

© 2009 IEEE. Persona l use of this materia l is permitted. However, permission to reprint/republ ish this material for advertis ing or promotional

purposes or for creating new col lective works for resale or redistribution to servers or l ists, or to reuse any copyrighted component of this work

in other works must be obtai ned from the IEEE.

For more information, pl ease see www.ieee.org/web/pub l ications/rights/index.html.

www.computer.org/software

What Makes APIs Hard to Learn?
Answers from Developers

Martin P. Robillard

Vol. 26, No. 6

November/December 2009

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E November/December 2009 I E E E S O F T W A R E 27

focus

An API is the interface to implemented func-
tionality that developers can access to perform
various tasks. APIs support code reuse, provide
high-level abstractions that facilitate program-
ming tasks, and help unify the programming ex-
perience (for example, by providing a uniform
way to interact with list structures). However,
APIs have grown very large and diverse, which
has prompted some to question their usability.1
It would be a pity if the difficulty of using APIs
would nullify the productivity gains they offer. To
ensure that this doesn’t happen, we need to know
what makes APIs hard to learn.

Common sense indicates that an API’s struc-
ture can impact its usability (see the “API Usabil-
ity” sidebar).2 This intuition is reflected by efforts
to flesh out sound design principles for APIs and
empirical studies on the impact of design structure
on API usability.3–5 However, APIs don’t exist in
isolation, and other factors can also affect how de-
velopers experience them. So, what exactly does
make an API hard to learn?

To answer this question, I investigated the ob-
stacles professional developers at Microsoft faced
when learning how to use APIs. As opposed to
previous API usability studies that focused on spe-
cific design aspects, I used an approach completely
grounded in developers’ experience. By surveying

and interviewing developers about the obstacles
they faced learning APIs, I discovered many is-
sues that complement those mentioned in API de-
sign textbooks and articles. In particular, I found
that API learning resources are critically impor-
tant when considering obstacles to learning the
API, and as worthy of attention as the structural
aspects of the API. I also elicited specific relation-
ships between resources and API usage that API
designers and documentation writers shouldn’t
overlook when designing API documentation.
First, information about the high-level design of
the API is necessary to help developers choose
among alternative ways to use the API, to struc-
ture their code accordingly, and to use the API as
efficiently as possible. Second, code examples can
become more of a hindrance than a benefit when
there’s a mismatch between the tacit purpose of
the example and the goal of the example user.
Finally, some design decisions can influence the
behavior of the API in subtle ways that confuse
developers.

Survey Design
In February and March 2009, I conducted a sur-
vey to gather information about developers’ ex-
periences learning APIs. Specifically, I sought
to identify areas of concern and themes worthy

M ost software projects reuse components exposed through APIs. In fact,
current-day software development technologies are becoming inseparable
from the large APIs they provide. To name two prominent examples, both
the Java Software Development Kit and the .NET framework ship with

APIs comprising thousands of classes supporting tasks that range from reading files to
managing complex process workflows.

A study of obstacles
that professional
Microsoft developers
faced when learning
to use APIs uncovered
challenges and
resulting implications
for API users
and designers.

Martin P. Robillard, McGill University

What Makes APIs
Hard to Learn?
Answers from Developers

c o op er a t iv e and hum an a sp e c t s o f S E

28 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

of detailed investigation (as opposed to produc-
ing generalizable descriptive statistics). To ensure
that I didn’t bias the results with preconceptions
about obstacles I thought developers would face,
I left the main questions open-ended. The survey
consisted of 13 questions, with the initial three
assessing the respondent’s professional experi-
ence. To focus the survey’s answers and get the
developers thinking about specifics, the remain-
der asked them to comment on their most recent
learning experiences with a publicly released API.

The survey’s core consisted of a three-part,
open-ended question on the obstacles developers
faced learning APIs:

What obstacles made it difficult for you to
learn the API? Obstacles can have to do
with the API itself, with your background,
with learning resources, etc. List the three
most important obstacles, in order of impor-
tance (1 being the biggest obstacle). Please
be more specific than the general categories
mentioned here.

