
Chapter 8
Developer Profiles for Recommendation Systems

Annie T. T. Ying and Martin P. Robillard

Abstract. Developer profiles are representations that capture the characteristics of

a software developer, including software development knowledge, organizational

information, and communication networks. In recommendation systems in software

engineering, developer profiles can be used for personalizing recommendations and

for recommending developers who can assist with a task. This chapter describes

techniques for capturing, representing, storing, and using developer profiles.

8.1 Introduction

Recommendation systems in software engineering (RSSEs) seek to assist individu-

als in performing software engineering tasks. In many situations, useful recommen-

dations will be independent from the developer involved in the task. For example, a

recommendation to inspect a file for faults that is based on code churn metrics [37]

will be the same for everyone. However, there are also situations where the relevance

and quality of a recommendation will be impacted by the personal characteristics of

the developer performing the task.

Consider a system that recommends elements from an application programming

interface (API) that could be used to implement some functionality. A developer

chooses a descriptive name for the method (e.g.,“sortRecords()”), enters some

comments that describe its purpose, and the recommendation system outputs one

or more potentially useful API elements, such as the sort method from a library.

At first glance this sounds like a great system, until we realize that the library sort

method gets recommended every time we implement some sorting functionality.

Here the recommendation system makes the assumption that the recommended API

Annie T. T. Ying
McGill University, Montréal, Canada, e-mail: annie.ying@cs.mcgill.ca

Martin P. Robillard
McGill University, Montréal, Canada, e-mail: martin@cs.mcgill.ca

203

204 A. T. T. Ying and M. P. Robillard

elements are unknown to the developer, who must discover them to carry out the

task. For this idea to work properly, the recommendation system must be able to rea-

son about what API elements might already be known to a developer. The function-

ality described above was first implemented by a system called CodeBroker [54].

One of the prominent features of CodeBroker is that it could personalize the recom-

mendations by storing a model of the user’s knowledge of an API, to avoid recom-

mending methods known to the user.

In the context of recommendation systems, personalization is the delivery of dif-

ferent information (i.e., recommendations) depending on the target user [2, 13, 15,

19]. The concept of personalization is pervasive in many application domains for

recommendation systems. For example: as much as 60% of Netflix’s rentals result

from personalized recommendations from Netflix’s movie recommender [40]; and

the Google search engine can provide personalized search results [16]. Outside the

context of recommendation systems, more complex personalization approaches in-

volving personalizing the delivery of the content have found success in domains

such as intelligent tutoring systems [47], natural language dialog systems [51], and

adaptive hypermedia [48]. Despite its successful use in commercial systems, per-

sonalization is not yet widely supported in the software engineering domain.

Customization is often considered to be a type of manual personalization. In cus-

tomizable systems, users have the ability to build their own profiles by specifying

preferences, typically from a list of options [15]. Systems that support customiza-

tion are usually called adaptable systems. An example of an adaptable system is

MyYahoo!: Users of MyYahoo! can adjust what type of content they prefer to see

displayed in their homepage (e.g., type of news articles, stock prices), as well as

how the content should be organized. In software engineering, the IBM Rational

Application Developer provides an example of a customizable system. This system

is a development environment built on top of the Eclipse integrated development

environment (IDE) that allows users to specify roles, such as “Java developer” and

“Web developer”. These roles simplify the user interface for each role by limiting

the number of available features [12].

The techniques needed to support customization within an application are well-

understood. In the simplest case, customization can be implemented through a sim-

ple key–value property API. For this reason, this chapter focuses instead on the

more adaptive systems that can personalize recommendations automatically, typi-

cally based on inferred user characteristics.

Beyond modeling the technical knowledge of a developer, as in the case of Code-

Broker, RSSEs can take into account other characteristics of developers. These in-

clude basic information maintained by their employer (such as demographic infor-

mation), but also more complex structures that capture their communication net-

work. In the personalization community, a representation that captures these types

of personal characteristics is called a user profile or a user model [2, 13, 15, 19].

In software engineering, models of developer characteristics are not only useful

for personalizing recommendations: they are also the basis for producing recom-

mendations about developers. For example, Expertise Recommender [32] can dis-

cover and recommend the developer who has the most expertise on a given module

8 Developer Profiles for Recommendation Systems 205

by analyzing the change history of a system under development. In the case of such

expert-finding tools, the developer characteristics stored and analyzed by the system

under development are not necessarily those of the developer using the recommen-

dation system (as in the case of personalization). For this reason, we use the term

developer profile to refer to a collection of information about a developer, to avoid

the overly-restrictive focus on users.

In this chapter, we describe a collection of techniques that can be used to build

developer profiles. We begin with a discussion of the potential applications of de-

veloper profiles in software engineering, illustrated with a description of their use

in three different systems (Sect. 8.2). We follow with a presentation and discus-

sion of the techniques necessary to collect and store different types of information

about developers. Section 8.3 focuses on modeling software development knowl-

edge and Sect. 8.4 discusses organizational information and communication net-

works. In Sect. 8.5, we discuss general issues related to the maintenance and storage

of developer profiles. We conclude in Sect. 8.6 with a short discussion of the risks

and limitations of developer profiles in RSSEs.

8.2 Applications of Developer Profiles

The two main areas of application for developer profiles in RSSEs are to personalize
recommendations, and to recommend developers.

8.2.1 Personalizing Recommendations

We return to CodeBroker, the RSSE introduced in Sect. 8.1, to illustrate how cap-

turing a model of a developer’s knowledge supports adaptive recommendations.

CodeBroker [54] facilitates code reuse by recommending Java methods that can

be used to complete a task. Figure 8.1 shows the system operating within Emacs.

The figure shows the Java source code written by a developer in the process

of implementing randomization functionality in a card game. Specifically, the de-

veloper has just finished typing in the signature of the getRandomNumber method,

preceded by some descriptive comments. At that point the developer moves beyond

the method signature (see the cursor in Fig. 8.1), and CodeBroker automatically

generates recommendations (bottom view in Fig. 8.1). The top recommendation is

a method named getLong from the Randomizer class. This API method generates

a random number between two given long integers, essentially the functionality and

signature the programmer is about to implement. Here the programmer is obviously

unaware of this API method. The recommendation is useful because it saves the

overhead of reimplementing getRandomNumber.

To produce recommendations, CodeBroker considers terms in the comments and

method signature, and uses information retrieval techniques to match them with

206 A. T. T. Ying and M. P. Robillard

Fig. 8.1: CodeBroker recommendations in Emacs [reproduced with permission,

from 53]

methods of the Java Development Kit API. However, in this context, reuse recom-

mendations are only useful if they support the discovery of new API methods.

