
Static Analysis to Support the Evolution of
Exception Structure in Object-Oriented
Systems

MARTIN P. ROBILLARD and GAIL C. MURPHY
University of British Columbia

Exception-handling mechanisms in modern programming languages provide a means to help soft-
ware developers build robust applications by separating the normal control flow of a program from
the control flow of the program under exceptional situations. Separating the exceptional structure
from the code associated with normal operations bears some consequences. One consequence is
that developers wishing to improve the robustness of a program must figure out which exceptions,
if any, can flow to a point in the program. Unfortunately, in large programs, this exceptional control
flow can be difficult, if not impossible, to determine.

In this article, we present a model that encapsulates the minimal concepts necessary for a
developer to determine exception flow for object-oriented languages that define exceptions as ob-
jects. Using these concepts, we describe why exception-flow information is needed to build and
evolve robust programs. We then describe Jex, a static analysis tool we have developed to provide
exception-flow information for Java systems based on this model. The Jex tool provides a view of
the actual exception types that might arise at different program points and of the handlers that
are present. Use of this tool on a collection of Java library and application source code demon-
strates that the approach can be helpful to support both local and global improvements to the
exception-handling structure of a system.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery; D.2.3 [Software Engineering]: Coding Tools and Techniques—
Object-oriented programming; D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineering; D.3.2 [Programming
Languages]: Language Classifications—Object-oriented languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms: Languages, Reliability, Verification

Additional Key Words and Phrases: Error handling, exception handling, exception structure, ex-
ception flow, program evolution, static analysis

A preliminary version of this article appeared in Proceedings of the seventh European Software
Engineering Conference and seventh ACM SIGSOFT Symposium on the Foundations of Software
Engineering. Lecture Notes in Computer Science (Sept.), 1999, Vol. 1687, 322–337. Springer-Verlag.
This work was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC).
Authors’ address: Department of Computer Science, University of British Columbia, 2366 Main
Mall, Vancouver, BC, Canada V6T 1Z4; email: {mrobilla,murphy}@cs.ubc.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1049-331X/03/0400-0191 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003, Pages 191–221.

192 • M.P. Robillard and G.C. Murphy

1. INTRODUCTION

Most modern programming languages provide an exception-handling mech-
anism. Syntactically, an exception-handling mechanism provides a means to
raise an exceptional condition explicitly, and a means to express a block of code
to handle one or more exceptional conditions [Goodenough 1975]. By enabling
software developers to separate source code that deals with unusual situations
from code that supports normal processing, exception-handling mechanisms
are intended to make it easier for developers to conceptualize and build robust
software systems.

Separating the exceptional structure from the code associated with normal
operation has consequences. One consequence is that developers wishing to im-
prove the robustness of a program must figure out which exceptions, if any, can
flow to a point in the program. Some exception-handling mechanisms help a
developer in this reasoning process. The mechanisms for Java [Gosling et al.
1996] and CLU [Liskov and Snyder 1979], for instance, both support the dec-
laration of exceptions in module interfaces; the compiler can then check that
appropriate handlers are provided in a client module. However, this support is
only partial because each of these languages also provides a form of unchecked
exceptions. The developer of a client module is not warned of the possibility of
an unchecked exception by the compiler. Object-oriented languages, which typ-
ically support the classification of exceptions into exception-type hierarchies,
further complicate the reasoning about exception structure because a handler
that explicitly names one exception type may implicitly catch a set of more
specific exception types. Such implicit catching of exception types can compli-
cate the development and evolution of robust classes [Miller and Tripathi 1997;
Robillard and Murphy 2000].

In this article, we present a model that encapsulates the minimal con-
cepts necessary for a developer to reason about exception flow for the pur-
pose of software evolution (Section 2). Using these concepts, we describe why
exception-flow information is needed to build and evolve robust programs
(Section 3). We then describe Jex, a static analysis tool we have developed
to provide exception-flow information for Java systems (Section 4). The Jex
tool extracts information about the flow of exceptions in Java programs, pro-
viding a view of the actual exception types that might arise at different pro-
gram points and of the handlers that are present. In Section 5, we describe
how we have used this tool on a collection of Java library and application
source code to demonstrate that the approach can be helpful to support both
local and global improvements to the exception handling structure of a sys-
tem. In Section 6, we compare our approach to other exception-flow anal-
ysis tools and techniques. Finally, Section 7 summarizes and concludes the
article.

2. EXCEPTION FLOW

Goodenough [1975] introduced the exception-handling concepts in use today.
To provide a common basis for discussion, we begin with a brief review of these
concepts and the related terminology.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 193

An exception corresponds to an abnormal state in the execution of a program.
An exception is raised when such a state is detected. An exception handler is a
lexical region of code that is executed in response to an exception occurrence.
Different programming languages have different rules for matching an excep-
tion occurrence to a specific handler. An exception is handled when the execu-
tion of the handler is complete [Miller and Tripathi 1997]. The control flow of
a program after a handler is executed is determined by an exception-handling
model [Yemini and Berry 1985].

Three exception-handling models are commonly referred to in the litera-
ture [Buhr and Mok 2000; Miller and Tripathi 1997; Yemini and Berry 1985].
In the termination model, the lexical scope raising an exception is destroyed,
and, if a handler is found and executed, control resumes at the first syntac-
tic unit following this handler. In the resumption model, once an exception is
handled, control continues where the exception was raised. Finally, in the retry
model, when an exception is handled, the syntactic block raising the exception
is terminated and then retried.

There are a number of variants of exception-handling mechanisms: many
variants can be distinguished by the exception model supported, and by the
rules used to bind a handler to an exception occurrence. In this article, we fo-
cus on class-based [Abadi and Cardelli 1996] object-oriented languages that
implement the termination model of exception handling, and in which han-
dler selection is based on object types [Dony 1990]. Two common programming
languages that fit this description are Java and C++ [Stroustrup 1991].

We present an overview of the challenges involved with reasoning about
exceptions in these languages, present a generalized model to support reasoning
about exception flow, and describe exception handling in Java with respect to
this model.

2.1 Challenges

In the exception-handling mechanism we consider, an exception is repre-
sented as an object of a class. This representation allows type subsumption
to occur. Abadi and Cardelli [1996, p. 18] define subsumption as follows:
“. . . subsumption, is the characteristic property of subtype relations. By sub-
sumption, a value of type A can be viewed as a value of a supertype B. We say
that the value is subsumed from type A to type B.”

A developer who is trying to determine the flow of exceptions must consider
the effects of type subsumption in two places. First, type subsumption affects
the selection of a handler. A handler is selected based on the run-time type
of the exception object. Following the type compatibility rules of object-oriented
languages [Halbert and O’Brien 1987; Liskov and Wing 1994], a handler for an
exception type E can catch any exception object that is of a subtype of E.

Second, subsumption also plays a role in defining exceptions that may propa-
gate from a method. Several languages, including Java, support the declaration
of a list of the exception types, the exception interface, that may propagate out
of the method [Scott 2000]. Again following type compatibility rules, excep-
tion types declared in the exception interface subsume any of their subtypes.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

194 • M.P. Robillard and G.C. Murphy

As a result, a method declaring to propagate an exception of type E can also
propagate exceptions of any subtype of E.

2.2 Exception Flow Model

To support reasoning about exception flow in the context of program evolu-
tion, we present a general model of the exception-handling structures and algo-
rithms that can influence exception flow in object-oriented languages that de-
fine exceptions as objects. This model is adapted from the work of Schaefer and
Bundy [1993] on Ada systems, and, wherever possible, we use consistent termi-
nology. The goal of the model is to provide a unified basis for discussing problems
related to the design, implementation, and maintenance of exception-handling
structures, and of the analyses that can help alleviate these problems. The focus
of the model is on the description of possible exception flows in a program.

In our model, a scope s = (I, G) represents an atomic step of control flow for
exceptions. Any exception encountered in a scope flows to the boundary of the
scope without further modifying the control flow of the program. A scope con-
sists of a set I of instructions and a set G of guarded scopes defined immediately
within the scope.

A guarded scope, g = (s, C), is defined as a scope that can prevent, or catch,
certain exceptions from propagating to the enclosing scope. A guarded scope
consists of a scope, s, that is guarded, and a sequence C of catch clauses. Each
catch clause c ∈ C is a type of exception that can be caught if encountered in
the guarded scope. In languages with a singly-rooted exception type hierarchy
(e.g., Java), the root of the exception type hierarchy can be used in a catch
clause to catch all types of exceptions. In languages that do not have a singly
rooted exception type hierarchy (e.g., C++), a special keyword can be used for
this purpose.

For a sequence C of catch clauses, it is important to note that the model
does not explicitly include a notion of handler. In the termination exception
model, exceptions raised in a handler cannot propagate back into the guarded
scope. The handlers that would typically be attached to catch clauses are thus
considered to be a part of the enclosing scope, since any exception they can raise
would propagate to the next enclosing scope.

