain and range selection operators, respectively.
5This mapping function is simple for illustrative purposes. The model we support in practice com-
prises many additional element types and relations.
6The notation has been simplified by omitting the full qualification of Java names and the paren-
theses in method signatures.
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Fig. 3. Program P1.

Fig. 4. Model P1J.

We can also describe a single method call as a fragment:

c calls b := ({c}, Calls, {b}, {(c, b)})
We can describe slightly more elaborate interactions using the universal range.
For example, to capture all members of class A, we specify:

Members of A := ({A}, Declares, E , {(A, b), (A, c)})
We can also use the universal range to capture all the callers of f.

Callers of f := ({f}, CalledBy , E , {(f, c), (f, e)})
The last operation we define on fragments is the participants operation. For
any fragment, this produces a set of elements involved in the fragment.

Definition 5 (Fragment Participants). Let f = (Dom, l , Ran, Proj ) be a
fragment.

participants( f ) = dom(Proj ) ∪ ran(Proj )

3.3 Concerns

With fragments, it is possible to express different interactions between program
elements. To attach a meaning to a collection of fragments, we define the notion
of concern representation (or simply, concern) recursively as a named set of
fragments and a set of subconcerns. The recursive definition is intended to
allow developers to break complex concerns into simpler elements, following
the divide-and-conquer principle.
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Definition 6 (Concern). A concern (n, F, C) defined on P is a tuple compris-
ing an identifying name n, a set of fragments F = { f1, f2, . . .} defined on P ,
and a set of concerns defined on P , C = {c1, c2, . . .}. The definition of a concern
must be acyclic.

The only constraint on the composition of fragments into a concern repre-
sentation is that all the fragments be defined on the same program model P .
We then say that a concern is defined on P . The only constraint on the inclu-
sion of concerns as subconcerns of a parent is that the definition of a concern be
acyclic. Either or both F and C can be the empty set. A fragment in F can also be
in any subconcern c. Besides the constraints stated previously, fragments and
concerns are composed freely into other concerns based on the needs of a user
of the representation. There is no restriction on the names used to distinguish
concerns, since this element does not impact the reasoning that can be done
with concerns.7 A root concern, not included in any parent concern, represents
the broadest abstraction for a particular concern. It is called a concern graph.

The participants of a concern are defined as any element participating in a
fragment within the concern.

Definition 7 (Concern Participants). Let c = (n, F, C) be a concern, where
F = { f1, f2, . . . , f p} is a set of fragments and C = {c1, c2, . . . , cq} a set of con-
cerns. The participants of c are defined as:

participants(c) =
p⋃

i=1

participants( fi) ∪
q⋃

j=1

participants(c j )

3.4 Concern Interaction Analysis

Two concerns can potentially overlap or be related. Given two concerns defined
on a common program model, we define their common participants as any pro-
gram element participating in both concerns.

Definition 8 (Common Participants). Let c1 and c2 be two concerns defined
on the same program model. The set of common participants is defined as:

common(c1, c2) = participants(c1) ∩ participants(c2)

Even if two concerns have no element in common, they can still interact.
We define the interaction between two concerns defined on a common program
model as the set of all modeled relations between an element in one concern
and an element in the other.

Definition 9 (Concern Interaction). Let c1 and c2 be two concerns defined
on a program model P = (E, L, {Rl }l∈L). The interaction between c1 and c2 is
defined as:

interaction(c1, c2) = {({x}, l ∈ L, { y}, {(x, y)}) | x ∈ participants(c1) ∧
y ∈ participants(c2) ∧
(x, y) ∈ Rl }

7For practical reasons, additional constraints can be imposed by different implementations of the
model (e.g., a requirement for unique names).
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In other words, the interaction between two concerns is a set of fragments
representing the relations between the participants of one concern and the par-
ticipants of the other. It is important to note that this definition is directional
(noncommutative). The motivation behind this decision is to document concern
interactions as a set of fragments (which are directional). There are many prac-
tical advantages to this definition, including the treatment of concern interac-
tions as concerns themselves in supporting tools. Moreover, the directionality
of the concern interaction operation is mitigated in practice by the fact that
typical mapping functions will include the transpose of almost all relations.

The interactions between participants can also be defined for a single con-
cern, enabling us to establish a closure of interactions between the participants
of a concern. Specifically, given a concern c, the operation interaction(c, c) pro-
duces a set of fragments representing all the interactions between participants
of c.

3.5 Inconsistency Management

Because concern graphs are defined on a specific program model, any change to
the program impacting the model may render a concern graph inconsistent with
the new program model corresponding to the changed source code. Such incon-
sistencies can be formally defined through a Boolean function IsInconsistent
(x, P ), where P is a program model and x is either a fragment or a concern.

Definition 10 (Fragment Inconsistency). Let P1 = (E1, L, {R1,l }l∈L) and
P2 = (E2, L, {R2,l }l∈L) be the models corresponding to two versions of a program
produced with the same mapping function. Let fP1 = (Dom1, l , Ran1, Proj 1) be
a fragment defined on P1.

IsInconsistent( f P1 , P2) ⇐⇒ apply(P2, Dom1) �⊆ E2 ∨
apply(P2, Ran1) �⊆ E2 ∨
Proj 1 �= proj(Dom1, l , Ran1, P2).

In other words, a fragment is inconsistent with a program model if either its
domain or range is inconsistent, or if its projection does not match the equiva-
lent projection on the new program model. This support for detection of incon-
sistencies is the main justification for the existence of projections. Fragment
projections store only the minimal subset of a program model required to check
for inconsistencies with a different model.

Given the preceding definitions, we can define the inconsistency operator for
concerns.

Definition 11 (Concern Inconsistency). Let P1 and P2 be the models corre-
sponding to two versions of a program produced with the same mapping func-
tion. Let c = (n, F, C) be a concern defined on P1.

IsInconsistent(c, P2) ⇐⇒
∨

f ∈F

IsInconsistent( f , P2) ∨
∨

c′∈ C

IsInconsistent(c′, P2)

Finally, it is possible to define, at the level of the concern graph model, the
conditions in which an inconsistency between a fragment and a model can be
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automatically repaired, as well as the semantics of the repair operation. This
way, we can ensure a common behavior for inconsistency repair across program-
ming languages and tools supporting the concern graph model. A repairable
fragment is defined as one for which both the domain and range are consistent
(i.e., the fragment is only inconsistent in terms of its projection on the new
program model). The repair operation is modeled as a function, taking as pa-
rameters a repairable program fragment defined on a model and inconsistent
with a second model, and the second model. The operation returns a fragment
with the same intension as the original, but which is consistent with the second
program model.

Definition 12 (Fragment Repair Operator). Let P1 = (E1, L, {R1,l }l∈L) and
P2 = (E2, L, {R2,l }l∈L) be the models corresponding to two versions of a program
produced with the same mapping function. Let f P1 = (Dom1, l , Ran1, Proj 1) be
a fragment defined on P1 such that:

IsInconsistent( f P1 , P2) ∧
apply(P2, Dom1) ⊆ E2 ∧
apply(P2, Ran1) ⊆ E2

We have

repair( f P1 , P2) = (Dom1, l , Ran1, proj(Dom1, l , Ran1, P2)).

In informal terms, the repair function simply replaces the inconsistent pro-
jection of a fragment with a new projection that is consistent with the second
program model. The practical implications of the inconsistency management
support intrinsic to concern graphs are described in detail in Section 4.3.1.