To avoid generating useless and distracting recommendations for methods al-

ready known, CodeBroker maintains a developer profile that captures the API meth-

ods estimated to be known by a developer, and removes from the recommendation

list any method found in the user.

A developer profile in CodeBroker initially contains the methods used by the de-

veloper. As the developer types in more code, the profile is automatically updated.

Figure 8.2 shows an example of a developer profile in CodeBroker. The profile in-

cludes two methods of the java.io.File class that were automatically included

through code analysis. In addition, the developer (“Jeff”) complemented the profile

by specifying that he had knowledge of the whole Java package java.net as well

as the individual methods getParameterInfo and toCharArray. As this example

shows, manual adjustments to the profile can be done at various levels of granularity

(e.g., entire packages or classes).

CodeBroker uses developer profiles to provide filtering on a list of API elements

recommended for reuse. The concept of information filtering is taken further in

Mylyn [23], a tool that adapts the user interface of Eclipse to the present needs

of a developer by hiding information (code elements) that have not been accessed

8 Developer Profiles for Recommendation Systems 207

• java.applet

– Applet
· getParameterInfo (added by Jeff at Thu 2 08:30:10 2000)

• java.io

– File
· exists (Thu Nov 2 08:35:49 2000, Nov 2 08:15:10 2000, Nov 2 08:10:22 2000)
· isAbsolute (Thu Nov 2 09:36:31 2000, Nov 2 09:19:15 2000)

– CharArrayWriter
· toCharArray (added by Jeff at Thu 2 09:00:11 2000)

• java.net (added by Jeff at Thu 2 09:15:11 2000)

Fig. 8.2: An example programmer profile in CodeBroker [53]. The top-level bullets

indicates the Java package, the second level indicates the classes in the correspond-

ing package, and the third the methods in the class

Fig. 8.3: Mylyn in action in the Eclipse IDE [reproduced with permission, from 23]

recently, and by emphasizing the parts of the user interface that are more likely to

be accessed.

Figure 8.3 shows Mylyn in action as part of a scenario originally described

by Kersten and Murphy [23]. Mylyn adapts various views in Eclipse (e.g., the

Package Explorer: Fig. 8.3, item 3) to only show the information relevant to the

current task. The task the developer is working on is entitled “Task-1: Refactor

208 A. T. T. Ying and M. P. Robillard

ResourceStructureBridge” (marked with a solid dot in the Task List view in

Fig. 8.3, item 1).

Mylyn adapts the user interface based on the developer’s interaction history in

the IDE. Program elements that are accessed more often and more recently as part

of a task have higher importance, called degree-of-interest (DOI). For example, in

a view that displays the system structure (Fig. 8.3, item 3), the only artifacts visible

are the ones Mylyn estimated to be relevant. This view also marks the most relevant

artifacts in bold.

In Mylyn, the structure that stores relevant elements and their corresponding DOI

is called the task context. A user can also manually increase or decrease the DOI of

the elements in a task context, resulting in direct changes to the model. We consider

that task contexts are a form of developer profile that captures the immediate interest

of a developer involved in a task. In addition to adapting the user interface, task

contexts can also be used to restore the resources visible in the user interface at a

different point in time, for example in the case of an interruption. The developer

profile used in Mylyn is task-oriented and does not capture information beyond the

current task.

8.2.2 Recommending Developers

RSSEs can also be used to help locate individuals with a certain expertise. The

problem of identifying who has the right expertise has become increasingly impor-

tant given the ubiquity of large and distributed teams [17]. For these types of rec-

ommendation systems, developer profiles constitute the data items in the knowledge

base used to produce recommendations. These systems are exemplified by Expertise

Recommender [32].

Expertise Recommender was designed to help technical support personnel get

in contact with the people best able to solve customer support requests. Figure 8.4

shows a list of recommendations produced by Expertise Recommender. In this sce-

nario, a technical support representative fielded a support call from a customer and

entered the request “I/O Error 16 in program M.013 customer PCI” with, among

others, the value “Social Network” as a filter.

In Expertise Recommender, recommendations are derived from various filtering

heuristics applied to a profile database. In principle the profile database can cap-

ture any kind of developer information available in an organization. In the example

described by McDonald and Ackerman [32], the profile database is populated from

two basic data sources: the version control system (VCS) for the software, and the

issue repository.

The issue repository is used to search for technical support personnel who had

solved problems with the description similar to the input query. In our example

scenario, the query includes three pieces of key information: the module name

“M.013”, the customer name “PCI”, and the problem description “I/O Error 16”.

Each of the three pieces of information would trigger a separate search for past

8 Developer Profiles for Recommendation Systems 209

Fig. 8.4: An example of interface to present expertise recommendations based on

Expertise Recommender [32]

problems that match the information. The recommendation is the technical support

personnel who solved the past problems that best matched the three pieces of infor-

mation. In addition, Expertise Recommender also supports another mode (“Change

History” rather than “Tech Support”) which uses source file contributions from com-

mits and the proximity in the organization of the expert requester.

The Expertise Recommender architecture does not explicitly capture the concept

of a developer profile as an explicit data structure. Instead, various optimizations

are used, such as database indexes and maps. We can nevertheless consider that a

developer profile in Expertise Recommender implicitly captures, in addition to basic

contact information, a list of modules and a term vector that contains the important

words in the description of all the issues solved by a developer. This observation

illustrates the important point that developer profiles are conceptual entities that do

not need to be explicitly represented as a unit in the implementation of the RSSE.

An interesting note about Expertise Recommender is that the recommendations

produced take into account the characteristics of the user of the system. The “filter”

parameter allows the results to be filtered according to two values: “Department”

and “Social Network”. The “Department” value returns developers ranked accord-

ing to how close they are to the user of the system in terms of the official organiza-

tional structure (e.g., it prioritizes developers in the same department). “Social Net-

work” instead prioritizes developers who are the closest in an ad hoc social network

that takes additional personal relations into account. The developers of Expertise

Recommender argue that this personalization feature helps distinguish their system

as a recommendation system, in contrast to a more traditional information retrieval

system. In the context of this chapter, we note that this feature makes Expertise Rec-

ommender an example of a system that uses developer profiles both as knowledge

base elements and as a means to personalize the recommendations.

210 A. T. T. Ying and M. P. Robillard

8.3 Development Knowledge

Software development knowledge is the knowledge developers have about both the

system(s) they are working on and their general software development experience.