To support reasoning about exception flow, we define three functions:

encounters(s)→ E
catches(g , c)→ E
uncaught(g)→ E

where s is a scope, g = (s1, C) is a guarded scope where s1 is a scope and
C is a sequence of catch clauses, c ∈ C is a catch clause, and E is a set of
exception types. The encounters function returns the set of exception types
that a scope can encounter. The catches function returns the set of exception
types encountered in a scope that would be caught by a particular catch clause.
The uncaught function returns the set of exception types that are not caught
by any catch clause associated with the given guarded scope. We now define
each of these functions.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 195

Encounters. The exception types that a scope can encounter consist of all
of the exception types that may occur during the execution of instructions as-
sociated with that scope and that are not caught during the execution of any
associated guarded scope. For a scope s = (I, G), we have

encounters(s) ≡ generates(I) ∪ propagates(I) ∪ raises(I) ∪ uncaught(G)

The generates(i) → E function returns the set of exception types that can
be raised as the result of a system operation in the instruction i, such as a
division by zero or a null pointer dereference. The definition of this function
depends on the semantics of the programming language that is being analyzed.
For convenience, we define

generates(I) ≡
⋃
∀i∈I

generates(i)

Similar definitions apply to propagates(I) and raises(I).
The propagates(i)→ E function returns the set of exception types that can

be propagated by a method call at instruction i. We model the definition of a
method as a scope. Let Sm be the set of all scopes corresponding to the definition
of methods that can be called as the result of executing an instruction i according
to the semantics of the programming language.1 We then have

propagate(i) ≡ encounters(Sm)

The raises(i) → E function returns the set of exception types, if any, that
are explicitly raised by the instruction i, according to the semantics of the
language. For example, in Java, an instruction involving the keyword throw
explicitly raises an exception.

Catches. The set of exception types that a catch clause c can catch consists
of the exception types that the corresponding guarded scope can encounter, that
match c according to typing rules, and that are not caught by any catch clause
defined lexically before c for a given guarded scope. In other words, catch clauses
are evaluated in order and the first matching one is selected. We represent a
class c1 to be assignable to a variable of class type c2 according to a language’s
type system as c1 < c2.

For a guarded scope g = (s, C), where C = (c1, ..., cn), we have:

catches(ci) ≡ {e | e ∈ encounters(s) ∧ e 6∈
⋃

j=1..i−1

catches(c j) ∧ e < ci}.

We also define the catches function on all the catch clauses of a single guarded
scope:

catches(C) ≡
⋃
∀c∈C

catches(c).

1For an object-oriented language, this usually includes a set of dynamically bound methods.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

196 • M.P. Robillard and G.C. Murphy

Fig. 1. Exception type hierarchy in Java.

Uncaught. The set of uncaught exception types for a guarded scope consists
of all of the exception types that the guarded scope can encounter and that would
not be caught by any catch clause. For a guarded scope g = (s, C), we have

uncaught(g) ≡ encounters(s)− catches(C).

Similar to other exception flow functions, we define uncaught over a set of
guarded scopes:

uncaught(G) ≡
⋃
∀g∈G

uncaught(g).

2.3 Exception Handling in Java

To illustrate how the exception-handling mechanism of a real language can be
mapped onto the general model, and to describe the exception-handling mecha-
nism that is used in the rest of the article, we describe the syntax and semantics
of exception handling in Java in terms of the model. Mapping Java to our model
requires that we make conservative assumptions to handle language-specific
considerations, such as finally blocks. Mappings for other languages are out-
side the scope of this article.

In Java, exceptions are objects of a type that are inherited from a special
Throwable class. The exception type hierarchy defines three different groups of
exceptions: errors, run-time exceptions, and checked exceptions (see Figure 1).
Errors and run-time exceptions are unchecked. Unchecked exceptions can be
raised at any point in a program and, if uncaught, may transparently propagate
back to the program entry point, causing the Java virtual machine to termi-
nate. By convention, errors represent unrecoverable conditions, such as virtual
machine problems. User-defined errors and run-time exceptions are created by
extending the Error and RuntimeException classes, respectively. Checked ex-
ceptions can also be raised at any point in a program. However, Java requires
that checked exceptions that may be raised in the body of a method be declared
as part of the method signature. The compiler can then check that a caller of the
method either handles the exception or declares the exception in its interface.
User-defined checked exceptions are created by extending the Exception class.

In our model, a Java method corresponds to a scope s = (I, G). The set of
instructions I comprises all of the instructions in the method that are not within

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 197

a guarded scope. The set G comprises all of the guarded scopes declared in the
method scope, but does not include any of the nested guarded scopes; these are
declared in the appropriate parent scope.

In Java, a guarded scope g = (s, C) is defined with a try block. A try block
can have zero or more catch clauses. Each catch clause declares an exception
type and a parameter name for the exception object that is caught. A handler
block follows each catch clause. Handlers can contain any Java code, including
other try blocks. Any code within the handlers that is not in a guarded scope
belongs to the outer scope. Optionally, a programmer can attach a finally
block to a try block. The finally block is executed whether or not an excep-
tion is raised in the try block. For a guarded scope, the inner scope s is the
set of instructions and guarded blocks defined within the lexical scope of the
try block. The list C of catch clauses consists of the ordered list of excep-
tion types declared in catch clauses that are attached to the try block. When
a try block has a finally block but no catch clause, we chose not to model the
try block as a guarded scope because it is only in special cases that the finally
block can decrease the number of exception types flowing in a program. Our ap-
proach is thus conservative. We postpone a detailed discussion of the exception-
handling behavior of finally blocks in Java programs to the end of this
section.

For any instruction i ∈ I within a scope, the generates(i) set corresponds to
exceptions that can be raised by the Java run-time environment. Section 15.6
of the Java Language Specifications [Gosling et al. 1996] summarizes the ex-
ceptions that can be raised at run-time as the result of a basic operation.

The propagates(i) set is determined by exceptions propagated as the result
of method calls. Java requires that checked exceptions that may propagate
from a method be declared as a part of the method signature. The language
also requires exception conformance [Miller and Tripathi 1997], so a method
m′ overriding the method m of a supertype must not declare any exception
type that is not the same type or a subtype of the exception types declared
by m. Because of unchecked exceptions and the fact that exception interfaces
can subsume exception subtypes, the propagates(i) set cannot be completely
determined by inspecting exception interfaces, and must be computed using
the formulas of the previous section. For instructions that do not contain any
method call, propagates(i) = ∅.

Exceptions in Java can be explicitly raised using the keyword throw followed
by an expression that can be statically resolved, at compile-time, to a type t <
Throwable. For such instructions, raises(i) comprises all of the types that the
raised expression can resolve to at run-time. If the instruction i is not a throw,
then raises(i) = ∅.

Figure 2 illustrates the main exception-handling features in Java. In this
example, method1 contains two try blocks: one is top-level (lines 4–15) and the
other is nested in the top-level block (lines 6–9). The catch clause at line 10
declares the supertype of all exception types and thus no exception should re-
main uncaught from line 8. Presuming an exception of type ExceptionType2
can be raised at lines 12 or 14, this exception is caught by the handler at
line 16. In the handler, a new exception of type ExceptionType1 is raised

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

198 • M.P. Robillard and G.C. Murphy

1: public void method1() throws ExceptionType1
2: {
3: // instructions ⇑
4: try ‖
5: { ‖
6: try ⇑ ‖
7: { s3 ‖ ‖
8: // instructions m ‖ ‖
9: } ‖ ‖
10: catch(Throwable e) s2 ‖
11: { ‖ ‖
12: // instructions ‖ ‖
13: } ‖ s1
14: // instructions ⇓ ‖
15: } ‖
16: catch(ExceptionType2 e) ‖
17: { ‖
18: throw new ExceptionType1(); ‖
19: } ‖
20: finally ‖
21: { ‖
22: // instructions ‖
23: } ‖
24: // instructions ⇓
25:}
Fig. 2. An example of exception handling in Java.

(line 18). For the sake of our example, this exception is a checked exception;
since it can propagate out of the method, it is declared as part of the method
signature.

The example is modeled as follows: (bars on the right of the figure indicate
the range of each scope). The method is a scope s1 = (I1, G1) where I1 consists of
the instructions in lines 3, 18, 22, and 24, and G1 consists of the single outer try
block (lines 4–15) and associated catch clause (line 16). This try block defines
an inner scope s2 = (I2, G2) where I2 = line 12 and 14 and G2 is the innermost
try block (lines 6–9) and associated catch clause (line 10). The innermost try
block defines scope s3 = line 8. It is important to note that the code for the
handlers and finally block is part of the scope enclosing their corresponding
guarded scope.

Conservative Assumptions for finally Blocks. In a Java program, the exe-
cution of a finally block can alter the flow of exceptions in two basic cases.