4. TOOL SUPPORT FOR CONCERN GRAPHS

To support the concern graph approach, we developed a tool called the feature
exploration and analysis tool (FEAT) [Robillard 2003a]. FEAT allows develop-
ers to create and manage concern graphs, and to view and modify the code of a
system through concern graphs. To integrate these tasks with normal software
development activities, we built FEAT as a plug-in for the Eclipse platform
[Object Technology International 2001]. Eclipse is an integrated development
environment with an architecture that supports the addition of modules, called
plug-ins, that add to the environment’s functionality. The standard distribution
of Eclipse includes a set of plug-ins that provide extensive support for develop-
ment in the Java programming language.

4.1 Anatomy of a Concern Graph in FEAT

In Eclipse, collections of views associated with a specific activity (e.g., debug-
ging) are called perspectives. We created a new perspective, called the FEAT
perspective, which shows a concern graph in decreasing levels of abstraction.
Figure 5 shows the general layout of the FEAT perspective.

The Concern Graph View (area 1) shows the name of each concern in the
concern graph hierarchy (see Section 3.3). From this view, users can create new
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Fig. 5. The FEAT Perspective.

subconcerns, delete existing concerns, and move concerns in the hierarchy.8

Selecting any concern name in the Concern Graph View displays all of the par-
ticipants for the corresponding concern (see Definition 7, Section 3.2). We call
the concern currently selected in the Concern Graph View the active concern.
FEAT displays the participants for the active concern in the Participants View
(area 2).

In the Participants View, the participants for a concern are displayed as a set
of trees with participant classes at the root of the trees; participant members are
displayed as children of their declaring class. Double-clicking on any participant
shows its declaration in a Java editor (area 4). Selecting a participant shows all
of the relations between this participant and any other participant in the active
concern in the Relations View (area 3). For example, Figure 6 shows the rela-
tions for participant Command.execute(). The icon to the left of a relation indicates
whether a relation is part of a fragment explicitly added by a user (dot), or was
identified through the intraconcern analysis described in Section 3.4 (question
mark).9 Relations identified through intraconcern analysis are displayed, but
are not part of a concern. A user can add these relations to a concern. Clicking on

8In our current implementation of the concern graph model, concerns can only have one parent.
Although concerns constitute a graph of interactions between program elements, the hierarchical
organization of concerns is a tree.
9Interconcern analysis is performed using a different view, described in Section 4.3.
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Fig. 6. The Relations View.

any relation shows the source code corresponding to the relation. For example,
clicking on the relation called by CommandButton.actionPerformed(ActionEvent)

will bring up the code of actionPerformed(ActionEvent) in the editor area and
highlight the call to Command.execute().

4.2 Building a Concern Graph

To build a concern graph, a developer first uses an Eclipse wizard to create
an empty concern graph. This action associates the concern graph with a Java
project, and builds a program database representing the program model that
the concern graph will rely on (see Section 3.1). Once an empty concern graph
is created and a program model available, the developer can query the program
model to build a concern graph.

4.2.1 Creating the Program Model. The mapping function used by FEAT
to generate a program model considers all the types, methods, and fields in a
project as the elements in E, and a set of 23 relations between these elements
(described in the FEAT user manual [Robillard 2003a]).

Local (intramethod) elements, such as method parameters and local vari-
ables, are not included in the model. We decided not to include these elements
because we wanted to establish a practical bound on the size and complexity
of the models required to define concern graphs, and because we are mostly in-
terested in capturing concerns presenting interactions not limited to a module.
Specifically, since elements such as local variables cannot be referenced by ele-
ments outside the method, they are not useful for describing a concern scattered
in multiple methods. As the designers of the C information abstractor tool have
noted, “[d]etails of interactions between local objects are ignored because they
are only interesting in a small context” [Chen et al. 1990, p. 326]. We followed
a similar philosophy in elaborating the design of our mapping function: In the
absence of empirical data supporting the usefulness of modeling intramethod
elements, we left these elements out in order to provide a more efficient and
scalable approach. The performance of our model extraction mechanism is dis-
cussed in Section 4.4.

4.2.2 Querying the Concern Model. To minimize the cost of building con-
cern graphs, FEAT enables developers to build concern graphs as a by-product
of program investigation. FEAT supports queries that directly correspond to a
fragment which has a universal range (see Section 3.2). For example, a query

ACM Transactions Software Engineering and Methodology, Vol. 16, No. 1, Article 3, Publication date: February 2007.



Representing Concerns in Source Code • 15

Fig. 7. Query results in the Projection View.

to determine all of the callers of a method m() is modeled as the fragment
intent

m() CalledBy ALL.10

A user performs a FEAT query by right-clicking on a Java element in any view
in Eclipse showing Java elements (including FEAT Views), and by choosing a
relation from a menu. Internally, FEAT queries are built and managed as frag-
ments: Performing a query consists of applying the projection operator defined
in Section 3.2 on the database stored by the plug-in. The results of a query
correspond to the projection of the fragment that represents the query. Query
results are displayed in the Projection View. The Projection View is the main
view used to investigate the code in FEAT. It is shown in the same area (area
3 in Figure 5) as the Relations View in the FEAT Perspective: Selecting a tab
at the top of the area allows a user to switch between views. Figure 7 shows
the results of a query in the Projection View. Query results are displayed in a
tree representing the projection of a fragment. The elements in the tree above
the relation node represent the domain of the projection, while those below
represent the range of the projection. In our example, the execute() method
is called by methods in five different classes, including CommandButton. Double-
clicking on any element in the Projection View displays its declaration in an
editor. Selecting an element displays the source code for only the relation. For
example, selecting method actionPerformed(ActionEvent) will display the line in
the actionPerformed(ActionEvent)method where execute() is called. From within
the Projection View, it is also possible to add elements and relations to a con-
cern graph. To add a single element to the active concern, a user can right-click
on any element in the view and select Add element to concern. This action will
result in the addition of a single element to the active concern; the element is
expressed as a fragment using the identity relation. To add a query result and
the corresponding relation to the active concern, a user can select any range

10In this section, we use the keyword “ALL” to represent the universal range specification E .
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element (i.e., below the relation node in the tree), right-click and select Add

relation to concern. This action will add to the active concern a fragment con-
sisting of the element queried (as the domain), the relation queried, the element
selected in the Projection View (as the range), and again, the element selected
(as the projection). For example, in the case of Figure 7, if a user right-clicks on
actionPerformed(ActionEvent) and selects Add relation to concern, the fragment
intent

Command.execute() Called By CommandButton.actionPerformed(ActionEvent)

will be added to the concern. Such fragments are very common in practice. They
describe a single structural relation between two elements, and are composed of
a singleton domain and a singleton range. We call such fragments primitive. It is
also possible to add the entire query result to the active concern though a menu
in the tool bar of the Projection View. In this case, the fragment that is added to
the active concern consists of the element queried (as the domain), the relation
queried, the universal range, and the projection corresponding to the query
results. Although the formal concern graph model supports use of the universal
specification for the domain of a fragment as well as its range, our current
version of FEAT only supports specifying a universal range. We made this
decision so as to simplify the FEAT user interface, based on experimentation
with early prototypes. For manual concern building such as currently done with
FEAT, the specification of a fragment with a universal domain can be emulated
with the transpose of a relation. Use of concern graphs in different contexts
(e.g., automatic generation) may require the flexibility offered by the general
formal model.