Software development knowledge is usually derived implicitly rather than by ex-

plicitly asking a developer to provide it. This process requires a RSSE to infer the

development knowledge from various actions performed by the developer. These

actions are typically captured by three types of artifacts: change logs stored in a

VCS, interaction traces collected by an IDE, and records stored in an issue tracking

system. Sections 8.3.1 to 8.3.3 discuss these three data sources used for inferring

development knowledge. We follow with a brief discussion of how certain types

of software development knowledge can also be collected by explicitly asking the

developer (Sect. 8.3.4). We present several common representations for software

development knowledge in Sect. 8.3.5.

8.3.1 Version Control System Data

Version control system data typically refers to commits obtained from source code

revision repositories, including the traditional ones such as SVN and CVS and, more

recently, distributed repositories such as Git. There are several ways to use VCS data

to infer development knowledge.

One heuristic is to assume that a developer changing a particular part of the

source code has knowledge in that part of the code. One can find out who changed

which lines of code by looking at the commit logs from a VCS. This heuristic is

derived from the so-called Line 10 rule observed in a field study [32]: when a de-

veloper wanted to know who had the expertise for a particular part of the code, say

line 10 of a particular file, the developer would consult the VCS commit log to see

who was the last person changing line 10.1 Expertise Recommender [32] uses this

idea to recommend developers who have the expertise for a software module. Each

developer profile includes the list of modules that a particular developer has last

changed. Expertise Recommender takes a textual query as input and identifies all of

the program modules mentioned. The list of recommendations are all the individu-

als who have modified a module mentioned in the query, ranked by recency of the

last change by an individual.

The Line 10 heuristic is useful to infer knowledge about the source code being

developed and when the change history of the source code is available. However, this

heuristic would not work for estimating expertise about API elements, or about parts

of the code for which change history is not available. For example, CodeBroker per-

sonalizes recommendations by filtering out recommendations that contain API ele-

1 Using data from older VCSes requires mapping lines to high-level program elements such as
methods. For more information about this step, readers can refer to Zimmermann and Weißgerber
[58].

8 Developer Profiles for Recommendation Systems 211

1 import p.;
2

3 class B {
4 void main() {
5 A a = new A();
6 a.p1 = "hello";
7 a.dd(a.p1);
8 a.remove(a.p1);
9 }

10 }

Fig. 8.5: An incomplete Java program demonstrating the difficulty to extract infor-

mation about method calls [adapted from 11, p. 314]

package p;

public class A {
String p1;
void add(Object o) {}
void remove(Object o) {}

}

Fig. 8.6: The part of the program missing in the incomplete program demonstrated

in Fig. 8.5 [adapted from 11, p. 314]

ments known to the user. If a developer has used the Java API method addElement

from java.util.Vector, CodeBroker would not recommend this API method. For

this type of filtering to work, a RSSE must model the developer’s knowledge of the

API by analyzing what API elements are used in the code.

Extracting which API elements (e.g., methods) are used (e.g., called) from com-

mits is a technical challenge. Identifying which method a developer is using in the

code requires determining the type bindings of object variables that are the target of

methods. This task is normally handled by compilers. However, in the context of a

commit, resolving type bindings is technically challenging because commits from

a VCS are generally a subset of the whole program, possibly without the necessary

dependency information for the usual type binding resolution to work. Even when

one has access to the source code and the dependencies of the whole program, it

may not be practical to compile a snapshot of the whole program for every com-

mit. Resolving type bindings in commits thus requires guessing the type bindings.

One technique that can infer type bindings from commits is partial program analysis

(PPA) [11].

For example, suppose that a developer added one line of source code (line 7) to

class B in Fig. 8.5. For the purpose of building the developer profile, we want to

know which method is called at line 7 so that we can store this information in the

developer profile. A syntactic analysis of only the code shown in Fig. 8.5 can only

212 A. T. T. Ying and M. P. Robillard

tell us that a method named add with one parameter is called at line 7, but not which

class declares add nor the type of the parameter. This is especially problematic when

multiple classes declare methods with the name add and one parameter. Improving

upon pure syntactic analysis, partial program analysis infers that method A.dd(

String) is called by looking at the string in the assignment in line 5. This inference

is not strictly correct: in this example, apparently, class A (Fig. 8.6) only has one

method named add with one parameter, A.dd(Object); thus, the inference is more

specific than the one provided by syntactic analysis on the full program consisting

of classes A and B.

Beside the actual code location and the methods that are called at the location,

additional method calls in the code lines above and below a changed line can also

be considered for inclusion in a developer profile [28]. For example, if a developer

changed line 7 in the code in Fig. 8.5, we could also infer that the developer also

knows the method remove at line 8. Textual terms extracted from commit messages

and the actual commit have been used as a surrogate of expertise for the purpose of

bug triage [31]. Terms extracted from the commit are taken from the identifiers and

the comments of the code. Bug triage is a process necessary in many open source

projects that maintain an issue tracking system. This triage process can become a

resource-intensive task when a significant number of incoming bug reports are filed

by outsiders because a project member has to determine whether an incoming bug

report is valid and, if so, who should be assigned to the task of fixing the bug.

8.3.2 Interaction History Data

The second type of data one can mine to capture a developer’s technical knowledge

is interaction history. Interaction history refers to a sequence of events initiated by

actions performed by a user with a tool. In Chap. 7, Maalej et al. [29] provide a

detailed discussion on interaction history. We show how a RSSE adapts its output to

individual users by looking at Mylyn [23]. Mylyn adapts various views in Eclipse to

only show the information relevant to the current task. Mylyn harnesses interaction

history involving software artifacts recorded in an IDE as a surrogate of relevance

to the task.

In Mylyn, some events are the direct result of a developer’s interaction with pro-

gram artifacts. These events include selections (such as selecting a Java method

and viewing its source) and edits. Other events are caused by indirect interactions.

For example, when refactoring a class ResourceStructureBridge to a different

name in Eclipse, Eclipse will update the name of the classes referencing the re-

named class. Each of the referencing class results in an indirect event called prop-
agation. As part of this refactoring, Mylyn also tracks the actual rename operation

provided by Eclipse, called a command event in Mylyn. Table 8.1 shows the events

corresponding to this refactoring operation, as part of the task “Task-1: Refactor

ResourceStructureBridge” first described in Sect. 8.2. The columns with a name

prefixed with “Event” denote pieces of information captured in a Mylyn event and

8 Developer Profiles for Recommendation Systems 213

Developer action Event
Event kind Event origin Event target(s)

select RSB 1 selection Package Explorer class

rename RSB 2–5 propagation Package Explorer
source file, package

source folder, project

rename RSB 6 command Rename refactoring class

Table 8.1: Sample events in the interaction history captured by Mylyn [adapted

from 23]. “RSB” is short for “ResourceStructureBridge”

the column “Developer action” describes the event. For simplicity, we use an event

number instead of the timestamp of an event (the column named “Event #”). The

column “Event origin” refers to the tool associated with the event recorded and the

column “Event target(s)” refers to the software artifacts associated with the event.