(1) An exception raised in a finally block overrides an exception raised in
the try block or in any handler for the try block (Java language specifica-
tions [Gosling et al. 1996, Sec. 14.19.2]).

(2) A return statement in a finally block, or a break or continue statement
in a finally block nested in a loop results in a pending exception being
discarded (Java language specifications [Gosling et al. 1996, Sec. 14.16,
14.14, and 14.15, respectively]).

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 199

public void crash(boolean pCrash)
{

try
{

throw new Exception1Type1();
}
finally
{

if(pCrash)
throw new ExceptionType2();

}
}

Fig. 3. Overriding an exception in a finally block.

public void crash(boolean pCrash)
{

while(true)
{

try
{

throw new ExceptionType1();
}
catch(ExceptionType2 e)
{}
finally
{

if(!pCrash)
break;

}
}
System.out.println(”Completed normally!”);

}

Fig. 4. Discarding an exception in a finally block.

Figure 3 illustrates the first case. In this example, if the input to the crash
method is true, the pending exception of type ExceptionType1 raised in the
try block will be discarded and the method will propagate an exception of
type ExceptionType2 raised in the finally block. According to the mapping
described in this section, the try block is not a guarded scope because it does
not have any catch clauses. The instructions in both the try and finally block
are mapped to the top-level method scope, and the encounters function for
the scope representing the crash method returns the types ExceptionType1
and ExceptionType2, the two types of exceptions that can be propagated by
the method. Even though, in practice, the finally block can have an effect on
the run-time exception flow, this does not influence the values computed for the
encounters function in the model, since it is defined based on the conservative
assumption that the value of pCrash can be either true or false.

Figure 4 illustrates the second case. In this example, execution of the try
block results in an exception of type ExceptionType1 being raised. Assuming
that this exception is not caught by the catch clause, the finally block is exe-
cuted with the exception pending. However, if the value of pCrash is false, the

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

200 • M.P. Robillard and G.C. Murphy

finally block will break out of the loop, the exception will be discarded, and the
method will complete normally. Again, even though the finally block in this
case also has an effect on the run-time exception flow, it does not influence the
value of the uncaught set for the guarded scope (or try block). In all cases, the
uncaught set for the try block includes Exception1, since the conservative as-
sumption in this case is that pCrash can take both values.

In both cases, the exception flow-altering statement in the finally block
is conditional upon the run-time value of the pCrash parameter. However, in
the case where the statement is unconditional, the value of the encounters
function calculated for the scope comprising the finally block will be overly
conservative. For example, in Figure 3, if we remove the statement if(pCrash),
the exception of type ExceptionType2 raised in the finally block will always
override the exception of type ExceptionType1 raised in the try block. As such,
the precise encounters set for the modified crash method should not include
type ExceptionType1.

To summarize, our model is not intended to support reasoning about in-
trascope control and data flow; instead it produces a conservative estimate of the
types of exceptions a scope can encounter. This ensures that the model is robust
in the face of constructs that can alter the intrascope flow of exceptions, such as
the finally block. The tradeoff for this characteristic is potential imprecision
in the presence of unconditional return or throw statements, or unconditional
break or continue statements for a loop that encloses a finally block.

3. REASONING ABOUT EXCEPTION FLOW

Implementing a robust software system in a programming language that sup-
ports an exception-handling mechanism requires a software developer to figure
out the exceptions that a particular scope can encounter. When improving the
robustness of object-oriented systems, we have found it useful to think about
exception flow both locally, within a guarded scope, and globally, in terms of
flow across methods in a system.

3.1 Local Exception Flow

Local exception flow refers to exceptional control flow that is relevant to a single
guarded scope. Even though such reasoning does require global exception-flow
knowledge, we refer to it as local since its focus is on the analysis of the re-
lationship between the encounters and catches sets for a single scope. When
evolving a system, two localized cases of interest are unused catch clauses and
the unanticipated handling of unexpected exceptions.

Unused catch clauses can occur for different reasons. For instance, the con-
ditions for which a scope was guarded can be removed, but the handler for these
conditions may be left in place. This dead code may be left for safety reasons, but
often, it may be more appropriate to remove it. Figure 5 illustrates this prob-
lem. In this example, a method executes two different operations on a field, each
of which takes an argument arg that has been passed in to the method. If a
developer updates method1 to remove the calls to method2, the developer needs
to determine if the guarded scope can be safely removed without changing the

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 201

public void method1(Object arg)
{

try
{

field1.method2(arg); // expected IllegalArgumentException
field1.method3(arg);
field1.method2(arg); // expected IllegalArgumentException

}
catch(IllegalArgumentException e)
{

field1.rollback();
}

}
Fig. 5. An example of unused catch clause.

behavior of the program. The documentation for method2 may show that it can
raise an IllegalArgumentException. However, the documentation for method3
may not include any exception information. Since this exception is unchecked,
the developer cannot determine whether the guarded block was meant to apply
only to the calls to method2 or also to the call to method3.

This situation can be prevented, to a certain degree, with exception interfaces
since the compiler can determine if a checked exception will be raised in a scope.
However, compilers do not perform this check either for unchecked exceptions
or for subtypes of checked exceptions. In the latter case, if a method called in
a guarded scope declares to be propagating an exception of type e1, then either
a handler for this exception type must be provided or the exception must be
declared in the header of the method. However, if a handler for e1 is provided,
then any number of handlers for types e < e1 can also be provided, even if
exceptions of these types can never be propagated in practice. The compiler
will not be able to determine whether these handlers are used or not. These
excess handlers also represent dead code.

The second problem is the unanticipated handling of unexpected exceptions.
This situation can occur when a catch clause is defined for a type that is the
supertype of many exception types. Although this default catching of exceptions
is considered bad practice in some communities, such as the Ada community
[Romanovsky and Sandén 2001], it is common practice in Java where types
are naturally organized in a hierarchy. Moreover, it can be a succinct way of
expressing recovery code when various sources of failure call for a similar han-
dling behavior. For example, in crash situations, it may not matter whether a
system crashes for one reason or another, so a general handler can be used.

However, catching exceptions by subsumption is a dangerous practice be-
cause of the difficulty of determining all of the reasons for which an exception
may be raised. A handler may end up executing code in response to an event
that was not anticipated and that does not conform to the semantics for which
the handler was designed. For example, in Figure 6, the handler is designed to
catch both a NullPointerException and an ArrayIndexOutOfBoundsException
originating from the array access statements. The general exception type,
Exception, will catch both types of exceptions. The danger here is that the
coding style assumes that the instructions in statement 1 cannot raise any

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

202 • M.P. Robillard and G.C. Murphy

try
{

anObject.anArray[index];
// statement 1
anObject.anArray[index];

}
catch(Exception e)
{

// recover from array access problem
}

Fig. 6. Catching exceptions by subsumption.

exceptions that are unrelated to array access problems. If this assumption is
wrong, or becomes false as the code evolves, it might introduce subtle bugs that
make the program less robust.

3.2 Global Exception Flow

Global exception flow refers to the flow of exceptions across methods. A robust
system will have one or more exception-handling policies whose goals are to
avoid crashes by limiting the flow of unexpected exceptions, and to enable better
recovery by describing exceptional conditions in a meaningful way to client
modules.

A developer evolving an object-oriented system can make the conditions un-
der which an exception is propagated explicit to a client either through excep-
tion type names or through documentation. Using exception types implies that
a developer can leverage some support from the type system of the program-
ming language at the cost of creating and maintaining a new class definition
for each exception type. Documenting the cause of exceptions in comments may
be cheaper, but only minimal support is available to help developers ensure the
documentation is kept up-to-date.

Choosing the right alternative for making exceptions explicit and determin-
ing a good location for recovery of an exception is difficult because developers
must reason about how an exception arises. Specifically, a developer must un-
derstand the propagation paths for the exceptions that can arise. In practice,
we have found it useful to reason about the global flow of exceptions in a system
from both the breadth and depth perspectives.

3.2.1 Breadth. The breadth perspective involves examining the set of dif-
ferent exception types a scope can encounter, and the causes for these exception
types. This knowledge enables a developer to design suitable recovery, if recov-
ery is applicable, or to design appropriate reporting of the failure to clients of
the method.

Unfortunately, it is difficult for a developer to perform this reasoning man-
ually because it is hard to determine the causes for the exception types de-
fined by the generates, propagates, and raises functions for a method. Antic-
ipating environment-generated exceptions requires an in-depth knowledge of
the programming language semantics. Determining the exceptions propagated
requires reasoning about the possible run-time bindings for a method call and
about the exceptions types that each of the potential targets can encounter.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 203

Fig. 7. Analyzing exception-flow breadth.

Compilers provide only limited support for reporting on the propagation of
checked exception types, and no support for unchecked exception types. In-
deed, for a scope, a compiler will usually only indicate that a certain type of
exception must be handled. If a handler is present, the compiler does not report
all of the possible causes of the exception type that might be encountered. It
can even be hard to identify explicitly raised exceptions (the raises set) if the
throw statements are located in deeply-nested, guarded blocks.