4.3 Using Concern Graphs

The main use of concern graphs is to give developers a single, focused view of
the subset of a program implementing a concern. This view is provided by the
Participant View. In addition, information about the relations between different
concern participants is made explicit in the Relations View. All FEAT views,
except the Concern Graph View, support a direct connection to the source code,
allowing a developer to execute changes to the source directly in the context
of a concern graph. Finally, FEAT allows developers to analyze how different
concerns interact (see Section 3.4). The results of the interaction analysis ap-
pear in a view called the Interactions View, which overlaps the Participants
View. The Interactions View shows the participants of two user-selected con-
cerns side-by-side. Participants common to both concerns are annotated with a
red diamond. Participants in one concern that are directly related to any par-
ticipant in the other concern through a relation supported by the model are
annotated with a yellow diamond. Figure 8 shows an example of the Interac-
tion View. The view shows two concerns, Command and GUI, and highlights with
diamonds the fact that two methods in the GUI concern call the constructor of
class ChangeAttributeCommand, which is in the Commands concern. Clicking on any
element with a yellow diamond will explicitly show the relation between the
two concerns in the Relations View (area 3 of Figure 5).
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Fig. 8. The Interactions View.

Fig. 9. The Inconsistency View.

4.3.1 Reusing Concern Graphs. Concern graphs are an abstraction of the
source code of a system. When the source code associated with a concern graph
is modified, the concern graph can become inconsistent with the system. To
ensure that our approach is robust enough to remain usable in such situa-
tions, the FEAT tool is tolerant of inconsistencies between a concern graph and
the source code. When a concern graph is loaded into FEAT, and any time the
source code changes, FEAT performs an inconsistency check for each fragment.
Checking for inconsistencies consists of applying the IsInconsistent function
defined in Section 3.5 (Definition 10) to each fragment. Even in the case where
inconsistencies are detected, FEAT functions as usual: Participants in consis-
tent concerns are displayed and can be queried and analyzed. However, the
participants and relations for any inconsistent fragment are not displayed in
the Participants View and Relations View. To indicate that inconsistencies were
detected, any concern containing one or more inconsistent fragments is anno-
tated with an icon in the Concern Graph View. Additionally, it is possible to view,
query, and repair inconsistent fragments in the Inconsistency View. Figure 9
shows the Inconsistency View listing two different inconsistencies. Inconsisten-
cies are identified by the name of the inconsistent fragment. FEAT recognizes
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three different types of inconsistencies based on its specific implementation of
the model:

—Primitive inconsistency: The relation captured by a primitive fragment (see
Section 4.2.2) does not exist in the source code. Specifically, a primitive incon-
sistency is detected when the IsInconsistent function applied to a primitive
fragment returns true because any clause in Definition 10 is true. Primitive
fragments represent individual selections from query results. These types of
inconsistencies are not automatically repairable.

—Domain inconsistency: The domain of the fragment is inconsistent. Specif-
ically, a domain inconsistency is detected when the IsInconsistent function
returns true because the domain element of a fragment with a universal
range does not exist in the current model (see Definition 10, Section 3.5).
These types of inconsistencies are not automatically repairable.

—Projection mismatch inconsistency: The projection of the fragment does not
match the current source code. Specifically, a projection mismatch inconsis-
tency is detected when the IsInconsistent function returns true because the
third clause in Definition 10 is true, but the two other clauses are false. These
types of inconsistencies are automatically repairable (see Definition 12,
Section 3.5).

Clicking on any fragment name in the inconsistency list displays the incon-
sistent fragment in a tree structure in the lower part of the view. Any element
in the inconsistent fragment which exists in the source code can be displayed in
an editor or queried, as in the Participants View or Projection View. This display
allows users to investigate the relations between an element in an inconsistent
fragment and the rest of the code base. As a result of such queries, a user may
decide to add to the concern description based on information in the inconsistent
fragment. Elements in the lower part of the Inconsistency View are annotated
with an icon denoting whether the element does not exist, whether the corre-
sponding relation exists in the code but not in the concern graph, or whether it
exists in the concern graph but not in the code. For example, Figure 9 shows two
inconsistent fragments. The first in the list indicates that class DeletedClass and
all of its members were recorded in a concern graph, but do not currently exist
in the project. The second inconsistent fragment in the list has the intension:

ChangeAttributeCommand.fAttribute accessed by ALL

Since this fragment is selected, its extension is shown in the detailed view,
with method execute annotated with a “+” icon. This icon indicates that one of
the current accesses to fAttribute (that from method execute()) is recorded in
the concern graph, but does not exist in the current version of the project.

The Inconsistency View also allows a user to make an inconsistent concern
graph consistent with the source code. First, any element in the Inconsistency
View that exists in the current program model can be investigated using FEAT’s
query mechanism. A scenario illustrating how this technique can help evolve
concern graphs is presented in Section 5.5. Second, right-clicking on any frag-
ment in the list of inconsistent fragments will bring up a pop-up menu with the
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item Repair. Repairing a repairable fragment will synchronize the fragment
with the source code according to the algorithm of Section 3.5. For example, the
fragment selected in Figure 9 is inconsistent due to a projection mismatch, and
as such, can be automatically repaired. Repairing a nonrepairable fragment
will remove the fragment from the concern graph.

4.4 Implementation

Besides the user interface described in the previous sections, the architecture
of FEAT is comprised of two components: the model and the analyzer.

The model component supports the runtime representation of a concern
graph, including loading and storing a concern graph, and tolerating incon-
sistencies between a concern graph and the source code through a mechanism
of pollution markers inspired by the work of Balzer [1991]. It is important to
note that the model component only represents a concern graph model, and
does not contain any of the program information forming the program model.
The latter is stored in the analyzer component.

The responsibility of the analyzer component is to produce a model for a
program to support queries on this model, and to support mapping fragments
to the corresponding source code. In our current version of FEAT, a user can only
associate a single concern graph to a given program model. As a consequence,
a user wishing to work with multiple concerns must do so in the context of
a single concern graph. In practice, this simplifying design decision seems to
have little impact on the usability of FEAT and we have not yet received any
request to change this aspect of the tool.

The analyzer component is designed to optimize the speed of FEAT queries
at the cost of an initial model extraction time. The FEAT analyzer produces a
model of a program by executing a single pass through the abstract syntax tree
(AST) of every Java file in the project associated with a concern graph. When
scanning the AST of Java source files, the analyzer searches for instances of
the relations supported by the mapping function. When a relation between
two elements is identified, the analyzer stores both the relation and its trans-
pose in an in-memory database. Our choice of a source code-based approach for
the production of a program database stems from the convenience offered by
Eclipse’s incremental compiler, and is independent from any fundamental prop-
erties of concern graphs. For example, our initial FEAT prototype used bytecode
analysis to produce the program database [Robillard and Murphy 2002]. It is
important to note that the use of source code has a limited practical impact on
the overall approach, since it is still possible to add any program element to a
concern graph, whether it is defined in source code or in bytecode. Our program
database also includes relations from source elements to bytecode elements. In
the case of relations from bytecode elements (which are not supported), we pre-
sume that these are of limited applicability, since users of FEAT cannot change
the corresponding code. There are a few cases (such as callbacks from frame-
work methods) where the information could be useful, but so far, we have not
found this to be a severe enough limitation to warrant redesign of the analyzer
component.
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Table I. Empirical Studies and Claims Addressed

Component/Claim 1. Functional 2. Cost-effective 3. Robust

1. AVID �

2. Jex �

3. Redback �

4. jEdit �

5. ArgoUML �

The static analysis required to extract the model of a program, and the size of
the database produced, both impose practical limits on the size of the programs
analysable by FEAT. To allow FEAT to work on large programs, developers
can control the scope of the analysis. When creating a new concern graph for
a project, a developer can select from a list of all source packages for a project
just those that should be included in the program model database. Elements
declared in packages left out of the analysis can still be viewed and used in
FEAT, but their source code is not analyzed. This flexibility allows users to
remove basic libraries and other elements that they know are not involved in
the concerns they are analyzing, reducing the storage and computation load on
the tool.