Event 1 corresponds to the developer selecting the class. Events 2-6 correspond to

the propagation and command events resulting from the rename operation.

Another example of an indirect event is when the developer selects the get

ContentType method (Fig. 8.3, item 2). For each structural parent of the method

(its class, source file, package, source folder, and project), Mylyn creates a propaga-

tion event. These propagation events cause the structural parents to become relevant

and, therefore, visible in the Package Explorer (Fig. 8.3, item 3).

In addition to changes and navigation to code elements, a wide range of other

interactions can be observed in an IDE. In the web domain, researchers have found

that linger time and amount of scrolling can be useful indicators of interest [2].

Evidence to this effect is mixed in the software engineering domain [1, 44]: My-

lyn [23] uses how frequently and recently a program element is being accessed, but

not how long a developer stays on a program element nor how much a developer

scroll within a program element, as its means for retaining source files visited by a

user as relevant for the task. A study found that scrolling does not indicate interest

or importance of the element, but rather an indication that the developer is lost [44].

Navigating to a code element and checking in changes to a VCS can imply dif-

ferent levels of familiarity on the source code. Fritz et al. [14] found that initial

authorship of a code element is the strongest factor for predicting the correct level

of source code familiarity (compared to subsequent authorship, navigating to the

code element, and intermediate editing of the code element). Robbes and Lanza

[43] compared algorithms making use of various types of implicit data, interaction

history and commits, in terms of their predictability of the next change.

214 A. T. T. Ying and M. P. Robillard

8.3.3 Issue Tracking System Data

The third type of data source that can reveal development knowledge is issue track-

ing systems. Issue tracking systems refer to systems that maintain lists of issues such

as software bugs. In Chap. 6, Herzig and Zeller [18] provide some practical advice

in mining bug reports. In open source projects, issue tracking systems allow users

to report bugs directly to the open source developers. Many commercial software

organizations use issue tracking systems as an internal medium for coordinating

software testers, developers, and managers in reporting, prioritizing, and discussing

issues. Another type of issue tracking systems keeps track of technical support call

tickets in a call center.

Expertise Recommender [32] identifies technical support personnel who can re-

solve a customer support request. The design was motivated by a field study [32]

on the process for identifying which of the technical support staff can solve a tech-

nical call. The heuristic is to find similar technical calls completed in the past, by

first querying the support database and then determining which of the results were

similar to the current problem.

For each technical support staff member, Expertise Recommender builds an entry

in the profile database using three pieces of information from the technical support

problems resolved by the given person: the problem description, the customer, and

the module responsible for the problem. These three fields are used to build three

term vectors that characterize a staff member. A term vector’s dimensions are textual

terms, and the value of a dimension is the number of times a term appears in the

past problems resolved by the staff member. In Chap. 3, Menzies [33] explains the

concept of term vectors in more detail.

In the scenario described in Sect. 8.2, the customer “PCI” complained in the

call that the system has a file error “I/O Error 16” in the module called “M.013”.

The representative taking the call was familiar with the module in general, but was

unsure why this particular customer was experiencing the file error. For this rep-

resentative’s profile, the customer vector’s “PCI” dimension would have value 0

because the representative had not dealt with the customer “PCI” before, while the

module vectors “M.013” dimension would have a positive value because the repre-

sentative had dealt with the module in previous problems. On the other hand, the top

personnel recommended in Fig. 8.4, Susan Wright, most likely had positive values

for the customer vector’s dimension for “PCI”, the module vector’s dimension for

“M.013”, and the problem description’s dimension for “I/O Error 16”.

In Expertise Recommender, a term vector is normalized using a master term

vector which represents the total number of times a term is used in the entire problem

database. Other technical challenges in dealing with textual terms include building

a thesaurus and handling misspellings and abbreviations.

8 Developer Profiles for Recommendation Systems 215

8.3.4 Explicit Data Collection

The data collection strategies presented above estimate development knowledge us-

ing heuristics applied to various data sources. A more direct way to obtain devel-

opment knowledge is to explicitly ask the developer to provide the information.

In e-commerce, data provided explicitly usually comes in the form of user ratings.

A classical example is the Netflix movie recommendation system. For the Netflix

system to provide useful recommendations, users have to first explicitly provide

examples of movies they like or dislike in a scale of one to five stars.

Besides the fact that explicit data collection imposes a burden on the user and

may not scale in many situations, a problem with manually generated profiles is that

users may not have the ability to evaluate their own expertise. Because of these two

problems, it may not be practical for RSSEs to ask a developer to provide the level

of expertise for each individual item.

Instead of solely depending on explicit information, RSSEs can elicit information

from the user to complement the implicitly-captured information. To reduce the

effort from the user, explicit information can be collected at a coarse-grained level,

where a user indicates a large group of items (in contrast to a fine-grained approach,

where a user provide information for individual items). CodeBroker, described in

Sect. 8.2, allows a user to manually adjust the developer profile. Developers can do

so by specifying that they have knowledge at a coarse-grained level, for example, on

a whole Java package java.net in the developer profile demonstrated in Fig. 8.2.

In terms of the quality of data obtained explicitly versus implicitly, in the web do-

main, conclusions have shifted over time. Earlier opinions suggested that implicitly-

collected data was of lower quality than explicitly collected data [21]. More recent

studies provide a more positive perspective on the usefulness of implicitly-collected

data [49, 52]. There is not as much investigation in software engineering. Fritz et al.

[14] investigated two types of implicitly collected information—interaction history

and commits from a VCS—to construct a model a developer’s familiarity with a

given code element. The study shows that data from the commits from VCS is a

better indicator than interaction history when inferring a developer’s familiarity to a

code element.

8.3.5 Representation

The simplest way to represent what a developer knows is to list the signature of the

program elements a developer has knowledge of, without distinguishing the extent
of the knowledge. For example, CodeBroker’s user profile (Fig. 8.2) includes the

list of method signature for all of the methods in a developer profile, organized in

terms of enclosing class and package. CodeBroker does not model the extent of the

knowledge but implicitly assumes that a developer has the same knowledge on every

method listed in the developer profile.

216 A. T. T. Ying and M. P. Robillard

This assumption is not always appropriate. In Expertise Browser, a tool analo-

gous to Expertise Recommender, the developer profile is also a list of what is called

experience atoms: locations of source code checked in by a developer [35]. Exper-

tise Browser keep counts of how many times a particular line of source code has

been modified by a developer. These experience atoms can be used to reason about

the expertise of a person, or aggregated to reason about the expertise of an organi-

zation. These counts can also be used to rank recommendations for the most expert

developer on a given part of the code.