An example of the difficulty of analyzing exception flow breadth is shown
in Figure 7. In this figure, circles represent methods and arrows represent the
flow of exception types between methods. The figure documents the various
exception types that method 1 can encounter, and the origins of exceptions
of those types. The exception types x and y in this example can arise from
a variety of sources. In one case, the same source, method 2, may result in
either exception type x or y . This information can help a software developer
determine if it is possible to recover from one or more of these exception types
in method 1. If recovery is not possible, the information can help the developer
determine how the method should report the various problems. For example, a
developer might choose to propagate some exception types as received; others
may be remapped to new exception types [Robillard and Murphy 2000].

3.2.2 Depth. The depth perspective involves determining, for a specific
type of exception, the propagation paths that can result in the exception type
being propagated to a specific method. This depth perspective is helpful in two
ways: top-down, to help reason out the original cause for an exception type
at a program point, and bottom-up, to help reason out the impact the prop-
agation of an exception can have on the behavior of the system. Reasoning
about the depth of exception flow is difficult because it typically requires de-
termining whether the propagates set for each method call in the method of
interest propagates a specific exception type, and, when it does, it requires iter-
ating through each method until the raise or generate point for an exception is
reached.

An example of analyzing exception-flow depth is shown in Figure 8. In
this figure, all of the arrows represent a single exception type. Four separate
paths exist that may cause the exception type to propagate from method 8
to method 1. Understanding these separate paths, or at least their existence,
can help a developer evaluate the cost of declaring or renaming an exception
type, and can provide more insight into the causes for its propagation. When
evolving a system, the depth of propagation paths might cause a developer to
represent an exception as an unchecked exception rather than a checked ex-
ception because of the cost of modifying the method interfaces to declare the
exception.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

204 • M.P. Robillard and G.C. Murphy

Fig. 8. Analyzing exception-flow depth.

4. THE JEX STATIC ANALYSIS TOOL

To help developers address the kinds of problems described in the previous
section, we have developed a static analysis tool, called Jex, that computes
exception flow for Java systems. We describe the functionality of Jex, explain
its implementation, and discuss how a user interacts with the tool.

4.1 Functionality

An exception-flow tool must calculate the generates, propagates, and raises func-
tions for any set of instructions I in a scope s = (I, G). For a developer to use
the information calculated, the tool must present the information in a format
that supports understanding exception flow both locally, to address scope-level
issues, and globally, to address system-level issues. To support local reason-
ing, Jex displays the exception types calculated for the generates, propagates,
and raises functions in the context of the exception-handling structure—the
try blocks, catch clauses, and finally blocks—in the source code. To sup-
port global reasoning, Jex displays all possible origins of each exception type
reported.

Specifically, the Jex tool marks exception types reported by the generates
function with a special *environment* string. Exception types reported by the
propagates function are followed by the name and signature of the method that
raises the exception (prefixed by the fully qualified name of the class declaring
the method). Finally, exception types reported by the raises function are pre-
fixed by the throws keyword. All possible origins are listed for each exception
type.

The information provided by Jex conforms to the model of Section 2.2. In
addition, Jex presents the origin of the various exception types for a scope, and
distinguishes the lexical context for handlers and finally blocks from the rest
of the enclosing scope.

We illustrate this view of exception structure using code from one of the
constructors of the class java.io.FileOutputStream from the JDK 1.1.3 API.
Figure 9 shows the code for the constructor; Figure 10 shows the exception

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 205

public FileOutputStream(String name, boolean append) throws IOException
{

SecurityManager security = System.getSecurityManager();
if (security != null)
{

security.checkWrite(name);
}
try
{

fd = new FileDescriptor();
if(append)

openAppend(name);
else

open(name);
}
catch(IOException e)
{

throw new FileNotFoundException(name);
}

}

Fig. 9. The source code for the constructor of class FileOutputStream.

1: FileOutputStream(String,boolean) throws IOException
2: {
3: SecurityException:SecurityManager.checkWrite(String);
4: NullPointerException:*environment*;
5: try
6: {
7: IOException:FileOutputStream.openAppend(String);
8: IOException:FileOutputStream.open(String);
9: }
10: catch(IOException)
11: {
12: throws FileNotFoundException;
13: }
14:}

Fig. 10. Exception flow and structure for the constructor of class FileOutputStream.

structure extracted according to our technique.2 The extracted structure shows
that the code preceding the explicit try block may raise a SecurityException,
and that the code inside the try block may result in an IOException being
raised by the call to openAppend or open on an object of type FileOutputStream.
The catch clause indicates that any IOException raised during the execution of
the code in the try block may result in a FileNotFoundException being raised.
FileNotFoundException is a subtype of IOException, the exception declared in
the signature of the constructor.

2Figure 10 is a simplified view of the information generated by Jex. Specifically, for clarity in
presentation, we removed the full qualification of Java names that is usually shown and exception
information that was redundant for the purpose of our example.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

206 • M.P. Robillard and G.C. Murphy

In this example, the retention of the basic method structure shows the de-
clared IOException, the top-level try block, and the single catch clause. The
analysis shows that the top-level scope (lines 3, 4, and 12) can encounter
a SecurityException that may be propagated by a method call (line 3), a
NullPointerException that may be generated by the environment (line 4),3

and a FileNotFoundException that may be raised explicitly (line 12). The scope
of the try block (lines 7 and 8) can encounter an IOException from two possi-
ble origins, the two methods called in the block. These IOExceptions, if raised,
will be caught by the catch clause. Using the algorithms of Section 2.2, the
uncaught set for the try block is empty, and the encounters set for the con-
structor comprises the FileNotFoundException, NullPointerException, and
SecurityException exception types. In this case, the exception interface is
valid, since NullPointerException and SecurityException are unchecked ex-
ceptions and need not be declared, and FileNotFoundException< IOException.

The information produced by Jex makes it possible for a developer to under-
stand the flow of exception types, not exception objects. As such, exception-flow
information produced by Jex cannot be used to determine, for example, if an
exception raised in a handler is the same exception object as the one that was
caught by the catch clause. Furthermore, if different methods propagate the
same exception type through a call chain, it should not be assumed that it
is the same exception that is propagated. An exception could be caught, and
a new exception of the same type could be raised. We have left out the ex-
ception values from our analysis because our goal was to support reasoning
about the control flow caused by exceptions; determining the flow of exception
values is thus outside the scope of the work. In the infrequent cases where a
developer would need to examine the data flow for a specific exception object,
traditional data-flow analysis [Shelekhov and Kuksenko 1999] can provide this
support.

4.2 The Architecture and Implementation of Jex

Jex takes as input a set of Java source files and a configuration file (described in
Section 4.4), and produces, for each Java class, a human-readable Jex file. A Jex
file contains, for each method in the associated Java class, a view of the exception
flow formatted as shown in Figure 10. A Jex file is both a result of the exception-
flow analysis, and an input to the analysis process, as we describe below.
Jex files are organized in a hierarchical directory structure based on package
names.

Jex (version 1.2.1) is implemented as an extension to the code of Kjc
(www.dms.at/kopi), an open-source Java compiler. The architecture of Jex
is organized around four central functions: parsing and typechecking Java
files, extracting exception flow, loading Jex files for querying, and performing
class-hierarchy analysis to determine potential dynamic bindings for method
calls.

3The syntactic analysis performed by Jex cannot determine that the local variable security is
never null at that point. Section 4.3 discusses how additional semantic analysis can help eliminate
false positives in the results of the generates function.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 207

The parsing and typechecking of Java source files is performed by the Kjc
compiler. This compiler operates like the standard Sun Javac compiler, taking
as input a series of Java source files. The Kjc compiler parses the Java files
and produces an abstract syntax tree (AST) for each file. The Kjc compiler also
typechecks the code, which evaluates the type of all expressions in the AST.
The Kjc compiler provides access to the AST through an implementation of the
Visitor design pattern [Gamma et al. 1995].

We implemented the extraction of exception-flow information as a pass
through the AST. The AST visitor we implemented performs two tasks: it
detects and stores the try blocks and their corresponding catch clause and
finally blocks, and it computes the sets of exception types from the generates,
propagates, and raises functions for all scopes. The first task requires a simple
recursive descent through the AST. The second task involves examining each
statement, and computing the type and origins of exceptions that could result
from the statement according to the three functions.

For a statement, Jex reports environment-generated exception types based
on determining, according to the conditions summarized in Section 15.6 of the
Java Language Specifications [Gosling et al. 1996], whether the statement be-
ing examined can generate exceptions.