Because the analyzer performs a single pass through the source code, the
time required for model extraction increases linearly with the size of the source
code analyzed, with an origin close to zero and a slope of just under 1.1s/kLOC.11

To mitigate the cost of model extraction, the FEAT tool updates the model
incrementally after an initial extraction. In other words, after an initial ex-
traction, every time a source file is changed, FEAT analyzes the changes and
updates only the affected relations in the model database. This technique avoids
costly periodic reextractions of the model.

5. VALIDATION

We make three claims about concern graphs. Our first claim is that concern
graphs are functional in that they facilitate the task of modifying the code im-
plementing scattered concerns. Our second claim is that concern graphs are
cost-effective. Our third claim is that concern graphs are robust enough to de-
scribe concerns across different versions of a system.

To validate these claims, we have performed a series of five case studies of pro-
gram evolution using concern graphs. Each study was designed to investigate
specific research questions, focusing on one of the aforementioned claims. We
favored multiple, focused case studies over a large holistic one because we were
interested in gathering empirical data about specific aspects of the approach,
and because performing multiple studies allows us to determine whether our
data is corroborated between studies.

The five case studies we performed involved five different software systems
of different style, and of size varying between 12.5 and over 100kLOC. Table I
lists the five studies conducted and the claim that is the focus of each study. We

11As measured using Eclipse 2.1 on a Windows XP 2002 PC with a 1.8 GHz Intel Celeron processor
and 512 MB of RAM.
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refer to each study by the name of the system evolved or investigated as part
of the study.

We conducted the first three studies (AVID, Jex, and Redback) using an early
prototype of FEAT that was developed as a stand-alone Java application. Since
these studies are presented in detail elsewhere [Robillard and Murphy 2002],
we only provide a summary of each.

The jEdit and ArgoUML studies are two larger-scale studies performed using
the FEAT tool described in this article. These studies are presented in detail.

5.1 The AVID Study

The first study was exploratory. In this study, a researcher (one of the authors of
this article) took the role of a maintenance programmer to perform a modifica-
tion to AVID, a Java visualization software system developed at the University
of British Columbia [Walker et al. 1998]. AVID comprises 12,853 noncomment,
nonblank lines of code organized in 177 classes and 16 packages. The partici-
pant for this case study had no previous exposure to the code of AVID. The goal
was to assess the practical benefits of using concern graphs. The study consisted
of performing a complete change task for AVID using the early FEAT tool pro-
totype. The data collected during the study consists of the modified version of
the AVID code, the concern graph produced, and a log of the actions performed
in the tool. This study resulted in two main findings.

(1) The concern graph provided an adequate abstraction of the code relevant to
the change. Implementation details not captured by the concern graph could
easily be found and understood by studying the source code surrounding the
projection of a concern graph.

(2) The concern graph provided good support for documenting the list of meth-
ods that needed to be changed. It also provided a quick means to perform
additional investigation when information was missing.

5.2 The Jex Study

For our second study, we were interested in evaluating whether developers un-
familiar with concern graphs and FEAT would be able to build a concern graph
for the code related to a change, without difficulties or extensive effort. In this
case study, a subject was asked to use the early FEAT prototype to identify
the code contributing to a specified concern in the context of a program change
task. We replicated the study three times with three different subjects. The
subjects were not asked to perform the change. The target for this task was
the Jex system version 1.1 [Robillard 2003b; Robillard and Murphy 1999]. Jex
is a static analysis tool that produces a view of the exception flow in a Java
program. It is written in Java and consists of 57,152 noncomment, nonblank
lines of code organized in 542 classes and 18 packages. The subjects were asked
to report the time required to perform the task, their final concern graph, a
usage log automatically generated by FEAT, and their confidence in the qual-
ity of the result in terms of estimated percentage of the concern code they
had missed. We analyzed the completeness of the concern graph produced, and
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the usage patterns of the subjects. We also took into account the time taken
by each subject to perform the study. For the analysis of completeness, we
used the concern graph produced by the author of Jex as a benchmark. The
subjects, all of whom had received only minimal training with the FEAT tool,
were able to create (in less that 50 minutes and from an unfamiliar code base
of 57 kLOC) a concern graph that captured many pertinent parts of the con-
cern. We concluded that building a concern graph during program investiga-
tion activities does not require specialized skills, elaborate training, or undue
effort.

5.3 The Redback Study

We performed a third study to assess the scalability of our approach. This study
consisted of producing a program model of a large industrial code base with the
early FEAT prototype, using the tool to capture existing scattered concerns in
the code base, and observing and documenting any issues associated with the
scalability of the approach. We applied FEAT to the Redback Canada NSC code
base. The NSC code base is comprised of 233 packages and 1,489 classes. It
depends on approximately 9MB of third-party libraries. The approach taken
in the FEAT tool is to load the entire program model into memory. This ap-
proach allows users to quickly perform dependency analyses on any parts of a
program, and to dynamically reconfigure the environment used to evaluate the
queries. In the case of the NSC code base, it was not possible to load all of the
application classes and their dependent classes into the memory available on
the analysis machine.12 The very large size of the NSC code base necessitated
finding a way to selectively restrict the in-memory model of the program. We ac-
complished this restriction by modifying FEAT to fully load only a user-defined
set of classes. This mechanism was retained as a key aspect of the approach
and implemented in our current version of the FEAT plug-in.

5.4 The jEdit Study

The fourth study in our series, and the first to use the FEAT Eclipse plug-in,
was intended to strengthen our prior validation of the functionality of concern
graphs. This study involved replicated observation of a complete software evo-
lution task involving scattered concerns on a text editor called jEdit. We aimed
our investigation at gathering evidence that concern graphs help developers
discover and manage knowledge about scattered concerns more effectively than
developers not using concern graphs. Since space constraints prevent us from
presenting the complete details of the study, this section contains an extended
summary. The complete details can be found in a separate report [Robillard
2003c].

5.4.1 Study Design. The basic design for this study was to monitor the
activities of different subjects performing a complete program evolution task
with or without the FEAT tool. Specifically, we replicated the investigation with
two subjects using FEAT and two subjects not using FEAT (the control group).

12The machine used had 256MB of memory.
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We chose to study four subjects to strike a balance between the requirement to
study a realistic task in detail and the cost and difficulty of analyzing enough
of the data collected to account for the complexity of the phenomenon observed.
We chose to contrast the use of FEAT with the use of Eclipse functionality
because at this stage in the experiment, we were interested in understanding
how the use of FEAT impacts the behavior of developers working with tools
representing the state of the practice. For this purpose, Eclipse provides us
with a stable, well-known, and well-understood baseline. For a more thorough
investigation of the question once the approach matures, it will be necessary
for future studies to also consider the differences between users of FEAT and
users of different program exploration tools.

The target system for the task was the jEdit text editor (version 4.1-pre6).13

jEdit is written in Java and the version we used consists of 64,994 noncom-
ment, nonblank lines of source code distributed over 301 classes in 20 pack-
ages. Among other features, jEdit saves open file buffers automatically. Our
study focuses on this autosave feature. The task presented to the subjects was
to modify the autosave feature so as to allow users of jEdit to explicitly disable
it through a user interface command.

Understanding the complete set of functionality related to the change task
involves reasoning about the use of approximately five fields and 27 methods
scattered in 10 classes. The change, as initially performed by the first author of
this article in preparation for the study, amounted to about 65 lines scattered
in six classes.

The study was divided into the following phases:

—Eclipse training phase: We first had the subjects complete a tutorial on how
to use the principal features of Eclipse required for the study: code browsing
and editing, and performing searches and cross-references. This phase was
limited to 30 minutes.