I formatted this question as three comment
boxes. Respondents could fill in any number of
boxes, from none to all three. In addition, the
survey asked for information intended to help in-
terpret the respondent’s answers and discover his
or her API learning strategies. I gathered con-
text through seven questions on the specific API
learned, the time frame, familiarity with the ap-
plication domain, and so on. Three questions
on learning strategies asked how developers ap-
proached learning the API and were formatted in
the same style as the obstacle question.

The survey concluded by asking for additional
comments and if respondents would be willing to
participate in future research.

Population and Sample
The survey targeted software developers at Mi-
crosoft. Microsoft’s software development staff
consists of roughly 30,000 engineers, mostly de-

velopers, testers, and program managers. For the
purpose of the survey, I considered all employees
whose title implies software development as de-
velopers, but excluded testing engineers due to the
specialized nature of their work.

Because the survey also served to recruit par-
ticipants for in-person interviews, the sampling
frame6 I used was the list of all Microsoft devel-
opers working at Microsoft’s Redmond, Wash.,
campus. This sampling frame includes many
thousands of professional developers. From this
pool, I randomly selected 1,000 and sent them a
link to the survey. Targeted developers had two
weeks to complete it.

Survey Respondents
A total of 83 developers answered the survey.
However, three respondents didn’t provide an-
swers to the six open questions on strategies and
obstacles, so I discarded their responses. Despite
the response rate of 8 percent, the set of respon-
dents constituted an excellent representation of
the target population, cutting across job titles, se-
niority levels, and technology use.

Figure 1 shows the distribution of respondents
across job titles and the corresponding distribu-
tion of job titles across the population (Redmond
developers). The four leftmost bar groups repre-
sent four seniority levels for software develop-
ment engineers (SDEs). Each bar group repre-
sents a distinct job title with different associated
responsibilities. The following four bar groups
represent job titles in development management
(lead SDEs). Although technically a management
position, lead SDEs are typically involved in ac-
tive software development along with their team.
The next two bar groups represent seniority lev-
els for architects, a multidisciplinary role involv-
ing both program management and software de-
velopment. Finally, the population also included
a small fraction of developers with other titles
(typically specialists in areas such as security
and user experience), but I didn’t get respondents
from this pool. Among general job categories, ti-
tles run left to right, from junior to senior.

As the figure shows, respondents’ distribution
across job titles in the sample closely maps that of
the population. Across all job titles, respondents
had on average 12.9 years of professional experi-
ence (self-reported). The median was 10 years, and
90 percent reported four of more years of profes-
sional experience. The respondents also reported
on their aggregated experience learning 54 distinct
APIs covering a wide span of technologies, abstrac-
tion levels, and application domains. Examples of

API Usability

This article focuses on the obstacles to learning an API. Although learnabil-
ity is only one dimension of usability, there’s a clear relationship between the
two, in that difficult-to-use APIs are likely to be difficult to learn as well. Many
API usability studies focus on situations where developers are learning to use
an API. www.apiusability.org provides an extensive list of resources on API
usability, including additional references to studies not mentioned here due to
space limitations.

 November/December 2009 I E E E S O F T W A R E 29

APIs the respondents reported learning included
one that provides access to personal information
manager data on Windows mobile-based devices,
classic windowing APIs, and Microsoft’s most re-
cent Web application development platform.

Survey Results
I analyzed the data by identifying major catego-
ries of responses and labeling each response by
category and subcategory. Because no clear trend
emerged from the ranking of response data for
both strategies and obstacles, I ignored this facet
of the survey.

Responses on learning strategies yielded few
surprises. Of the 80 respondents, 78 percent in-
dicated they learned APIs by reading documenta-
tion, 55 percent used code examples, 34 percent
experimented with APIs, 30 percent read articles,
and 29 percent asked colleagues. Lower-frequency
items included a wide variety of other strategies,
such as reading books or tracing code through a
debugger. In addition to providing a general under-
standing of how developers approach APIs,7 this
part of the survey, along with the responses to the
general “comments” question, yielded few oppor-
tunities for deeper analysis. The rest of this article
is therefore concerned with the obstacles develop-
ers faced when learning APIs.