The assumption of Expertise Browser is that each use of a program element in-

creases the extent of the knowledge equally. However, different weighting schemes

can also be considered for this purpose. For example, the frequency counts can be

normalized by the global counts computed on all individuals. The intuition is that

common methods such as List.dd would get less weight because they are used

many times by many individuals, whereas rarer methods would get a higher weight.

The extent of the knowledge can also be affected by how recently the developer

acquired the knowledge. This idea is discussed in the profile maintenance section

(Sect. 8.5).

A developer profile is not limited to the program elements that a developer inter-

acted with directly, but can also represent relationships between program elements.

In Mylyn, indirect events such as the propagation event in Table 8.1 represent rela-

tionships among program elements. However, Mylyn does not store these relation-

ships in a persistent task context. An in-memory task context graph representing

these program elements and relationships is constructed by processing the events in

the persisted task context. The benefit of this approach is that the task context can

be shared with other developers. When loaded on another developer’s workspace,

the graph can be adjusted to adapt to the program elements and relationships present

in the other developer’s workspace. When reconstructing the in-memory represen-

tation on another developer’s workspace, additional interaction history incurred by

the other developer can also augment the representation.

The weighting for each element in the task context, called degree-of-interest

(DOI), is derived from the frequency and recency of the events in the interaction

history. The frequency is the number of interaction events that refer to the element

as a target. Each type of event has a different scaling factor, resulting in different

weightings for different kinds of interactions. Old events are weighted less because

of a decay function, as discussed in Sect. 8.5. The DOI of a relation, consisting of a

source and a target element, is computed using the same DOI algorithm, by means

of the relation’s target element.

Instead of capturing a list of program elements, it is also possible to aggregate

the knowledge they represent by using term vectors that represent a normalized ver-

sion of the frequency of individual terms used in software development artifacts

authored or changed by a developer [31]. Vector-based user profiles thus refer to the

representation popular in information retrieval for textual documents: a document is

represented as a vector of n dimensions, where the dimensions correspond to n in-

8 Developer Profiles for Recommendation Systems 217

dexed textual terms2 in the corpus of documents. For example, instead of containing

a list of methods a developer has used, a developer profile could contain a method-

by-term matrix where every row represents a method and every column, a term in

the vocabulary of all terms in the signatures of methods in a program (assuming

method identifiers are tokenized, e.g., by relying on the camel case convention). It

is also possible for the term vectors to capture information in the source code of the

method, their comments, etc. In Chap. 3, Menzies [33] dives deeper into information

retrieval.

This approach is used by a bug triage recommendation system where a user pro-

file is the text extracted from the most recently fixed bug reports [4]. Each vector in

the profile contains text converted from free-form text in the summary and descrip-

tion of a report. A value in the vector indicates the frequency of a particular term,

normalized by the length of the bug report, total intra-document frequency, and

inter-document frequency. Another bug triage recommendation system also used a

vector representation, not to model the text from bug report but terms extracted from

the source code changes by a given developer [31]. A value in a vector is the term

frequency present in a source code change.

More sophisticated representations and algorithms have been explored in do-

mains outside software engineering, for example, in adaptive educational systems

and personalized information retrieval. A survey by Steichen et al. [48] provides an

overview.

8.4 Organizational Information and Communication Networks

To make recommendations in a software engineering context, it is also possible

to leverage data about the position of developers in their organization, or infor-

mation about their communication networks. Organizational information includes

characteristics such as a developer’s position in the organization, the management

structure, and a developer’s role in the software development process. Developers’

communication networks are the graphs that models their various interactions with

other people for work purposes.

Organizational information and communication networks can play various roles

in RSSEs, from being the central data source used to generate recommendation to

serving as a filter for recommendations generated in some other way. For exam-

ple, organizational information can be used as the basis for predicting fault-prone

modules [38], Expertise Browser allows users to explore recommended experts by

organizational structure [35], and Expertise Recommender offers the capability to

filter its recommendations to only show those in the social network [32].

2 Terms are typically tokens from document corpus, stemmed or not depending on the application,
after removing stop words and non-alphabetic tokens [30].

218 A. T. T. Ying and M. P. Robillard

8.4.1 Data Collection

Organizational information can normally be obtained from sources such as com-

pany organization directories and software project management servers. A standard

protocol for accessing and maintaining a company organizational directory is the

Lightweight Directory Access Protocol (LDAP). Such a directory typically contains

the geographical location and the position of an employee. Many company directo-

ries are built on a LDAP server as the back-end and use the LDAP’s query facility.

A example query that such company directories support is to find all employees

located in a particular city and have a particular role (e.g., “software developer”).

RSSEs designers can use the query facility to obtain organizational information.

Software development roles can be implicitly mined from an integrated software

development management platform, such as IBM Rational Team Concert [9]. Team

Concert allows a software development team to create and specify roles. This infor-

mation can be obtained from the Java API of Team Concert.

Developers’ communication networks can be inferred directly from communica-

tion media such as emails and IRC chat logs, for example by drawing edges between

senders and receivers. Communication networks can also be built from a variety of

other sources, depending on what can be considered to constitute evidence of com-

munication. Sources such as VCSes and issue tracking systems can be used as an

indicator of interaction by considering that developers are related if they have been

involved with the same issue. Involvement can be specified as a subset of any of the

possible ways for a developer to be associated with a bug report, including fixing the

bug described in the issue report, being CCed (“carbon-copied”) on emails related

to the issue, or providing comments on the issue [3].

Two important technical challenges when building communication networks

from VCS data and emails are linking bug reports with the source code artifacts

that solve them, and de-aliasing different email addresses that may be associated

with the same person. Unless sufficient care is taken to control imprecision in the

linking and email aliases, these issues can introduce a significant amount of noise in

the resulting networks. Bird et al. [6] offer an in-depth discussion of the problem of

linking bug reports to the corresponding fixes [5]. For email de-aliasing, one algo-

rithm found to work well is to group email addresses using a clustering algorithm.

(In Chap. 6, Herzig and Zeller [18] provide more information about clustering al-

gorithms in general.) The clustering algorithm requires a similarity function that

returns a similarity value between any pair of email addresses. The output of the al-

gorithm are groups of email addresses; the email addresses in a group are predicted

to be associated with the same individual.