—FEAT training phase: The subjects assigned to the FEAT group were required
to complete a 90 minute training tutorial on the FEAT tool. At the end of the
tutorial, the subjects were tested to ensure that they had successfully met
the objectives of the training.

—Program investigation phase: After completion of all training, a subject was
asked to read some preparatory material about the change to perform. This
material included excerpts from the jEdit user manual describing file buffers
and the autosave feature, instructions on how to launch jEdit and test the
autosave feature, the change requirements, a set of eight test cases covering
the basic requirements, and two “seeds” (i.e., pointers to the code) intended
to simulate expert knowledge available about the change task. A subject as-
signed to the FEAT group was given these same seeds in the form of two
preloaded concerns in the FEAT tool, each containing one class. A subject
was then given one hour to investigate the code pertaining to the change in
preparation for the actual task. A subject was to investigate the code using
the search and cross-reference features of Eclipse (for the control group) or

13http://www.jedit.org
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Table II. Subject Characteristics

Subject Eclipse Experience Java

C1 Low High High
C2 Low Low High
F1 High High Low
F2 High Low Low

the queries of the FEAT tool (for the FEAT group). During the program inves-
tigation phase, we recorded all of the subjects’ activities using the Camtasia
screen recording program14 operating at five frames/second and a resolution
of 1,280 × 1,024 pixels.

—Program change phase: In this phase, a subject was instructed to implement
the requirements as well as possible, and given two hours to implement the
change. This phase was also recorded using the Camtasia screen capture
program.

5.4.2 Study Subjects. In this study, the FEAT subjects are referred to as
F1 and F2, and the control subjects as C1 and C2. The four subjects were all ex-
perienced programmers. Table II provides a relative evaluation of each subject’s
characteristics. Data in the Eclipse column indicates the level of proficiency with
the Eclipse development environment. A high value indicates that the subject
had used Eclipse for real development tasks, whereas a low value indicates that
the subject either had never used or had only tried Eclipse. The experience col-
umn indicates the overall programming experience of each subject. A low value
indicates between three and five years of full-time programming experience (or
the equivalent); a high value indicates more than five years of experience. The
Java column indicates the experience of each subject with the Java language.
A low value indicates less than one year, while a high one indicates between
two and three years of experience. When recruiting for the FEAT group, we
looked specifically for subjects with a lower level of Java programming experi-
ence so that any improved performance compared to the control group could not
be correlated with Java coding experience. As a consequence of controlling for
programming experience with Java, our control subjects were those two with
less Eclipse experience. Section 5.4.4 discusses this factor in more detail.

5.4.3 Results. The solution implemented by all four subjects passed all
of the test cases provided. In addition, manual inspection of the source code
produced by each subject ensured that their solutions respected the existing
design of jEdit (as opposed to being “hacks”). The solutions differed only in mi-
nor implementation decisions. It is important to note that developer behavior,
not implementation quality, is the dependent variable in our analysis; quality
is dependent on too many factors to be directly evaluated. As such, we con-
sider that a relatively homogeneous quality of solutions between our subjects,
instead of confusing the results, adds to the validity of the study by ensuring
the adequacy of skills of the subjects in the study.

14http://www.techsmith.com
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For a complete investigation of the details of the behavior of each subject
to remain tractable, we needed to focus on a subset of the task. For this sub-
set, we chose to study how the subjects approached and handled disabling the
recovery mechanism triggered by jEdit when backup files are detected. The cor-
rect implementation of this requirement requires discovering and understand-
ing the call between methods load(View,boolean) and recoverAutosave(View) of
class Buffer. Method load(View,boolean) loads a file buffer in memory. If an au-
tosave file for the buffer is detected, it calls method recoverAutosave(View) to
perform the recovery. The implementation of the requirement involves testing
whether the autosave property is enabled, and if it is disabled, either modify-
ing load(View,boolean) to bypass the call to recoverAutosave(View), or modifying
recoverAutosave(View) to perform no action.

In the context of our analysis, this simple implementation concern presents
several desirable characteristics.

—The call to recoverAutosave(View) is not located near any code dealing with
other issues of the autosave concern. As such, the likelihood of the call being
discovered by chance is small; it requires a conscious effort.

—As opposed to other requirements for the task, the call to
recoverAutosave(View) is not directly related to any member of the two
classes given as a seed to the subjects. As such, the information cannot be
discovered through a simple query on the initial clues.

—In contrast to other requirements for the task, the subset of code to identify
corresponds to a single and precise point in the program. There can exist no
ambiguity about whether the subjects have found the right information.

For these reasons, the behavior of subjects investigating and implement-
ing the subset of the task described earlier is likely to be representative of
the behavior of subjects in a real setting and provides a good benchmark for
comparison.

Our detailed analysis of the behavior of each subject consisted of recording
how the call between the two benchmark methods Buffer.load(View, boolean)

and Buffer.recoverAutosave() was discovered and the corresponding code mod-
ified. All descriptions are based on the screen capture movies collected during
the study. The detailed behavior of each subject, and corresponding references
to the transcripts of the movies relevant to this analysis, are presented in a
separate report [Robillard 2003c].

—Subject C1. Subject C1 found recoverAutosave accidentally three times before
recording the method in a free-form text file. This information was not cap-
tured efficiently: The subject made typographical errors while recording the
name of the method, requiring multiple window switches. When he retrieved
the code of the method at a later stage, the subject needed to browse numer-
ous elements declared in the Buffer class to find it, in this case also making
a mistake by selecting the wrong element.

—Subject C2. Subject C2 examined the benchmark methods multiple times be-
fore the link between them (and their relevance to the change task) was iden-
tified and recorded explicitly. In particular, methods load and recoverAutosave
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were recorded in the subject’s notes in two separate events, separated by code
browsing. Subject C2 accessed the load method immediately after consulting
the notes. Like in the case of C1, accessing the load method required browsing
irrelevant information in a code browser.

—Subject F1. Using FEAT, the subject discovered a relevant method while sys-
tematically traversing a section of the control flow relevant to loading file
buffers using FEAT’s “calls” query. This subject needed to access the bench-
mark methods twice: once to implement the change, and a second time to fix
a bug. Each time, the location in the code was accessed directly through
the concern description, avoiding browsing and traversal of irrelevant
code.

—Subject F2. Subject F2 found the recovery method while systematically in-
vestigating the accessors of a field related to autosave functionality. The in-
formation was recorded precisely, as the subject captured only the relation
between load and recoverAutosave in a concern, and used only this information
when making the change.

—Interpretation. Our research question for the jEdit study was to determine
how developers use concerns graphs during program evolution, and whether
any distinguishing characteristic of this behavior indicates evidence of im-
proved effectiveness. The data from our case study shows that subjects F1
and F2 used concern graphs (as embodied in the FEAT tool) as envisioned.
First, they used queries over the program model provided by FEAT to sys-
tematically investigate one concern at a time. Second, they recorded precisely
the information relevant to implementing the autosave recovery in a dis-
tinct concern, and used only this information when actually implementing
the change. Contrasting the behavior of FEAT subjects with control sub-
jects, we see that the investigation performed by users of FEAT was more
precise. Both FEAT subjects found one of the benchmark methods while
investigating structural relations to elements relevant to the implementa-
tion of the autosave feature; in contrast, both control subjects found one
of the benchmark methods serendipitously, while browsing members of the
Buffer class. Also, information discovered as part of the investigation was
recorded more effectively by FEAT subjects. Screen capture movies show
the control subjects recording information about the task by voluntarily
writing the name of elements in a textual file, a process requiring multi-
ple view switches, and, in the case of C1, the correction of an error. During
the change phase, all four subjects found it useful to access the informa-
tion they had recorded about interactions between benchmark methods so
as to find the location in the code in which to implement the change. Again,
the movies for FEAT subjects show a streamlined process when accessing
the captured information, with the subjects selecting the relevant concern
in the Concern Graph view and accessing one of the benchmark methods.
On the other hand, subjects in the control group needed to view their notes,
then browse many unrelated elements in a code browser in order to find the
benchmark methods. In one case, the subject ended up selecting the wrong
element.
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5.4.4 Validity. To limit threats to the construct validity of the study, our
analysis relies on the basic transcripts, and sometimes directly on the actual
screen capture movies. This way, minimal divergence is introduced between
measures of the subjects’ behavior and their actual behavior.