I derived five major categories from the re-
sponses to the “obstacles” question (see Table 1).
For each category, the table provides a description
and the number of associated respondents. A total

of 74 respondents mentioned at least one obstacle.
I associated respondents with categories when they
indicated at least one obstacle in that category. For
example, 50 (out of 74) respondents mentioned at
least one obstacle relating to API resources. Some
responses pertained to multiple categories.

A major result of the survey is that resources
topped the list of obstacles to learning APIs. This
is a good reminder that efforts to improve the us-
ability of an API’s structure2–4 need to be comple-
mented by efforts to improve the resources avail-
able to learn them.

The refined categorization of the resource-
related responses elicited six categories with at
least eight associated respondents (listed under
“Resources” in Table 1).

Except for general gripes about the official doc-
umentation released with the API (“General”), this
classification reveals the variety of challenges fac-
ing the personnel in charge of producing resources
for APIs. Namely, to mitigate obstacles, API docu-
mentation must

 ■ include good examples,
 ■ be complete,
 ■ support many complex usage scenarios,
 ■ be conveniently organized, and
 ■ include relevant design elements.

A refined categorization of the structure-
related responses elicited two subcategories
with at least eight associated respondents (listed

40

35

30

25

20

15

10

5

0

21

28

Ra
tio

 to
 to

ta
l (

%
)

Sample

Population

Novice Senior Novice Senior Novice Senior

OtherLead SDEsSoftware dev. engineers (SDEs) Architects

15

4

0
1

0
2

Job title

5

2 2

Figure 1. Distribution of
respondents across job
titles. Most respondents
(49 percent) were
developers with junior
or intermediate job
titles. The distribution
of respondents across
job titles closely maps
that of the population.

30 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

under “Structure” in Table 1). These subcatego-
ries confirm the generally held view that an API’s
basic design does impact its users. However, the
responses also bring to light that an API’s testabil-
ity and the ease of reasoning about its runtime be-
havior also have an important impact. For exam-
ple, a respondent indicated being hindered due to
a “subtle difference in behavior of APIs depending
on context.”

Hearing from Respondents
To understand more deeply how developers deal
with new APIs in their daily work, I conducted a
series of 12 interviews with Microsoft software
developers recruited from survey respondents and
personal contacts. The goal was to get a detailed
picture of important obstacles developers faced
when learning new APIs, the context in which
these obstacles occurred, and infer possible causes
for these obstacles. For this reason, I again chose an
open-ended, loosely structured style of qualitative
interview,8 which consisted of asking participants
to summarize their work with the API and explain
the obstacles they faced. Interviews lasted between
15 and 45 minutes and were audio-recorded.

Although I conducted this study with Micro-
soft developers who might not be representative
of all API users, the results should be usable by
others working with APIs. Indeed, the main les-

sons derived from the survey and interviews don’t
concern the frequency or predominance of spe-
cific trends, but a detailed interpretation of how
different situations played out in practice and the
lessons we can derive from them.

Emerging Questions
From considering the aggregated survey results,
reading the individual responses, and study-
ing the interview transcripts, several important
themes emerged. In choosing material for this
article, I favored themes that went beyond well-
known issues, as opposed to a systematic cover-
age of the concerns mentioned by respondents
(survey) and participants (interviews). In doing
so, I left out interactions that described valid but
well-known issues. For example, one participant
described the difficulty of choosing the right
function among alternatives in the Win32 API.
The participant referred to the practice of adding
functionality to an API without breaking back-
ward compatibility by introducing “extension
methods” with the “Ex” suffix:

There is a function CreateWindow, and a
function CreateWindowEx. Ex creates some
new types of windows, which weren’t created
in the earlier functions of the API. So they are
growing the [set of] functions, but sometimes