To determine the exceptions propagated by a method call, Jex first deter-
mines all possible dynamic bindings for the call. Jex determines all poten-
tial targets of virtual method calls by performing class hierarchy analysis
(CHA) [Dean and Chambers 1995] over all of the classes in a set of packages
specified by the user. Next, Jex determines the exception types in the prop-
agates set for each target. Jex determines this information by accessing and
parsing the Jex file for each method implementation. Two cases require special
processing: methods for which the source code is not available, and methods
for which the exception flow has not yet been computed. It is not possible to
handle the second case purely by ordering the computation because the pres-
ence of cycles in the control flow of the program will prevent the determination
of a partial order on the execution of methods. Jex handles these two cases by
initially creating a stub for any method of interest it encounters, using the ex-
ception interface contained in the byte code for the methods. Jex relies on this
stub if further analysis is not possible. Jex iterates until a global fixed point
is reached for all methods in the system; as Jex iterates, a stub in the system
can be expanded into full Jex information based on the analysis of a method
body.

To calculate the raises set, Jex uses the static type of the expression of the
Java throw statement as the type of an exception that is explicitly raised.

4.3 Tradeoffs

To strike a balance between the usefulness and precision of the information
provided to a developer, and to manage the cost of the exception-flow analysis,
we have made a number of implementation tradeoffs in Jex.

Source Code Analysis. Java programs are compiled to byte code, an in-
termediate platform-independent format. Exception-flow information can be

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

208 • M.P. Robillard and G.C. Murphy

calculated from either the byte code or the source code. We have chosen source
code because we wanted to present a view of the exception flow in the con-
text of the source code in which the flow is relevant. As such, we wanted to
present the complete exception-handling structures, including catch handlers
and finally blocks. It can be difficult, and in some cases impossible, to obtain
the lexical scopes for handlers and finally blocks from byte code. Furthermore,
optimizations such as method inlining also create differences between byte code
instructions and the corresponding source code.

Initialization Code. Java supports two kinds of initialization code. Class-
scoped (static) fields can have assignments as part of their declaration. Class
initializer blocks can be defined that are executed when the class is loaded. Each
of these kinds of initialization code can raise exceptions when a class is loaded,
and these exceptions are reported through an ExceptionInInitializerError.
Practically, it is not possible to determine when a class will first be loaded. As a
result, Jex does not provide exception-flow information for static initialization
code.

Asynchronous Exceptions. Java supports asynchronous exceptions. An
asynchronous exception may arise from a virtual machine error, such as run-
ning out of memory, or when the stop method of a thread object is invoked.
Since any scope can potentially encounter these exceptions, there is no value
in reporting this information to users, and Jex does not report it.

Class-Hierarchy Analysis. The algorithm implemented in Jex to determine
the targets of a virtual method call relies on the definition, by the user, of a
set of packages to consider in the analysis. If a user fails to specify a relevant
package, Jex may not report some exception types that may arise through a
virtual method call. The tool can, in some cases, warn a user about this situation
(see Section 4.4). This approach for determining the value of the propagates
function can also be overly conservative. For example, some possible targets of
a virtual method call may never be bound at that program point. More precision
might be achieved using type-inferencing algorithms [Bacon 1998; Palsberg and
Schwartzbach 1991; Plevyak and Chien 1994]. Further investigation is needed
to determine whether the additional precision would benefit users and be cost
effective.

Semantic Analysis. The tool calculates the generates function based solely
on the type of input statement. For example, an integer division will consis-
tently generate an ArithmeticException. The results produced are thus con-
servative, and do not depend on the semantics of the program. In some cases,
semantic analyses, such as constant propagation [Callahan et al. 1986], could
help make the result of the generates function more precise. For example, an in-
teger division instruction should not generate an ArithmeticException if it can
be determined with certainty that the divisor is nonzero. Similarly, array-access
instructions should not generate an ArrayIndexOutOfBoundsException if it can
be determined with certainty that the array index is within the array bounds.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 209

Type inference for throw Statements. The tool calculates the raises function
using the static type of the expression following a throw keyword in a scope.
Technically, this information is incomplete since any subtypes of the static type
could also be raised by a throw statement. Type-inferencing algorithms could
potentially help determine a more precise set for the value of the type raised.
However, in practice, this additional analysis might not be cost effective. For
instance, other investigators have reported that “an overwhelming majority
of throw statements are new-instance expressions, and, therefore, require no
type-inference analysis” [Sinha and Harrold 2000, p. 860].

4.4 Using Jex

To run Jex, a user must provide a configuration file that describes the root of
the path for Jex files, the packages for which stubs must be generated, and
the packages to use for class-hierarchy analysis. The root path for the Jex
files indicates where the hierarchical directory structure containing Jex files
should be placed. As Jex runs, it expects a Jex file for any class it encounters.
Stub generation ensures that Jex files for all classes that need to be queried
for exception-flow information are present. The packages for class hierarchy
analysis list the classes that are to be considered for determining the method
implementations that can be involved at a method call.

Given this configuration information and the source files to analyze, Jex
iterates over the source, producing a Jex file for each class analyzed, until a
fixed point is reached. When the tool concludes, Jex produces a report with
warnings and errors. Warnings are issued when a call is made to a method
that is not defined by any class specified for class-hierarchy analysis. Such a
problem can be corrected, if desired, by adding the package in which the method
is defined. Errors are generated when a Jex file for a class is not found, or when
a source file cannot be compiled correctly.

After running Jex, a developer can inspect Jex files of interest to determine
the exception flow to a particular point in the program. This raw exception-flow
data can also be filtered or visualized to ease the developer’s investigation. For
instance, one filtering tool we have written automatically detects catch clauses
that catch exception types by subsumption; another filtering tool detects un-
used catch clauses. We have also built a tool to support the visualization of
exception flow in terms of various structural entities, including packages,
classes, methods, and components (a component is specified by the user as
a collection of packages, classes, and/or methods). Figure 11 shows a screen
snapshot of our visualizer, displaying part of the exception flow in a system
we analyzed. For this view, the developer selected two classes of interest, re-
sulting in the display (in boxes) of methods of the selected classes, as well as
methods from other classes that may cause exceptions to flow into methods of
the selected classes. The arcs between the boxes show the flow of exceptions
from one method to another. Hovering over an arc in the visualizer displays the
exception flow. For example, the view shows that the BB Member.init method
potentially propagates exceptions of eight different types to the BB Method.init

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

210 • M.P. Robillard and G.C. Murphy

Fig. 11. The exception flow vizualization tool.

method.4 The various structural entities we support in the visualizer allow a
developer to view exception flow at a coarse structural level, such as across
packages, and then to focus on the particular parts of the program of interest,
such as specific classes.

5. USING EXCEPTION FLOW

To evaluate the practical benefits of extracting exception flow for programs,
we ran our static analysis tool on three systems from different domains: the
classes of the javax.swing package from the Java Development Kit version
1.3; Bobby,5 a Java class file manipulation library; Mesquite [Maddison and
Maddison 2001], a molecular biology application for drawing and analyzing
phylogenetic trees. We chose to analyze both the libraries and applications in
order to cover a range of exception-handling behavior. Requirements for error
handling in libraries often differ from those in applications, as libraries can
assume errors will be handled by client code whereas robust applications must
perform all of the recovery.

Table I summarizes the size and characteristics of the systems analyzed.
This table provides some traditional size metrics, such as the total number of
packages, classes, fully defined (nonabstract) methods, and lines of source code
(LOC).6 The table also shows the total number of try blocks in each system.
This figure gives an indication of the amount of exception handling in each
system.

4In this case, all of the exceptions are unchecked; uncaught checked exceptions are reported
similarly.
5Now distributed as the Jikes Bytecode Toolkit (www.alphaworks.ibm.com/tech/jikesbt).
6All the LOC figures in this article indicate the number of lines of source code, not including
comments or blank lines.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 211

Table I. Systems Analyzed with Jex

System Packages Classes Methods LOC try blocks

Java swing classes 1 331 4097 33903 124
Bobby 1 117 1293 11134 42
Mesquite 25 460 5307 54487 107

We analyzed the exception-flow information produced by Jex for each system
both locally, at the guarded scope level, and globally, at the system level. The
guarded scope analysis allowed us to find places within the current exception-
handling structure that could be improved. The system-level analysis allowed
us to explore ways of integrating new exception-handling structures to improve
the overall robustness of a system.

5.1 Local Analysis

In Section 3.1, we discussed two challenges facing developers interested in
improving the exception-handling structure of a software system: detecting po-
tentially unused catch clauses, and detecting and indentifying potential cases
of improper handling of unexpected exceptions.

We used exception-flow information produced by Jex to address these con-
cerns. To find these cases in each system, we developed a small tool that ana-
lyzes a Jex file and that returns, for each try block, the number of unused catch
clauses, the number of uncaught exceptions, the number of exceptions caught
by their direct type, and the number of exceptions caught by subsumption.

In the Mesquite code, over a total of 107 try blocks (all with catch clauses),
we found seven unused handlers. Upon inspection, we found that five of
these handlers were for an unchecked exception, NumberFormatException,
that was not raised in the guarded block, and two of the handlers were for
FileNotFoundException. Although these two handlers involved a checked ex-
ception type, they were not flagged as unreachable by the Java compiler because
a method in the guarded scope declared to raise an IOException, a supertype of
FileNotFoundException. Based on our analysis, we determined that all of the
catch clauses in the Swing and Bobby systems apparently have a purpose.