The internal validity of our study is threatened by the possibility that the
success level and behavior of a subject is determined by a different, competing
factor, such as prior knowledge, proficiency with the development environment,
or investigator bias during the study. To reduce this possibility, we took steps
to ensure that no subject had prior knowledge of jEdit, asked subjects not to
communicate details of the study to others, provided basic training with Eclipse
to each subject, precluded the use of powerful features of Eclipse (such as the
debugger), and scripted the entire study, limiting the role of the investigator to
answering questions. There is always the possibility of investigator bias in the
answers to subjects’ questions. To limit this effect, we established guidelines at
the start of the study for the investigator to use in answering questions: The
investigator was to answer questions only about features of the tools covered in
the tutorial, and was not to provide any comment about the task. Regarding the
impact of the fact that both control subjects had less experience with Eclipse
than the FEAT subjects, we believe that this factor is mitigated by our assess-
ment of Eclipse proficiency after the training period, the disabling of powerful
Eclipse features, and the fact that the FEAT subjects were new to the FEAT
user interface and were thus also operating in a learning context. The inter-
nal validity of the results of the study are also threatened by our selection of
a specific subset of the task for detailed analysis. To mitigate the influence of
this decision on the result, we picked that subset which we considered the least
likely to influence the analysis through the experimental procedures.

Finally, a limit on the generalizability of our findings comes from the fact
that we have based our observations on the analysis of the behavior of four
subjects. We could gain additional evidence supporting our claims by studying
more subjects from a larger cross-section of backgrounds. However, studying
a small number of subjects has an important benefit: It allows us to analyze
unabstracted details of the program investigation behavior of each subject,
which greatly increases construct validity.

5.5 The ArgoUML Study

To assess whether concern graphs were robust enough to describe concerns in
real evolving software, we performed a study of the evolution of a large system
on which a concern graph was defined. As the target application for this study,
we chose ArgoUML,15 a tool for producing diagrams in the unified modeling
language (UML) [Robbins et al. 1997]. ArgoUML is developed in Java and totals
between 92 and 100kLOC, depending on the version considered. The code base,
revision history, and bug database of ArgoUML are publicly available.

5.5.1 Study Design. The question we investigated in the ArgoUML study
is whether a concern graph can represent the implementation of a concern in

15http://argouml.tigris.org

ACM Transactions Software Engineering and Methodology, Vol. 16, No. 1, Article 3, Publication date: February 2007.



28 • M. P. Robillard and G. C. Murphy

two different versions of a system. For the study, the first author of this article,
the study subject, created a concern graph that captured the code related to
the correction of bug 1,209 identified for version 0.11.4 of the system and fixed
in version 0.13.4. The subject then loaded the concern graph on version 0.13.4
of the system and analyzed the information described by the concern graph.
The justification for describing code related to a bug that had been fixed was
to ensure that the concern graph would describe code that had changed. In the
rest of this section, versions 0.11.4 and 0.13.4 will be referred to as versions 1
and 2, respectively.

The report for bug 1,209, obtained from the bug database for the ArgoUML
project, refers to the possibility of attaching a notes (or comments) box to differ-
ent objects in UML diagrams. In version 1, it is only possible to attach notes to
objects in class, state, or activity diagrams. Fixing this bug requires modifying
the code of ArgoUML to support adding notes to all diagram types.

5.5.2 Results. Without looking at the code of version 2, the subject created
a concern graph capturing code which seemed relevant to the evolution task.
The resulting concern graph was comprised of 41 fragments, totaling three
fields, 33 methods, and 26 classes (including eight library classes), scattered in
16 different packages. The concern graph captured code related to the creation
of a new note element in the internal UML model, the user interface code
supporting creation of a new note, code to add the notes button to the toolbar,
classes implementing the different UML diagrams, and the code to display note
objects on a diagram. The subject created the concern graph by performing
queries with the FEAT tool.

Version 2 (0.13.4) of ArgoUML is not the direct successor of version 1 (0.11.4).
To test our approach as thoroughly as possible, the second version we chose was
instead a much later revision, released close to six months after version 1. As
such, it implements a great number of changes, including the fix to bug 1,209.
It is approximately 8kLOC larger than version 1. To measure how much of
the code of ArgoUML relevant to our concern had actually changed between
versions 1 and 2, we used the code comparison feature of Eclipse, which works
in a way similar to the UNIX diff utility [Hunt and Szymanski 1977]. For each
of the 18 nonlibrary classes of version 2 in the concern graph, we calculated the
number of lines in text sequences that did not match version 1, and divided this
by the total number of lines in each class declaration in version 2 to produce an
approximate relative metric of change. The results show that all but one of the
nonlibrary classes in the concern graph had changed, with the ratio of change
varying between 2% and 86%. The average change was 51%.16

After loading the concern graph on version 2, accessing the Inconsistency
View (see Section 4.3.1) revealed that seven fragments were inconsistent (out
of 41).

The first inconsistent fragment we considered is the primitive fragment with
intension (and extension):

UMLActivityDiagram.initToolBar() calling ToolBar.add(Action)

16The complete details of this assessment can be found in Robillard [2003c].
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Fig. 10. Representation of an inconsistent fragment in the FEAT Inconsistency View.

Selecting this inconsistency in the Inconsistency View revealed that method
initToolBar() of class UMLActivityDiagram no longer existed. By performing two
FEAT queries based on this inconsistent fragment, we could establish that
the method initToolBar() had been moved from class UMLActivityDiagram to
its superclass UMLDiagram in the new version. The first query revealed all
the callers of add(Action), which included a call to a method initToolBar()

in class UMLDiagram. The second query verified that UMLDiagram was the su-
perclass of UMLActivityDiagram. To repair this inconsistency, we replaced the
inconsistent fragment with the call to ToolBar.add(Action) from UMLDiagram.

initToolBar().
The next five inconsistencies we considered were also caused by the move

of method initToolBar() to the superclass. These inconsistencies were detected
and repaired using the same approach as that detailed previously.

The last inconsistency was a fragment with a universal range:

ActionAddNote.SINGLETON accessed by ALL

Displaying this inconsistent fragment in the Inconsistency View revealed
that the inconsistency was caused by changes to a method named initToolBar

in six different classes. Figure 10 shows the preceding fragment as it appears
in the fragment viewer of the FEAT Inconsistency View.

Based on annotations in the figure and by drilling down to the source code,
we determined that method initToolBar was changed to include a parameter in
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Fig. 11. Source code mapping for a same fragment in ArgoUML versions 1 and 2.

classes UMLActivityDiagram, UMLClassDiagram, and UMLStateDiagram, and that an
access to field SINGLETON of class ActionAddNote was added in the three other
classes. This modification clearly corresponds to the bug fix identified before,
as the three classes missing the field access represent diagram types for which
note objects were not initially supported.