STeP IN is an example of RSSE that relies on organizational data and commu-

nication networks [55]. STeP IN recommends relevant experts and artifacts based

on information obtained from VCSes, issue tracking systems, and a communication

network derived from email archives. One unique feature of STeP IN is that instead

of simply capturing communication relationships, STeP IN also models how likely

it is that the person being recommended wishes to be involved in the communica-

tion. Specifically, STeP IN captures the concept of obligation, to avoid one con-

8 Developer Profiles for Recommendation Systems 219

⎡
⎣

f1 f2 f3 f4 f5

d1
d2
d3

⎤
⎦

⎡
⎢⎢⎢⎣

f1 f2 f3 f4 f5

f1
f2
f3
f4
f5

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

d1 d2 d3

f1 . . .
f2 . . .
f3 . . .
f4 . . .
f5 . . .

⎤
⎥⎥⎥⎦=

⎡
⎣

d1 d2 d3

d1 . . .
d2 . . .
d3 . . .

⎤
⎦

Fig. 8.7
Dimensions of the input matrices and the final matrix representing coordination requirements

stantly asking help from a particular colleague, or to avoid one only asking help but

never helping others. In STeP IN, a user can explicitly change the preference value

describing whether to be involved in an interaction with a particular colleague.

8.4.2 Representation

A communication network is a graph that can simply be represented as an n× n
adjacency matrix, where n is the number of nodes in the graph and a value of 1 in a

cell i j represents an arc between nodes i and j (and 0 otherwise).

Coordination requirements illustrate how a matrix representation of developer

characteristics can be employed to compute derived information about a developers.

Coordination requirements represent a type of recommendation, namely, informa-

tion about who a developer should coordinate with to best complete their work [8].

Conceptually, the approach uses two input matrices:

1. a file authorship matrix (a developer by file matrix), where a cell i j indicates

the number of times a developer i has committed to a file j; and

2. a file dependency matrix (a file by file matrix), where a cell i j (or ji) indicates

the number of times the files i and j have been committed together.

The approach computes coordination requirement through two matrix multipli-

cations on three input matrices (Fig. 8.7). The first product multiplies the file author-

ship matrix and the file dependency matrix, resulting in a developer by file matrix.

This matrix represents the set of files a developer should be aware of given the files

the developer has committed and the relationships of those files with other files in

the system. To obtain a representation of coordination requirements (a developer by

developer matrix), the approach then multiplies the first product with the transpose

of the file authorship matrix. This final product is a matrix where a cell i j (or ji)
represents the amount of shared expertise of developers i and j. More precisely, the

matrix describes the extent to which developer i committed files that share commit-

relationships with files committed by developer j.
Emergent Expertise Locator is a recommendation system that builds on the con-

cept of coordination requirements [34]. To construct a profile specific to a given

developer d1, Emergent Expertise Locator constructs the coordination requirements

220 A. T. T. Ying and M. P. Robillard

[f1 f2 f3 f4 f5

d1
]

⎡
⎢⎢⎢⎣

f1 f2 f3 f4 f5

f1
f2
f3
f4
f5

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

d1 d2 d3

f1 . . .
f2 . . .
f3 . . .
f4 . . .
f5 . . .

⎤
⎥⎥⎥⎦=

[d1 d2 d3

d1 . . .
]

Fig. 8.8: Dimensions of the input and the coordination requirements for a given

developer d1

on the fly, focusing on the current developer. As a result, the product is a vector

that represents the coordination requirements relevant to the given developer (see

Fig. 8.8).

8.5 Profile Maintenance and Storage

A number of design decisions can impact developer profiles and their use in RSSEs.

This section discusses two important design dimensions for RSSEs using devel-

oper profiles: profile maintenance, and profile storage. Profile maintenance concerns

whether a RSSE can adapt a developer profile over time. This issue is referred as

adaptivity by the user modeling and recommendation system community [20, 36].

Profile storage is concerned with which component of a RSSE the profile is con-

structed and stored.

8.5.1 Adapting Developer Profiles

The simplest approach to profile maintenance is to keep the profile static. When

using implicitly gathered data, this means that the user profile is based on the entire

available data at the time of the profile construction such as. For example, usage

expertise can be mined from the entire change history of a system [45]. However, in

any high-churn situation, static user profiles will quickly get out of date. There are

two ways to improve upon static profiles.

First, in a system that builds developer profiles in a batch mode, the profiles can

be manually adapted by requiring the user to specify which time period corresponds

to the current experience [35]. In such cases we would consider the profiles to be

adaptable.

Second, in more dynamic systems, another strategy is to ask the user to set some

parameters that guide the adaptation of the user profile. In Mylyn [23] for example,

a developer needs to explicitly declare the current task, so that the Mylyn monitor

can identify the boundary of the interaction history that belongs to the current task

context. This design decision is a result from the user study performed on an earlier

8 Developer Profiles for Recommendation Systems 221

version of Mylyn [22]: that version of Mylyn did not have the notion of tasks. The

user profile was built from a single stream of interaction history, where the relative

importance of older interaction history decayed automatically.

The motivation for asking a programmer to explicitly declare which task the

programmer is working on is that programmers tend to switch between multiple

tasks. This semi-automated approach to user profiling helps to make the profiles

partly adaptive. Some work has been proposed to support the identification of task

boundaries. The SpyWare tool displays a visualization and identifies sessions of

work based on several measures including the number of edits per minute [42].

Coman and Sillitti [10] proposed an approach to segment development sessions.

The problem of automatically detecting parts of the interaction history that be-

longs to a task remains a hard problem [53], but its solution would eventually make

user profiles completely adaptive. The following section presents additional strate-

gies for achieving adaptive developer profiles.

The most straightforward way for a RSSE to adapt a developer profile is through

a fixed time window. Here the notion of time can be defined either as the usual

elapsed clock time [4], but also in terms of a fixed number of events in the interaction

history [46, 50].

Different strategies are possible for eliminating data outside a time window of

interest. The simplest is obviously to delete older events. However, when developer

profiles associate data with a degree of association (in contrast to a binary, in-or-out,

model of what pieces of information are associated with a developer), it is also pos-

sible to decay the association of older elements. For example, Mylyn uses a decay

function for program elements in a task context. In Mylyn, the decay is proportional

to the total number of events associated with the task. As another example, Matter

et al. [31] employed a 3% weekly decay on VCS commits used for building a de-

veloper profile; this decay provides the optimal level of accuracy in the bug triage

predictions.

8.5.2 Storing Developer Profiles

The major design decisions for storing developer profiles is whether to store them

on server components (e.g., in the back-end tier in a multi-tier architecture), or in

the client component used directly by users.

Developer profiles based on information mined from server repositories tend to

be stored on servers. Such repositories include VCS and issue tracking systems

as discussed in Sect. 8.3. Systems that employ profiles based on organizational

information and communication networks need information about multiple users

[8, 17, 39]. Such systems typically require a server-based approach. The STeP IN

system models a software project as a server-based project memory with relations

between artifacts and their socio-technical links with developers [56].