Table 1
Response categories for API learning obstacles

Main category Subcategories/descriptions
Associated
respondents

Resources Obstacles caused by inadequate or absent resources for learning the API (for example, documentation) 50

Examples Insufficient or inadequate examples 20

General Unspecified issues with the documentation 14

Content A specific piece of content is missing or inadequately presented in the
documentation (for example, information about all exceptions raised)

12

Task No reference on how to use the API to accomplish a specific task 9

Format Resources aren’t available in the desired format 8

Design Insufficient or inadequate documentation on the high-level aspects of
the API such as design or rationale

8

Structure Obstacles related to the structure or design of the API 36

Design Issues with the API’s structural design 20

Testing and debugging Issues related to the API’s testing, debugging, and runtime behavior 10

Background Obstacles caused by the respondent’s background and prior experience 17

Technical
environment

Obstacles caused by the technical environment in which the API is used (for example, heterogeneous system,
hardware)

15

Process Obstacles related to process issues (for example, time, interruptions) 13

 November/December 2009 I E E E S O F T W A R E 31

you have to read through the documentation
to find out which function you should call.

By now, API designers have explicitly recog-
nized this practice as problematic.3

In the end, the three themes that offered the
best insights were the necessity to understand the
API’s design aspects and rationale on an as-needed
basis, obstacles related to using code examples,
and the challenges of dealing with an API’s seem-
ingly inexplicable behavior.

Understanding Design Aspects and Rationale
Many survey respondents expressed the feeling
that a lack of knowledge about the API’s high-level
design hindered their progress:

I don’t understand the design intents behind
the API, the overall architecture, why certain
functions are designed as such.

But why do users need to know about an API’s
high-level design and the intent behind it? Gen-
eral API design guidelines include the principle of
“low barrier to entry.” According to this principle,
developers should design APIs so that their users
only need to “take the time to fully understand the
whole architecture if they find a particular feature
interesting or if they need to move beyond simple
scenarios.”3 But is the need to learn more of the
design completely explained by the transition from
basic to advanced usage scenarios? As it turns out,
moving beyond trivial usage involves many types
of decisions that can be informed by high-level
design. Seven participants specifically said that to
properly understand an API, they needed to un-
derstand its high-level design. The major insight
resulting from this data is that knowledge of an
API’s high-level design (and its rationale) can help
developers choose among alternative ways to use it,
structure their code accordingly, and employ it as
efficiently as possible.

One participant explained the issue directly:

One of the things that I struggle with is trying
to figure out when there’re multiple ways of
doing something. Which one is more appro-
priate? I’m not entirely sure … Sometimes it’s
difficult to know without going and asking.
But you don’t necessarily have time to go and
ask the experts, if you can find them.

A different participant independently echoed
these comments on the value of experts for provid-
ing the API’s design context:

I had the luck of actually working with the
main guys that designed it, so I could go and
ask people: ‘Hey! Why is this like that?’ And
they would give me the background.

Choosing among alternative usages of an API is
a decision that well illustrates the underlying chal-
lenge of understanding relevant parts of an API’s
high-level design on a need-to-know basis, as op-
posed to systematic study (as Janet Nykaza and
her colleagues similarly observed7).

Many participants also indicated, explicitly or
tacitly, a desire to understand the design and ra-
tionale of the API to use it as efficiently as pos-
sible. Phrases such as “it would help you make
your code better” and “use it the most efficiently”
weren’t uncommon when participants spoke about
the value of design knowledge. One participant ex-
plicitly linked knowledge of design intent with a
smooth API usage experience.

When you’re building a framework, there’s
an intent … if you can understand what the
intent was, you can often code efficiently,
without much friction. If you don’t know
what the intent is, you fight the system.