Cases of potential improper handling of unexpected exceptions are more
subjective. Such cases can occur when a catch clause catches exception types by
subsumption. Figure 12 shows the significant percentage of exception types for
each system we analyzed that may be caught by subsumption. In each case, the
ratio represents the total number of different exception types encountered in
try blocks that are caught by subsumption to the total number of such exception
types that are caught, as calculated over all of the try blocks. The number of
uncaught exception types is not represented.

We used the exception-flow information produced by Jex to point us to poten-
tial cases of improper handling. We looked at all of the try blocks in a system
for which at least one exception type was caught by subsumption, and we in-
spected the code of the handler to determine whether it was specific to only a
subset of the exception types subsumed. The analysis resulted in one potential
trouble spot in the code of Bobby, one in the code of Mesquite, and five in Swing.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

212 • M.P. Robillard and G.C. Murphy

Fig. 12. Percentage of caught exceptions that are caught by subsumption.

In Bobby, one try block in method loadClassFromClassPath of class BB Class
declares a catch clause for the general Exception type. The catch clause is com-
mented as follows, “assume all exceptions are due to unexpected class formats”.
However, the Jex exception-flow analysis for the corresponding try block shows
that eight different exception types from eight different sources can be caught
by this handler. Thus, there is a possibility that the assumption might not hold.

In Mesquite, a catch clause in method setCurrentTool of class Mesquite-
Window declares type Throwable, the root of the Java exception type hierarchy, in
an attempt to catch some exception types that would indicate that a particular
version of the Java class libraries is unavailable. Since the handler assumes that
a particular library is not available, the handler code simply uses a default value
for a tool object. Even though this assumption might be true most of the time,
our analysis showed that the handler can catch eight different exception types
from 12 different sources. For the program to be robust, all of these exceptions
would have to correspond to an unavailable version of the library, which is not
the case.

For Swing, the information produced by Jex helped to point us to five poten-
tial trouble spots.

(1) JComponent.readObject—A handler assumes the failure of the ReadObject-
Callback method that declares an IOException. However, other exceptions
can be generated by the environment, or by the call to UIDefault.put.

(2) JEditorPane$HeaderParser.findInt—A catch clause declares the type
Throwable but recovers with default behavior. This catch clause can catch
many fatal errors.

(3) JEditorPane.read—A handler performs recovery based on the assump-
tion that a NullPointerException caught is propagated by a call to
HeaderParser.findValue. However, NullPointerException can also be
propagated by a call to putClientProperty, which does not correspond to
the semantics of the handler.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 213

(4) KeyStroke.getKeyStroke—An exception might cause this method to return
null according to the wrong semantics. This problem is documented in the
comments for the method.

(5) JTable$GenericEditor.getTableCellEditorComponent—The method re-
turns a null component under three exceptional conditions, one of which is
a potential null pointer dereference, which could make the system unstable.

In addition to helping in the detection of such potential trouble spots,
exception-flow information provides insight into how to improve the exception
structure in these cases by making explicit the types of exceptions that may
cause the handlers to be reached.

5.2 Global Analysis

We analyzed the exception-flow information produced by Jex for each system
from both a depth and a breadth perspective as described in Section 3.2. These
perspectives helped us determine ways in which we could improve the exception
handling in the Mesquite application and the Bobby library.

5.2.1 Global Breadth Analysis. Mesquite was designed using a “pluggable
module” paradigm, in which different combinations of modules can be loaded
at run-time and interact. To support this paradigm, the behavior of some of the
classes of the system is performed through the execution of a doCommandmethod,
defined in a Commandable interface. In total, 43 classes implement the doCommand
method. Many of these implementations invoke the doCommand method of other
classes.

Currently, doCommand methods are not guarded for exceptions. As a result,
various unexpected failures in commands can propagate to other commands.
Additionally, the last statement in most doCommand methods is a super call to
doCommand, that is, any command not recognized by a class is passed to the super-
class for interpretation. The lack of structure for dealing with command failures
can lead to the propagation of a number of uninformative exceptions. For ex-
ample, the doCommand method of class ManageForeignBlocks can encounter nine
different types of exceptions originating from 26 different sources—25 meth-
ods calls and the environment. Because the exceptions raised in doCommand do
not have any strong meaning in the context to which they are propagated, the
only possible recovery for clients is to catch all exceptions and to announce
a crash. Indeed most of the handlers in Mesquite only perform basic crash
recovery.

A possible first step to improving the robustness of Mesquite is to implement
handlers around the doCommand method that catch all exceptions. The handlers
would ensure that a doCommand method has only two modes of returning, either
normally or exceptionally, by raising a CommandFailedException. Exception-
flow information could then be used to implement the handlers. By inspecting
the various causes of failure within a doCommand method, it is possible to figure
out whether all of the exceptions in the method should simply be remapped
to CommandFailedException, or whether specific causes of failures should be
reported separately, through a subtype of CommandFailedException. Learning

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

214 • M.P. Robillard and G.C. Murphy

catch(Exception e)
{

started = false;
startupTime.end();
Debugg.printStackTrace(e);
zeroMenuResetSuppression();
module.alert(”There has been a problem starting up a module. ” +

”This may be the result of an old, incompatible module being used. ” +
” (module: ” + mb.getName() + ”; EXCEPTION: ” + e.getMessage() + ”)”);

}

Fig. 13. Handler for Exception in EmployerEmployee.startupEmployee.

about the various ways in which a method can fail can also enable better failure
messages to be encapsulated in an exception object.

Another example from Mesquite is the case of method startupEmployee of
class EmployerEmployee. This method implements the behavior to start a worker
module to perform some task. Currently, the handler performs basic recovery
by announcing to users of Mesquite that some problem has arisen. Figure 13
shows the code for the handler. Clearly, only basic recovery is provided, and the
cause for the crash provided to clients is hypothetical. In this case, exception-
flow analysis in the guarded block could help improve this handler by providing
specific origins for failures in a robust fashion.

5.2.2 Global Depth Analysis. Bobby is a library of classes to load and ma-
nipulate Java byte code. In the version of Bobby analyzed, many problems were
signaled as InternalErrors. In Java, InternalErrors are system-defined, po-
tentially asynchronous, exceptions that signal a problem with the Java virtual
machine [Gosling et al. 1996]. From the point of view of a library, this strategy
has drawbacks which were first identified in previous work [Robillard and Mur-
phy 2000]. For instance, a variety of problems, including bugs, inconsistencies,
user errors, invalid input, and locking problems are all signaled through one
exception type. As another example, the use of InternalError prevents client
code from catching errors in the Bobby class library independently from errors
raised in the application code.7 A possible improvement in this case is to con-
vert the InternalErrors to user-defined exceptions describing a problem with
the library. In doing so, one must decide how these errors should be reported.
Factors influencing this choice include the value of documenting an exception
and the cost of documenting it. The most inexpensive alternative, to make all
exceptions unchecked and undocumented, prevents any meaningful client-side
recovery. An intermediate alternative, documented unchecked exceptions, al-
lows, but does not ensure, client-side awareness at the cost of documenting all
methods raising the exception with a comment (e.g., the Javadoc @exception
comment). Finally, reporting the problems as checked exception ensures client-
side awareness at the cost of declaring the exception in the interface of each
method that can transitively propagate it. This also involves a cost for clients
modules which are then forced to handle or declare the exception. The value

7These problems were corrected in a later version of Bobby.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 215

of documenting an exception is determined by outside factors. The cost can
be determined by analyzing exception flow. Basically, exceptions with complex
propagation graph are expensive to document while ones with small graphs are
cheap.

In Bobby, method write(DataOutputStream) of class BB Class throws an
InternalError when an attempt is made to write out a class marked as a spe-
cial system class. An analysis of the depth of the exception flow shows that
the InternalError raised in write can only be propagated to three other meth-
ods. These methods, entry points to the library, do not propagate the exception
further within the library. The visibility for this exception is thus limited to a
total of four methods. The effort involved in documenting this case is to cre-
ate a new exception class, for example, IllegalClassWriteException, raised in
BB Class.write, and to document the interfaces of the four methods propagat-
ing it. Whether or not to make this exception a checked exception depends on
the frequency with which the case can occur, and on how critical it is for clients
to be aware of this case.

6. RELATED WORK

Various static analysis tools and techniques have been proposed to address
problems related to exception handling in different programming languages.
We distinguish between two broad classes of tools and techniques for exception
handling based on the underlying goal: human-oriented approaches, meant
to help developers build robust programs, and machine-oriented approaches,
meant to be integrated into compilers or other static analysis tools (e.g., dy-
namic optimization of exception handling [Ogasawara et al. 2001], or control-
and data-flow analysis in the presence of exceptions [Choi et al. 1999; Sinha
and Harrold 2000]). This section presents an overview of human-oriented ap-
proaches, as machine-oriented approaches are outside the scope of our work.