A major concern with the collection and storage of developer information in a

server is privacy. In RSSEs, privacy is a concern especially when data is collected

222 A. T. T. Ying and M. P. Robillard

implicitly (for example, interaction history) and stored on a server. A simple solution

is to allow a user to disable the data collection. For example Mylyn, which monitors

a developer’s interaction history, has a “silent activity mode” [22]. However, since

tools like Mylyn base their recommendations on interaction history, disabling the

collection of interaction history completely renders the tool useless. RSSE designers

interested in other ways to respect privacy can consult research [e.g., 7, 24–26] on

privacy-preserving personalization and recommendation systems.

In storing interaction history on the server, Mylyn [23] is somewhat of an excep-

tion. Typically, interaction history is stored in the client side, for privacy reasons but

also because of the voluminous nature of raw interaction history. Conceptually, the

interaction history is a sequence of ordered events. If storing interaction history on

the server is important, data compression strategies must be considered. For exam-

ple, Mylyn does not record all user actions. Most of the events involving the same

program element used the same way are aggregated. When such an aggregation

happens, the event data stores two timestamps instead of one: the timestamp of the

first event and the timestamp of the last event being aggregated. Mylyn stores task

contexts offline as a compact representation of the interaction history in an XML

file in the client side [23]. Such an XML file is designed to be uploaded with the

corresponding task, a bug report, or a feature request, if the user chooses to share a

task context. One advantage of this client-based approach is the portability of task

contexts as they can be used by other tools and analyses [27, 57].

Systems that support customization (see Sect. 8.1) usually employ developer pro-

files on the client side. In the web domain, websites such as MyYahoo! store cus-

tomization information in cookies, pieces of data sent from a website and stored in

the user’s web browser [20]. Analogously, in software engineering, UI customiza-

tion information is typically stored as an individual’s local settings.

8.6 Conclusion

In our daily interaction, many of us have already been immersed in adaptive rec-

ommendation systems as we browse results from a search engine, choose a book

to purchase online, or decide on a movie. These systems implement a type of per-

sonalization. Adaptive recommendations are constructed based on a user’s interest

represented by a user model. In the context of RSSEs, developer profiles support not

only the adaptive recommendations to users, but also the ability to generate recom-

mendation about developers.

In this chapter, we reviewed the techniques necessary for constructing developer

profiles employed by adaptive recommendation systems for software engineering.

Developer profiles can capture a wide range of characteristics about developers in-

cluding their development knowledge, organizational information, and communica-

tion networks.

Many of the issues discussed in this chapter overlap with other aspects of RSSEs.

VCS data, interaction history, and issue tracking systems are the key data sources for

8 Developer Profiles for Recommendation Systems 223

generating developer profiles, but they are also used for generating many different

types of recommendationsand 5 . Designing developer profiles that accurately and

reliably capture the true characteristics of a developer is an empirical endeavour that

will require much experimentation. The concept of personalization is also intimately

tied with usability issues. Readers interested in the general area of personalization

can consult several surveys [2, 15, 19, 20, 36, 48].

Even though personalization can be effective in supporting developers in their

information acquisition tasks, there are concerns that adaptive systems can be too

personal, up to a point where individuals are segregated into information silos. By

not making available information that is available to others [40]. In the context of

software engineering, a developer may discover information that is irrelevant to the

current task but may increase the developer’s overall knowledge and appreciation

of the project. Recommendation systems that focus developers’ information dis-

covery too narrowly may negatively impact the developer’s overall performance,

even if they successfully support them for individual tasks. An RSSE recommend-

ing only relevant parts of the code to examine for the current task will not allow such

serendipitous opportunities beneficial beyond the current task. Similarly, an expert-

finding tool cannot provide all the information that would be gathered through im-

promptu water-cooler conversations. From the technical point of view, Ricci et al.

[41] suggest to use active learning, which “allows the system to actively influence

the items the user is exposed to [...], as well as by enabling the user to explore his/her

interests freely”.

When we consider the individual developer receiving recommendations from an

RSSEs, they inevitably have differences in experience, ability, and needs. In cases

where a recommendation depends on the individual receiving the recommendation,

using developer profiles in RSSEs should then contribute towards improving the

quality of recommendations, ideally without stifling the developer’s freedom to ex-

plore and discover.

Acknowledgements

We are grateful for the help from the following people and organizations: Christoph

Treude helped us greatly improve the structure of the chapter since early on and pro-

vided us comments on a previous draft. Ben Steichen acted as a reviewer external to

software engineering, provided us with his expert advice on user modeling, and gave

us numerous pointers to work in the user modeling community. The editors of this

book provided guidance and feedback throughout the whole writing process. Mik

Kersten and Yunwen Ye kindly allowed us to reproduce figures from their respec-

tive theses. Finally, NSERC and McGill have provided financial support through a

number of scholarships.

224 A. T. T. Ying and M. P. Robillard

References

1. de Alwis, B., Murphy, G.C.: Using visual momentum to explain disorientation in the Eclipse
IDE. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Com-
puting, pp. 51–54 (2006). DOI 10.1109/VLHCC.2006.49

2. Anand, S., Mobasher, B.: Intelligent techniques for web personalization. In: Revised Selected
Papers of the IJCAI Workshop on Intelligent Techniques for Web Personalization, Lecture
Notes in Computer Science, vol. 3169, pp. 1–36 (2005). DOI 10.1007/11577935 1

3. Anvik, J., Murphy, G.C.: Determining implementation expertise from bug reports. In: Pro-
ceedings of the International Workshop on Mining Software Repositories (2007). DOI
10.1109/MSR.2007.7

4. Anvik, J., Murphy, G.C.: Reducing the effort of bug report triage: Recommenders for
development-oriented decisions. ACM Transactions on Software Engineering and Method-
ology 20(3), 10:1–10:35 (2011). DOI 10.1145/2000791.2000794

5. Bachmann, A., Bird, C., Rahman, F., Devanbu, P., Bernstein, A.: The missing links: Bugs
and bug-fix commits. In: Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 97–106 (2010). DOI 10.1145/1882291.1882308

6. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks.
In: Proceedings of the International Workshop on Mining Software Repositories, pp. 137–143
(2006). DOI 10.1145/1137983.1138016

7. Canny, J.: Collaborative filtering with privacy. In: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 45–57 (2002). DOI 10.1109/SECPRI.2002.1004361

8. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M.: Identification of coordination re-
quirements: Implications for the design of collaboration and awareness tools. In: Proceedings
of the ACM Conference on Computer Supported Cooperative Work, pp. 353–362 (2006).
DOI 10.1145/1180875.1180929