Working with Code Examples
In studies of developers, examples often emerge as
a key learning resource.1,7,9 As Samuel McLellan
and his colleagues summarize, “The code examples
supported several different learning activities, such
as understanding the purpose of the library, its us-
age protocols, and its usage context.”1 It’s no sur-
prise that both survey respondents and interview
participants repeatedly mentioned code examples.
In fact, more than one-quarter of all respondents
identified the absence of API usage examples tai-
lored to their needs as an obstacle to learning the
API. My detailed analysis of the data largely con-
firmed McLellan and his colleagues’ observations
but also explained in more detail how examples
support API learning. In fact, studying how exam-
ples fail to support developers provided the richest
insights about the role of examples in API learning.

We can divide code examples, very roughly,
into three categories. In the first category (snip-
pets), we find small code snippets intended to
demonstrate how to access the basic API func-
tionality. At Microsoft, technical writers author
snippets provided in the Microsoft Developer
Network Library (MSDN). A typical snippet on
MSDN is the 30-line function showing how to
read from and write to files. Tutorial examples
form the second category (tutorials). Tutorials

 Seven
participants
said that to
properly

understand
an API, they
needed to

understand
its high-level

design.

32 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Design
decisions
that can

impact API
usage should
be traceable

from the
point-of-entry
documentation

pages.

are typically longer, consist of multiple code seg-
ments, and form a more or less complete appli-
cation. They can be embedded in prose and are
intended to teach developers a specific aspect of
the API. Tutorials can be found on MSDN as
well as in blogs and books. The third category
of examples consists of code segments from com-
plete applications (applications). Applications in-
clude both the demonstration samples sometimes
distributed with an API and open source proj-
ects that developers can download from various
source code repositories.

Examples can become more of a hindrance
than a resource when there’s a clear mismatch be-
tween the example’s purpose and the user’s goal.
Most issues with examples were related to partic-
ipants wanting to use snippets for purposes that
went beyond basic interaction with the API. Spe-
cifically, participants referred to the following us-
ages when discussing examples:

 ■ providing “best practices” of an API’s use;
 ■ informing the design of code that uses the API;
 ■ providing rationale about an API’s design; and
 ■ confirming developers’ hypotheses about how
things work.

Among these, the most prevalent frustration
was that snippets didn’t provide any support for
thinking about “how to put things together:”

The problem is always, when I feel I can’t
make progress … when there’s multiple func-
tions or methods or objects together that,
individually they makes sense but sort of the
whole picture isn’t always clear, from just the
docs.

In cases where snippets didn’t support the de-
veloper’s goal, there was sometimes a progres-
sion to the use of tutorials and applications. For
instance, a participant explained how a scenario
involving multiple function calls wasn’t supported
by snippets in MSDN:

So they have an example showing: “this is
how you create a connection, this is how
you issue a command with SQL.” It wasn’t
clear from there what to do if I want to do
two commands. […] So later I looked into a
book and I learned that you have to close the
connection, you have to close the command
before you can issue another command. I
was trying to issue two commands and I was
just getting an exception.

In addition to the increased effort of using
books or downloading examples from the Inter-
net, we can explain the progression from snip-
pets to applications on an as-needed basis by other
trade-offs, including the need to validate examples
found on the Internet.

There are examples there [on the Internet] but
some of them seem to be quite old. […] Those
examples would still run but I don’t think
they have the most recent way of doing stuff.

Unchecked obsolescence of available resources
is only one reason why the collection of user-
created Internet resources (“the cloud”) isn’t the
ultimate solution for obtaining API learning re-
sources. Another issue is the credibility of the ex-
amples’ source. Examples that are more strongly
tied to the API’s creators seem more attractive be-
cause they seem to validate the rationale for using
the API in a specific way:

[The example] at least gets you thinking that
they are doing it in this particular way so
there must be a reason why they chose this
particular model […]. Even if I don’t com-
pletely understand why, I’ll do that anyway,
just because that’s what they say the best
practice is, and I assume that the people who
design the framework have a pretty good idea
of what the best practice ought to be.

However reasonable this assumption, it should
be made with care because the people who write
API documentation at Microsoft aren’t the people
who develop the API.