To fix these inconsistencies, we used the automatic repair feature of FEAT,
and synchronized the concern graph with the code according to the repair func-
tion (Definition 12). The complete process of investigating and repairing this
inconsistency took only a few minutes, which we believe to be much shorter
than it would have taken to rediscover the same information through tradi-
tional code searches.

To complete this case study, we show an example of a fragment that remained
consistent in the face of extensive change to a method, and which allowed us to
view different source code mapping to the same intension. The concern graph
contained the fragment with intension (and extension):

AbstractUmlModelFactory.initialize(Object) calling
MBase.addMElementListener(MElementListener)

The source code of method AbstractUmlModelFactory.initialize(Object) in ver-
sion 1 corresponding to the fragment is shown in Figure 11(a).

The source code for the same fragment in version 2 corresponds to state-
ments 11(b) and (c). Since both of these statements are still in method
AbstractUmlModelFactory.initialize(Object), the projection remains unchanged.
As this example shows, capturing the essence of a concern in terms of struc-
tural dependencies allows us to preserve the intension of a concern in the face
of changing source code.

The case study has shown how a concern graph can be used to describe the
same concerns in multiple versions of a code base, and provides evidence to
support the claim that concern graphs can have value in more than one version
of a system. More specifically:

—Basic tolerance to minor changes in the code allows some information to
be reused as-is. In our case, 34 out of the 41 fragments analyzed (83%) re-
mained consistent. In other words, a developer who would need to under-
stand how the notes feature is implemented in ArgoUML could use 83%
of the information originally captured at no additional cost. This tolerance
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is possible because the concern graph model abstracts details of the source
code.

—The concern graph model and tool support are enough to detect inconsistent
information, and thus prevent users from unknowingly using this informa-
tion. Because both the intension and extension of fragments are stored in
a concern graph, it is possible to detect not only that subset of a concern
graph which is invalid, but also the mismatches between an extension and
the projection of its intension. This support provides more than the depen-
dency analysis provided by compilers: It allows reasoning about structural
differences between versions that are separated by multiple releases.

—In cases where it is desirable, it is possible to repair inconsistencies be-
tween a concern graph and a program model. Because a concern graph con-
sists of a set of atomic building blocks (fragments), it is possible for a de-
veloper to understand the inconsistencies between a concern graph and a
system in a very specific context, making it easier to repair the inconsis-
tencies. Also, even though repairing inconsistencies entails additional ef-
fort from a developer, this effort is minimal (e.g., performing two queries)
in contrast to rediscovering the equivalent information through traditional
means.

5.5.3 Validity. The main threats to the validity of the ArgoUML study
are investigator bias in choosing the concern to create, and the creation of the
concern graph. To mitigate these factors, we used a modification of ArgoUML
related to an actual bug as a case, as opposed to investigating an arbitrary
concern in the code base. Second, the concern to investigate was selected before
any investigation of the source code was performed. It was thus not possible for
the investigator to select a concern that would have a good chance of evolving
well. Additionally, the source code for the concern in version 0.13.4 was not
examined until the concern graph on version 0.11.4 was completed. As such,
it was impossible for the investigator to know in advance how stable the con-
cern graph would be. Construct validity is not an issue in this study, since no
surrogate measure is used.

5.6 Synthesis of the Validation

Taken separately, each study presents an incomplete picture of the use of con-
cern graphs. In each case, we have made concessions to the necessities of practi-
cal empirical investigation involving a prototypical tool. In choosing to validate
our approach using multiple case studies, our goal was to perform an in-depth
assessment of key aspects of the approach. In addition, the data collected from
one study often corroborates and strengthens claims that were the focus of an-
other. For example, the jEdit study, which was designed to assess the claim
that concern graphs are functional, also showed that subjects using FEAT did
not expend any significant effort building a concern graph. This observation
also increases the evidence supporting the claim that concern graphs are cost-
effective. In brief, the validation studies presented in this section have the
advantage of representing repeated experiences with the approach in different
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circumstances, and with different developers performing different tasks on dif-
ferent systems. The overlap of data validating the different claims, the lack of
obvious contradictions between studies, and the variety of systems and tasks
studied contributes to the generalizability of our results in similar circum-
stances. Finally, reports on the use of concern graphs to support other research
projects [Hannemann et al. 2003; Murphy et al. 2004; Souter et al. 2003] are
additional indications of the value of the approach.

6. DISCUSSION

Interesting issues and questions arose during the development and validation
of the concern graphs approach that open the door to additional investigation.

6.1 Training and the Use of FEAT

One important factor influencing the adoption of new software development
approaches is the effort of training potential users. As part of our empirical
studies, we observed that the effectiveness of the training provided to FEAT
users is influenced by three overlapping factors: prior exposure to the concept of
separation of concerns, experience with program analysis and cross-reference
queries, and experience with the use of software development environments.
For the jEdit study, after prototyping the study with a FEAT training session
of 60 minutes, we determined that this amount of time was insufficient, and
increased the training time to 90 minutes for the final study. After this amount
of training, both FEAT subjects involved in the jEdit study were able to use the
tool properly. A training time of 90 minutes thus constitutes a lower bound on
the effort required to use the FEAT tool effectively.

6.2 Capturing System Behavior With Concern Graphs

When analyzing the results of the AVID and jEdit studies, we observed that the
code relevant to a concern sometimes included complex program behavior (e.g.,
constraints on the order of calls to a method). The program model extracted by
FEAT does not support the investigation and capture of this kind of behavioral
information. This observation raises two important questions. First, can con-
cern graphs provide any help for complex cases? Second, should more support be
provided? In answer to the first question, case studies have shown that concern
graphs are helpful to developers because they provide a means to store a set of
program elements that can act as anchors and provide context when investi-
gating complex code. In other words, although concern graphs cannot explicitly
capture complex interactions, they can point to those places where such inter-
actions occur, and, through concern names, provide some information about the
context in which they occur. Evidence of this type of support is found in both the
AVID and jEdit studies. For example, in the jEdit study, both subjects, having
realized that some part of a concern was not well understood, used the concern
graph to return precisely to the point where further investigation was required.
Concern graphs thus provide some minimal support for understanding complex
code. Although changes to the model and supporting technology can be made
to support richer concern graphs, these alternatives have important associated
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costs. Determining whether finer-grained concern graphs provide a more desir-
able cost-benefit tradeoff remains an open question.

6.3 The Importance of a Good Seed

In our description of the concern graph approach, we have assumed that a de-
veloper knows a relevant program location from which investigation can start.
Based on such a starting point (or seed), a developer can investigate related
elements in the source code and build a concern graph. Because concern graphs
are designed to support a very focused investigation of the source code, the
approach is not intended to assist with the broad type of investigation related
to identification of a seed. The identification of a seed is a separate phase of a
program maintenance task, performed outside of the FEAT tool. There exists
a variety of ways in which a developer can obtain a seed for the investigation
of code pertaining to a maintenance task. We can, for example, rely on other
developers. This is the approach we have used in the AVID study, and have sim-
ulated in the jEdit study. Other possibilities include broad lexical searches for
relevant keywords in all the source files, use of clues in the user interface of a
system [Michail 2002], and specialized feature location techniques [Eisenbarth
et al. 2003; Wilde and Scully 1995; Zhao et al. 2004].

During the evaluation of a technique for automatically inferring concern
code from program investigation activities [Robillard and Murphy 2003], we
observed that developers unfamiliar with a code base performed much more
focused and effective program investigation if a good seed had been provided.
This observation has two important consequences for potential adopters of the
concern graph approach. First, we should only attempt to build a concern graph
once a relevant seed has been identified; failing to do so may result in wasted
effort documenting irrelevant information. Second, and more importantly, a
database of concern graphs can provide an alternative source of potential seeds
for other program evolution tasks. By perusing the concerns other developers
have built for tasks similar to a task at hand, a developer can potentially dis-
cover a good seed.