Human-oriented static analysis for exception handling has been proposed for
three languages with large user-bases: ML [Milner et al. 1990], a functional lan-
guage; Ada-83 [ANSI 1983], an imperative language; Java, an object-oriented
language.

The ML language represents exceptions as singular values that are not or-
ganized into a hierarchy and does not support exception interfaces [Lang and
Stewart 1998]. These two characteristics make it difficult for programmers to
ensure that all exceptions are caught. Pessaux and Leroy [1999] report that
uncaught exceptions are the most frequent mode of failure in large ML appli-
cations. The goal of the analyses for ML is thus to help programmers identify
the points in a program where different exceptions can be raised.

Guzmán and Suárez [1994] have proposed an extension of the ML type sys-
tem by which it is possible to estimate all uncaught exceptions that can be
raised. Their type system is limited in that it does not handle exceptions car-
rying arguments.

A different approach has been adopted by Yi [1998], who developed
an exception analyzer based on abstract interpretation techniques [Cousot
and Cousot 1977]. Since this analyzer suffered from performance problems,

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

216 • M.P. Robillard and G.C. Murphy

Yi and Ryu [1997] developed a more efficient one using control-flow analysis
and a set-constraints framework [Heintze 1992].

Fähndrich et al. [1998] have built an Exception Analysis Tool (EAT) that
allows the programmer to display uncaught exceptions in various scopes while
browsing the corresponding source code. EAT is based on BANE, a general
framework for implementing constraint-based program analyses. Yi’s tool is
more precise than EAT, but EAT, which uses a more conservative approach,
is more scalable. The EAT tool also provides support for visualizing the decla-
ration and handling of exceptions at different points in the program. Pessaux
and Leroy [1999] propose a type-based analysis of uncaught exceptions in ML
that offers different speed and precision tradeoffs than the previous constraint-
based approaches. Most of the work on exception analysis for ML focuses on
the technical difficulties and tradeoffs involved in the analysis, with little or
no discussion of how the results can be applied in a software engineering
context.

Ada exceptions share some of the characteristics of ML exceptions. In par-
ticular, they are defined according to a flat structure [Gauthier 1995], and the
language does not support exception interfaces. Tools proposed for Ada include
the work of Schaefer and Bundy [1993], and of Brennan [1993]. Similar to Jex,
these tools calculate the encounters function for all scopes in a program. How-
ever, since Ada-83 is not an object-oriented language and since Ada exceptions
are not organized hierarchically, their analysis does not need to consider dy-
namic method bindings or subsumption for handler selection. Furthermore,
neither of these approaches provides complete information about the flow of
predefined Ada exceptions. However, exceptions generated by language opera-
tions can play an important part in the behavior of a program under exceptional
circumstance: Jex includes the propagation paths for predefined exceptions in
its analysis. Additionally, the main focus of the work on Ada exception anal-
ysis was to detect specific defects in the code, such as unused handlers. Such
detection relates to local reasoning in our terminology. The tool described by
Brennan was originally meant to help systematically implement fault-tolerant
Ada programs following a compartmenting approach proposed by Litke [1990].
We have not found any report of the application of this technique in Ada, but
in earlier work, we reported on the use of Jex to evaluate the feasibility of
the approach for improving the design of exception structure in Java systems
[Robillard and Murphy 2000]. In comparison to the approaches for Ada, our
work considers support for both local and system-wide reasoning about excep-
tions in object-oriented systems.

Tools and algorithms have also been developed to analyze various aspects
of exception handling in Java. The first version of Jex [Robillard and Murphy
1999] was limited to version 1.0 of the Java language, and provided only a
subset of the generates function for any scope. These shortcomings have been
addressed in the version described in this article. Sinha and Harrold [1999]
have described a framework and methodology for selecting unit and integra-
tion test cases for Java programs that contain exception-handling constructs.
Ryder et al. [1999] have built the Java Exception Static Profiler (JESP), a suite

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 217

of tools to extract statistical information about the frequency of the occur-
rence of exception-handling structures in Java programs. Ryu and Yi [2001]
have proposed an algorithm for the exception analysis of an extension of the
Java language that supports the propagation of exceptions across threads.
Their language extension involves a new keyword for raising an exception
in a different thread. The analysis involves first determining the expres-
sions of a program that can be executed concurrently, and then analyzing
the flow of exceptions between concurrent expressions. Their analysis of ex-
ception flow is based on the resolution of constraints on the type of expres-
sions in a Java program. No implementation of this analysis was described
in the work cited above, so the practical feasibility of the approach remains
to be evaluated. In our work, because we support the Java language with-
out special extensions, we do not distinguish thread-related exceptions from
other asynchronous exceptions, which can theoretically be raised at any pro-
gram point. For that reason, we do not consider asynchronous exceptions in our
analysis.

Chang et al. [2001] have proposed an interprocedural exception analysis
also based on the set-constraints framework. Their exception-flow analysis of-
fers a refinement over the one performed by the Java compiler. This analysis
determines more precisely the types of exceptions that can be propagated by a
method, based on an analysis of the types of expressions in throw statements.
The analysis, however, does not include the flow of unchecked exceptions, in-
cluding exceptions generated by the Java virtual machine at run-time. This
precludes examining many of the problems we discussed in this article, such
as the unanticipated handling of unexpected exceptions. In contrast, the model
we propose is intended to address all synchronous exceptions that can be raised
in a Java program, and, to this effect, the Jex tool supports the analysis of both
checked and unchecked exceptions.

Chang et al. [2002] have also reported on a visualizer they have created to
show exception propagation in Java programs. Their visualizer consists of tex-
tual views in an integrated development environment that allow a developer
to view, for a selected method, a list of uncaught checked exceptions for that
method, and to see the propagation path of those exceptions from their origin. In
contrast, our visualizer provides graphical views of the exception flow at differ-
ent levels of structural detail, from methods, to packages, and user-specified
components. Our intent is to allow a developer to investigate the overall
exception flow in a system.

7. CONCLUSIONS

It is not uncommon for users of software applications to become frustrated
by misleading error messages or program failures. Exception-handling mech-
anisms present in modern programming languages provide a means to enable
software developers to build applications that avoid these problems. Building
and evolving applications with appropriate error-handling strategies, though,
requires support above and beyond that provided by a language’s compiler or

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

218 • M.P. Robillard and G.C. Murphy

linker. To implement an appropriate strategy, a developer requires knowledge
about how exceptions might flow through a system. Unfortunately, exception-
handling mechanisms introduce a different control flow that can be diffi-
cult, if not impossible, to assess. In object-oriented languages where excep-
tions are defined as objects, the control flow of a program under exceptional
circumstances is determined by the type of the exception objects that are
raised.

In this article, we have shown the need for a developer to reason about excep-
tion flow when producing robust systems, and we have presented a model that
encapsulates the minimal concepts necessary for a developer to understand
exception flow for object-oriented languages that define exceptions as objects.
Researchers interested in the use of exception-flow information for the pur-
pose of software engineering tasks can build on this minimal model to describe
techniques and methodologies that use exception-flow information.

Using the concepts of this exception-flow model, we have described why ex-
ception flow information is necessary to build and evolve robust programs.
Exception-flow information can be used both at the level of guarded scopes,
to detect and correct problems such as unused handlers, and at the global level,
to improve exception-handling policies based on the knowledge of how certain
exceptions can propagate through the system.

We have also described Jex, a static analysis tool we have developed to pro-
vide exception-flow information for Java systems. The Jex tool extracts infor-
mation about the structure of exceptions in Java programs, providing a view of
the actual exception types that might arise at different program points and of
the handlers that are present. Use of this tool on a collection of Java library and
application source code demonstrates that the approach can be helpful to sup-
port both local and global improvements to the exception-handling structure of
a system.

The model of exception flow described in this article, and the corresponding
challenges a developer faces when trying to assess exception flow, are based only
on the characteristics of the general exception-handling mechanism targeted
by our work, and do not integrate any specific programming language seman-
tics. For this reason, both the model presented, the problems discussed, and
the functionality for the exception-flow analysis tool described in this article
are in theory applicable to any object-oriented programming language that
define exceptions as objects. Furthermore, even if the implementation of an
exception-flow analysis tool is inevitably language-specific, many of the chal-
lenges we faced in the implementation of Jex will have to be addressed for
other languages. Researchers and practitioners wishing to develop exception-
flow analysis technologies for other languages can thus build on our work to
elicit the tool requirements, plan the design and implementation of the tool,
and evaluate the results.

ACKNOWLEDGMENTS

We thank Lindsay Mason, who was instrumental in the development of the
exception-flow visualizer, and Wayne Maddison, who generously contributed

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 219

help and feedback during the analysis of the Mesquite system. We also thank
Jonathan Sillito and the anonymous referees, for their thorough and insightful
comments on this article.