Dealing with Magic
Respondents often mentioned being puzzled by
an API’s behavior and wanting to access its imple-
mentation to solve the puzzle. In his API design
guidelines, Bloch encourages developers to “obey
the principle of least astonishment” because sur-
prised users introduce bugs.5 Survey responses
show that this general principle can be hard to put
in practice. The interviews helped reveal specific
factors that astonish developers.

Studying multiple cases of puzzling API behav-
ior elicited a common trend: the API’s high-level de-
sign explained puzzling behavior to a large extent
and wasn’t clearly reflected in the low-level docu-
mentation. Consequently, the API behaved as docu-
mented, but developers had difficulty discovering
and interpreting the explanation for its behavior.

In one case, a participant using an activities

 November/December 2009 I E E E S O F T W A R E 33

workflow API couldn’t understand why the dif-
ferent activities he created didn’t run in separate
threads. In this case, the API’s design model
was counterintuitive, and the participant had
to read a book by the API’s developers to use it
properly.

In another case, a participant who had learned
one API was working on a different API derived
from the first one. Incompatibilities between the
two were unsettling:

If you have a code base here [with one API]
and you try to do the same thing [with the
other API] and all of a sudden it doesn’t
work, and you don’t know why. So, how do
you tackle that?

For a third participant, one specific type of
user interface component didn’t seem to detect
clicks from mouse events, whereas all other simi-
lar components did. A nonstandard default value
explained by the component’s role in the compo-
nent hierarchy apparently caused this behavior.

So, that’s an example of how you can dig it
out of the docs post mortem, after you know
what happened, but you couldn’t predict that
behavior ahead of time from the class-level
documentation.

What these cases have in common are that
some aspects of the API’s design have observable
consequences on the API’s behavior but aren’t
explained clearly in its low-level documentation.
As a result, they didn’t surface when developers
first tried to use the API, leading to inexplicable
behavior.

One coping strategy for such situations was a
desire to inspect the API’s implementation. For ex-
ample, one respondent indicated that an obstacle
was

no view of the implementation. Good API
design shouldn’t require this, but in reality,
understanding the internals can make a big
difference in how well an API is used.

This trend is interesting because it goes against
received knowledge about the principle of infor-
mation hiding. As another example, in responding
to a question about what led him to look at the
API source code, a participant answered,

Binding, for example, has a lot of magic.
A lot of “if your class is this class then we

have a special behavior for it, if it’s not, it
doesn’t.” These things are hinted at in the
documentation, but it’s not clear what the
rules are. That’s where looking at the source
could help.

In brief, a main observation from this analy-
sis is that the reason for the puzzling behavior ex-
isted but wasn’t easily found because it related to
high-level design concerns that weren’t referred to
in point-of-entry API documentation. API docu-
mentation guidelines generally focus on the thor-
oughness of the low-level documentation,5 but a
complement to this guideline is that low-level doc-
umentation should address design decisions that
can impact the API’s behavior.

O ne overarching result of this study is that
the resources available to learn an API
are important and that shortcomings in

this area hinder the API learning progress. When
learning APIs, developers interact with resources
for many purposes, such as discovering key in-
formation about the API’s high-level design. De-
velopers in the study tried to understand part of
the high-level design for many reasons, including
finding out how to most efficiently use the API
and understanding subtle aspects of its behav-
ior. Studying examples is an important strategy
for learning about design, but this approach led
to frustration when the examples weren’t well
adapted to the task. Finally, some participants
perceived API behavior that seemed inexplicable
at first to be a major obstacle.

These observations have implications for API
users, designers, documentation writers, and de-
velopment tool builders. Developers stuck while
learning an API should consciously try to match
their information needs with the type of resource
most apt to provide the required knowledge. For
instance, if the API’s behavior seems inexplicable,
the answer might have as much to do with its de-
sign as with its low-level structure. Developers
looking for ways to interact with different API
methods along complex protocols might be more
likely to find good examples in advanced tutorials
and applications, rather than snippets.