6.4 Concern Interaction Analysis

One of the characteristics of the general concern graph model is the support for
analyzing interactions between two concerns (Sections 3.4 and 4.3). In devising
and implementing support for concern interaction analysis, our goal was to in-
crease the usefulness of concern graphs by providing a means for developers to
analyze whether and how two concerns interact, without having to peruse the
entire concern descriptions and perform the analysis mentally. We informally
evaluated the contribution of the concern interaction analysis to the useful-
ness of the concern graph approach as part of the jEdit study. In this study,
the training documentation for users of FEAT included detailed information
about how to use concern interaction analysis, examples for subjects to practice
on using the feature, and instructions detailing the situations when concern
interaction analysis could be useful. In spite of these provisions, neither of the
subjects who performed the evolution task on jEdit with FEAT used concern
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interaction analysis in more than a cursory and exploratory way. By interview-
ing the subjects, we established that they had not used interaction analysis
because it had not been deemed useful. Specifically, having just built a concern
graph, the information captured by the concern graph was still fresh in the sub-
jects’ memory, and the concern interaction analysis was not seen as providing
significant help for the task. The usefulness of the concern interaction analysis
thus remains to be formally evaluated. Our hypothesis is that although it does
not seem to be useful for developers initially investigating a concern, it may
help other developers accessing the concern at a later stage.

7. RELATED WORK

Early empirical evidence that scattered concerns pose problems to program-
mers was collected by Soloway et al. during different studies of professional
programmers [Letovsky and Soloway 1986; Soloway et al. 1988]. In one study
conducted at NASA’s Jet Propulsion Laboratory, Soloway et al. [1988] observed
that the programmers who did not implement a correct modification to a small
system “failed to understand the casual interactions inherent in one of the key
delocalized plans” [Soloway et al. 1988, p. 1262]. To address the difficulty of
performing maintenance on code involving delocalized plans (in other words,
scattered concerns), the researchers propose that programmers produce ex-
plicit documentation detailing delocalized plans in programs. Their initial ap-
proach is a form of paper documentation, where source code is presented in
parallel with pointers linking the code to other relevant sections of a program,
and detailing the rationale for different design and implementation decisions.
Although the idea of Soloway et al. [1988] is based on sound empirical obser-
vations, free-form documentation is effort-intensive to produce and maintain.
Since this early work on delocalized plans, a number of approaches have been
proposed to document the implementation of scattered concerns in software
systems. In the rest of this section, we describe the body of work in software en-
gineering whose explicit focus is the representation of concerns in source code.

Descriptions of scattered concerns can be captured as virtual files. In soft-
ware development environments, the idea of a virtual file is to present var-
ious segments of source code and other system documentation relevant to a
task as a single unit. For example, in the Desert environment [Reiss 1996],
a developer can load, edit, and save a virtual file consisting of fragments of
other source files. Stellation [Chu-Caroll et al. 2002; Chu-Carroll and Spenkle
2000] is a fine-grained software configuration management system that sup-
ports method-level storage management. Using a concept similar to Desert,
Stellation supports virtual source files using a typed aggregation mechanism
that collects different program elements and other artifacts (such as test cases)
in a single unit for the purpose of configuration management. The proposal
for Stellation includes the possibility of specifying aggregates either explicitly
or as the result of a query. Virtual files could be used to document scattered
code that implements a concern. However, to compose a virtual file, a developer
must already know about the location of the code implementing a concern. The
mechanisms proposed for Desert and Stellation also do not include support for
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tolerating and managing inconsistencies between a virtual file and the source
code.

A number of approaches support the representation of concerns based on
characteristics of the program text forming a software system. Conceptual mod-
ules [Baniassad and Murphy 1998] allow developers to specify concerns as a
collection of scattered lines of source code, and to perform analyses on the re-
sulting modules. Because conceptual modules are defined in terms of lines of
source code, they cannot be reused with different versions of a system. The
Aspect Browser is a tool proposed to help developers find concerns using lexi-
cal searches of the program text [Griswold et al. 2001]. Concerns found in this
fashion can be stored and viewed at different times to support program evo-
lution tasks. Aspect Browser uses the Seesoft [Eick et al. 1992] concept and
a map metaphor to graphically represent the location of code implementing
concerns in the context of the entire code base. The aspect mining tool (AMT)
[Hannemann and Kiczales 2001] is conceptually similar to Aspect Browser, but
supports additional queries based on types. The Aspect Browser and AMT can
be used both for finding and documenting concerns. However, because they
only support the specification of concerns based on lexical matches to regular
expressions and the use of types, their expressive power is limited. The text-
oriented approach also limits the tools’ ability to capture relationships between
scattered program elements explicitly.

Other approaches support the representation of concerns in source code
based on structural properties in ways that provide cost-benefit trade-offs that
are different from concern graphs. Intentional Views [Mens et al. 2002; 2003]
allow developers to specify different views of a system that reflect some form of
commonality, which can include relevance to the implementation of a concern.
Intentional Views are specified explicitly using a declarative programming lan-
guage and thus offer more flexibility, but at a higher cost to developers, who
need to explicitly form the queries describing the views. Intentional Views are
also generative and do not store the subset of a program generated from a view,
so they do not allow the type of reasoning about changes to the source code that
concern graphs support. Cosmos [Sutton and Rouvellou 2002] is an approach
that has been proposed to model concerns in terms of high-level system char-
acteristics. As opposed to concern graphs, the Cosmos model currently does not
support maintaining links between concern descriptions and the correspond-
ing source code. The concern manipulation environment (CME) [Harrison et al.
2004] is a project whose goal is to integrate support for creating and evolving
aspect-oriented software across the life cycle of a system. CME includes a con-
cern explorer tool that can be used to describe concerns using queries in a way
similar to FEAT. FEAT and CME followed parallel research courses and share
many similarities. However, the research focus for each project is different.
While CME is aimed at providing a unified way to represent concerns across
different types of software engineering artifacts, FEAT focuses on linking con-
cern descriptions and other artifacts with the source code. As a result, CME is
more open (supporting, e.g., relations between elements not found in the code),
while FEAT supports a higher level of reasoning about the links between con-
cerns and source code (e.g., concern interactions expressed as concerns, and
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analysis of inconsistencies between a concern description and a version of the
source code).

8. CONCLUSIONS

Evolving a software system typically requires a developer to locate and under-
stand concerns that are not adequately separated in the code. To help develop-
ers cope with software change tasks involving scattered concerns, we propose
to explicitly model the implementation of concerns in software engineering ar-
tifacts. We developed a formal representation for concerns in source code, called
concern graphs. Concern graphs are an abstraction of the implementation of a
concern that can be mapped onto the actual source code of a system.

To experiment with concern graphs, we have developed a tool called FEAT,
which allows developers to iteratively build concern descriptions as the source
is investigated, to view the code related to a concern, and to perform analy-
ses on the concern representation. Concern graphs also support a specialized
mechanism, implemented in FEAT, that enables the detection, management,
and repair of inconsistencies between a concern graph and an actual code base.

Using FEAT, we have evaluated the costs and benefits of concern graphs in a
series of case studies involving the evolution of five different systems of differing
size and style. The results show that concern graphs are inexpensive to create
during program investigation, support views and operations that facilitate the
task of modifying the code implementing scattered concerns, and are robust
enough to be used with different versions of a system.

In conclusion, the concern graph approach is an integrated and practical
solution to the problems of finding, viewing, and preserving information about
the implementation of concerns in source code.
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