REFERENCES

ABADI, M. AND CARDELLI, L. 1996. A Theory of Objects. Monographs in Computer Science, Springer-
Verlag, New York, NY.

BACON, D. F. 1998. Fast and effective optimization of statically typed object-oriented languages.
Ph.D. Thesis CSD-98-1017, (Oct.), University of California, Berkeley.

BRENNAN, P. T. 1993. Observations on program-wide Ada exception propagation. In Proceedings
of the Conference on TRI-Ada ’93 (Sept.). ACM, 189–195.

BUHR, P. A. AND MOK, W. R. 2000. Advanced exception handling mechanisms. IEEE Trans. Softw.
Eng. 26, 9 (Sept.), 820–836.

CALLAHAN, D., COOPER, K. D., KENNEDY, K., AND TORCZON, L. 1986. Interprocedural constant propa-
gation. In Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction (June). ACM,
152–161.

CHANG, B.-M., JO, J.-W., AND HER, S. H. 2002. Visualization of exception propagation for Java using
static analysis. In Proceedings of the Second International Workshop on Source Code Analysis
and Manipulation (Oct.). IEEE , CA, 173–182.

CHANG, B.-M., JO, J.-W., YI, K., AND CHOE, K.-M. 2001. Interprocedural exception analysis for Java.
In Proceedings of the 2001 ACM Symposium on Applied Computing (March). ACM, 620–625.

CHOI, J.-D., GROVE, D., HIND, M., AND SARKAR, V. 1999. Efficient and precise modeling of exceptions
for the analysis of Java programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (Sept.). ACM, 21–31.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the Fourth Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Jan.). ACM,
238–252.

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Optimization of object-oriented programs using static
class hierarchy analysis. In Proceedings of the Ninth European Conference on Object-oriented
Programming. Lecture Notes in Computer Science (Aug.), vol. 952. Springer-Verlag, 77–101.

DONY, C. 1990. Exception handling and object-oriented programming: towards a synthesis. In
Proceedings of the Conference on Object-oriented Programming Systems, Languages, and Appli-
cations, and of the European Conference on Object-oriented programming (Oct.). ACM, 322–330.

FAHNDRICH, M., FOSTER, J., CU, J., AND AIKEN, A. 1998. Tracking down exceptions in standard ML
programs. Tech. Rep. CSD-98-996, Feb. University of California, Berkeley.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns—Elements of Reusable
Object-Oriented Software. Addison Wesley Longman, Inc., Reading, MA.

GAUTHIER, M. 1995. Exception handling in Ada-94: Initial users’ requests and final features. ACM
Ada Letters, XV, 1 (Jan./Feb.), 70–82.

GOODENOUGH, J. B. 1975. Exception handling: Issues and proposed notation. Commun.
ACM, 18, 12 (Dec.), 683–696.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification. Addison Wesley.
Longman, Inc., Reading, MA.

GUZMÁN, J. C. AND SUÁREZ, A. 1994. A type system for exceptions. In Proceedings of the 1994 ACM
SIGPLAN Workshop on ML and Its Applications (June). ACM, 127–135.

HALBERT, D. C. AND O’BRIEN, P. D. 1987. Using types and inheritance in object-oriented program-
ming. IEEE Softw. 4, 5 (Sep.), 71–79.

HEINTZE, N. 1992. Set-based program analysis. Ph.D. Thesis (Oct.), Carnegie-Mellon University,
Pittsburgh, PA.

LANG, J. AND STEWART, D. B. 1998. A study of the applicability of existing exception-handling tech-
niques to component-based real-time software technology. ACM Trans. Program. Lang. Syst. 20, 2
(Mar.), 274–301.

LISKOV, B. H. AND SNYDER, A. 1979. Exception handling in CLU. IEEE Trans. Softw. Eng. 5, 6
(Nov.), 546–558.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

220 • M.P. Robillard and G.C. Murphy

LISKOV, B. H. AND WING, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst. 16, 6 (Nov.), 1811–1841.

LITKE, J. D. 1990. A systematic approach for implementing fault tolerant software designs in
Ada. In Proceedings of the Conference on TRI-ADA ’90 (Dec.). ACM, 403–408.

MADDISON, W. AND MADDISON, D. 2001. Mesquite: A modular system for evolutionary analysis.
http://mesquiteproject.org.

MILLER, R. AND TRIPATHI, A. 1997. Issues with exception handling in object-oriented systems. In
Proceedings of the 11th European Conference on Object-Oriented Programming. Lecture Notes
in Computer Science (June), vol. 1241. Springer-Verlag, New York, NY, 85–103.

MILNER, R., TOFTE, M., AND HARPER, R. W. 1990. The Definition of Standard ML. MIT Press,
Cambridge, MA.

OGASAWARA, T., KOMATSU, H., AND NAKATANI, T. 2001. A study of exception handling and its dynamic
optimization in Java. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (Oct.). ACM, 83–95.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1991. Object-oriented type inference. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications (Oct.). ACM,
146–161.

PESSAUX, F. AND LEROY, X. 1999. Type-based analysis of uncaught exceptions. In Proceed-
ings of the 26th Symposium on the Principles of Programming Languages (Jan.). ACM, 276–
290.

PLEVYAK, J. AND CHIEN, A. A. 1994. Precise concrete type inference for object-oriented languages.
In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (Oct.). ACM, 324–340.

ROBILLARD, M. P. AND MURPHY, G. C. 1999. Analyzing exception flow in Java programs. In Pro-
ceedings of the Seventh European Software Engineering Conference and Seventh ACM SIGSOFT
Symposium on the Foundations of Software Engineering. Lecture Notes in Computer Science
(Sept.) vol. 1687. Springer-Verlag, New York, NY, 322–337.

ROBILLARD, M. P. AND MURPHY, G. C. 2000. Designing robust Java programs with exceptions. In
Proceedings of the 8th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (Nov.). ACM Press, New York, NY, 2–10.

ROMANOVSKY, A. AND SANDÉN, B. 2001. Except for exception handling. Ada Letters 21, 3 (Sept.),
19–25 (Proceedings of the Workshop on Exception Handling for a 21st Century Programming
Language).

RYDER, B. G., SMITH, D., KREMER, U., GORDON, M., AND SHAH, N. 1999. A static study of Java
exceptions using JESP. Tech. Rep. DSC-TR-406 (Oct.). Department of Computer Science, Rutgers
University.

RYU, S. AND YI, K. 2001. Exception analysis for multithreaded Java programs. In Proceedings of
the Second Asia-Pacific Conference on Quality Software (Dec.). IEEE Computer Society Press,
Los Alamitos, CA, 23–30.

SCHAEFER, C. F. AND BUNDY, G. N. 1993. Static analysis of exception handling in Ada. Softw. Pract.
Exper. 23, 10 (Oct.), 1157–1174.

SCOTT, M. L. 2000. Programming Language Pragmatics. Morgan Kaufmann Publishers, San
Francisco, CA.

SHELEKHOV, V. I. AND KUKSENKO, S. V. 1999. Data flow analysis of Java programs in the presence
of exceptions. In Proceedings of the third International Andrei Ershov Memorial Conference on
Perspectives of System Informatics. Lecture Notes in Computer Science (July), vol. 1755. Springer-
Verlag, New York, NY, 389–396.

SINHA, S. AND HARROLD, M. J. 1999. Criteria for testing exception-handling constructs in Java
programs. In Proceedings of the International Conference on Software Maintenance (Sept.). IEEE
Computer Society Press, Los Alamitos, CA, 265–274.

SINHA, S. AND HARROLD, M. J. 2000. Analysis and testing of programs with exception handling
constructs. IEEE Trans. on Softw. Eng. 26, 9 (Sept.), 849–871.

STROUSTRUP, B. 1991. The C++ Programming Language, 2nd ed. Addison Wesley Longman, Inc.,
Reading, MA.

U.S. Department of Defense 1983. Reference Manual for the Ada Programming Language,
ANSI/Military Standard MIL-STD-1815A-1983. U.S. Department of Defense.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

Static Analysis for the Evolution of Exception Structure • 221

YEMINI, S. AND BERRY, D. M. 1985. A modular verifiable exception-handling mechanism. ACM
Trans. Program. Lang. Syst. 7, 2 (Apr.), 214–243.

YI, K. 1998. An abstract interpretation for estimating uncaught exceptions in standard ML
programs. Sci. Comp. Program. 31, 1 (May), 147–173.

YI, K. AND RYU, S. 1997. Towards a cost-effective estimation of uncaught exceptions in SML
programs. In Proceedings of the 4th International Static Analysis Symposium. Lecture Notes in
Computer Science (Sept.), vol. 1302. Springer-Verlag, 98–113.

Received April 2002; revised November 2002; accepted July 2003

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 2, April 2003.