For API designers and documentation writ-
ers, these observations complement existing API
documentation guidelines by emphasizing that
design decisions that can impact API usage should
be traceable from the point-of-entry documenta-
tion pages and that user expectations about what
they can get (and not get) out of a specific type of

34 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

resource should be explicitly stated. For instance,
it might be worthwhile to explicitly state the range
of usages illustrated by code examples provided in
the documentation and point to other resources
for additional usages.

Software tools can also assist developers in
their quest for a better grasp of APIs. For now,
search tools are promising in this area because
they help bridge the gap between API users’ in-
formation needs and the corresponding resources
(such as code examples). As APIs keep growing
larger, developers will need to learn a proportion-
ally smaller fraction of the whole. In such situa-
tions, the way to foster more efficient API learning
experiences is to include more sophisticated means
for developers to identify the information and the
resources they need—even for well-designed and
documented APIs.

Acknowledgments
I thank the members of the Human Interactions
in Programming group at Microsoft Research for

a welcoming environment, and the anonymous
participants who made this research possible by
generously sharing their experience. Additional
thanks to Rob DeLine, Andrew Begel, Barthélémy
Dagenais, Ekwa Duala-Ekoko, Reid Holmes, Tom
Zimmermann, and the anonymous reviewers for
comments on this article.

References
 1. S.G. McLellan et al., “Building More Usable APIs,”

IEEE Software, May/June 1998, pp. 78–86.
 2. J. Stylos and S. Clarke, “Usability Implications of

Requiring Parameters in Objects’ Constructors,” Proc.
29th Int’l Conf. Software Engineering (ICSE 07), IEEE
CS Press, 2007, pp. 529–539.

 3. K. Cwalina and B. Abrams, Framework Design Guide-
lines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries, 2nd ed., Addison-Wesley, 2009.

 4. S. Clarke, “Measuring API Usability,” Dr. Dobb’s J.
Special Windows/.NET Supplement, May 2004.

 5. J. Bloch, “How to Design a Good API and Why It Mat-
ters,” Companion to the 21st ACM SIGPLAN Symp.
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 06), ACM Press, 2006, pp.
506–507.

 6. B.A. Kitchenham and S.L. Pfleeger, “Chapter 3: Per-
sonal Opinion Surveys,” Guide to Advanced Empirical
Software Engineering, F. Shull, J. Singer, and D.I.K.
Sjøberg, eds., Springer, 2008, pp. 63–92.

 7. J. Nykaza et al., “What Programmers Really Want: Re-
sults of a Needs Assessment for SDK Documentation,”
Proc. 20th ACM SIGDOC Ann. Int’l Conf. Computer
Documentation, IEEE CS Press, 2002, pp. 133–141.

 8. R.S. Weiss, Learning from Strangers: The Art and
Method of Qualitative Interview Studies, Free Press,
1994.

 9. F. Shull, F. Lanubile, and V.R. Basili, “Investigating
Reading Techniques for Object-Oriented Framework
Learning,” IEEE Trans. Software Eng., vol. 26, no. 11,
2000, pp. 1101–1118.

About the Author
Martin P. Robillard is an associate professor in the School of Computer Science at
McGill University. His research focuses on software evolution and maintenance. Robillard
has a PhD in computer science from the University of British Columbia. Contact him at
martin@cs.mcgill.ca.

Advertising Sales
Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@
ieee.org

New England
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@
ieee.org

Northwest/Southern CA
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Product:

US East
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@
ieee.org

US Central
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
Phone: +1 415 931 9782
Fax: +1 415 931 9782
Email: ls.ieeemedia@ieee.org

Europe
Sven Anacker
Phone: +49 202 27169 11
Fax: +49 202 27169 20
Email: sanacker@
intermediapartners.de

Advertiser Page
IEEE Computer Society Membership Cover 3
John Wiley & Sons, Inc. Cover 2
MIT Press 5
RE 2010 1
Seapine Software Inc. Cover 4
University of Washington 7

Advertising Personnel
Marion Delaney
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

ADVERTISER INFORMATION | NOVEMBER/DECEMBER 2009 • IEEE SOFTWARE