9. Cheng, L.T., de Souza, C.R.B., Hupfer, S., Patterson, J., Ross, S.: Building collaboration into
IDEs. ACM Queue 1(9), 40–50 (2003). DOI 10.1145/966789.966803

10. Coman, I.D., Sillitti, A.: Automated identification of tasks in development sessions. In: Pro-
ceedings of the IEEE International Conference on Program Comprehenension, pp. 212–217
(2008). DOI 10.1109/ICPC.2008.16

11. Dagenais, B., Hendren, L.: Enabling static analysis for partial Java programs. In: Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pp. 313–328 (2008). DOI 10.1145/1449955.1449790

12. Findlater, L., McGrenere, J., Modjeska, D.: Evaluation of a role-based approach for customiz-
ing a complex development environment. In: Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems, pp. 1267–1270 (2008). DOI 10.1145/1357054.
1357251

13. Fischer, G.: User modeling in human–computer interaction. User Modeling and User-Adapted
Interaction 11(1), 65–86 (2001). DOI 10.1023/A:1011145532042

14. Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model to capture
source code familiarity. In: Proceedings of the ACM/IEEE International Conference on Soft-
ware Engineering, vol. 1, pp. 385–394 (2010). DOI 10.1145/1806799.1806856

15. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized infor-
mation access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods
and Strategies of Web Personalization, Lecture Notes in Computer Science, vol. 4321, Chap. 2,
pp. 54–89. Springer (2007). DOI 10.1007/978-3-540-72079-9 2

16. Google Official Blog: Personalized search for everyone (2009). URL http://googleblog.
blogspot.de/2009/12/personalized-search-for-everyone.html. [retrieved 9 October 2013]

17. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordination. In:
Proceedings of the Future of Software Engineering, pp. 188–198 (2007). DOI 10.1109/FOSE.
2007.5

8 Developer Profiles for Recommendation Systems 225

18. Herzig, K., Zeller, A.: Mining bug data: A practitioner’s guide. In: Robillard, M., Maalej,
W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in Software Engineering,
Chap. 6. Springer (2014)

19. Jameson, A.: Adaptive interfaces and agents. In: Sears, A., Jacko, J.A. (eds.) The Human-
Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Ap-
plications, 2nd edn., pp. 433–458. CRC Press (2008)

20. Keenoy, K., Levene, M.: Personalisation of web search. In: Proceedings of the IJCAI Work-
shop on Intelligent Techniques for Web Personalization, Lecture Notes in Computer Science,
vol. 3169, pp. 201–228 (2005). DOI 10.1007/11577935 11

21. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: A bibliography. ACM
SIGIR Forum 37(2), 18–28 (2003). DOI 10.1145/959258.959260

22. Kersten, M., Murphy, G.C.: Mylar: A degree-of-interest model for IDEs. In: Proceedings of
the International Conference on Aspect-Oriented Software Deveopment, pp. 159–168 (2005).
DOI 10.1145/1052898.1052912

23. Kersten, M., Murphy, G.C.: Using task context to improve programmer productivity. In: Pro-
ceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pp. 1–11 (2006). DOI 10.1145/1181775.1181777

24. Kobsa, A.: Privacy-enhanced personalization. Communications of the ACM 50(8), 24–33
(2007). DOI 10.1145/1278201.1278202

25. Kobsa, A.: Privacy-enhanced web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) The Adaptive Web: Methods and Strategies of Web Personalization, Chap. 21, pp. 628–
670. Springer (2007). DOI 10.1007/978-3-540-72079-9 21

26. Lam, S.K.T., Frankowski, D., Riedl, J.: Do you trust your recommendations?: An exploration
of security and privacy issues in recommender systems. In: Proceedings of the International
Conference on Emerging Trends in Information and Communication Security, Lecture Notes
in Computer Science, vol. 3995, pp. 14–29 (2006). DOI 10.1007/11766155 2

27. Lee, T., Nam, J., Han, D., Kim, S., In, H.P.: Micro interaction metrics for defect prediction. In:
Proceedings of the European Software Engineering Conference/ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 311–321 (2011). DOI 10.1145/
2025113.2025156

28. Ma, D., Schuler, D., Zimmermann, T., Sillito, J.: Expert recommendation with usage expertise.
In: Proceedings of the IEEE International Conference on Software Maintenance, pp. 535–538
(2009). DOI 10.1109/ICSM.2009.5306386

29. Maalej, W., Fritz, T., Robbes, R.: Collecting and processing interaction data for recommenda-
tion systems. In: Robillard, M., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommen-
dation Systems in Software Engineering, Chap. 7. Springer (2014)

30. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

31. Matter, D., Kuhn, A., Nierstrasz, O.: Assigning bug reports using a vocabulary-based expertise
model of developers. In: Proceedings of the International Working Conference on Mining
Software Repositories, pp. 131–140 (2009). DOI 10.1109/MSR.2009.5069491

32. McDonald, D.W., Ackerman, M.S.: Expertise Recommender: A flexible recommendation sys-
tem and architecture. In: Proceedings of the ACM Conference on Computer Supported Coop-
erative Work, pp. 231–240 (2000). DOI 10.1145/358916.358994

33. Menzies, T.: Data mining: A tutorial. In: Robillard, M., Maalej, W., Walker, R.J., Zimmer-
mann, T. (eds.) Recommendation Systems in Software Engineering, Chap. 3. Springer (2014)

34. Minto, S., Murphy, G.C.: Recommending emergent teams. In: Proceedings of the International
Workshop on Mining Software Repositories, pp. 5:1–5:8 (2007). DOI 10.1109/MSR.2007.27

35. Mockus, A., Herbsleb, J.D.: Expertise Browser: A quantitative approach to identifying exper-
tise. In: Proceedings of the ACM/IEEE International Conference on Software Engineering,
pp. 503–512 (2002). DOI 10.1145/581339.581401

36. Montaner, M., López, B., De La Rosa, J.L.: A taxonomy of recommender agents on the inter-
net. Artifical Intelligence Review 19(4), 285–330 (2003). DOI 10.1023/A:1022850703159

226 A. T. T. Ying and M. P. Robillard

37. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density.
In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp.
284–292 (2005). DOI 10.1145/1062455.1062514

38. Nagappan, N., Murphy, B., Basili, V.: The influence of organizational structure on software
quality: An empirical case study. In: Proceedings of the ACM/IEEE International Conference
on Software Engineering, pp. 521–530 (2008). DOI 10.1145/1368088.1368160

39. Ohira, M., Ohsugi, N., Ohoka, T., Matsumoto, K.: Accelerating cross-project knowledge
collaboration using collaborative filtering and social networks. In: Proceedings of the
International Workshop on Mining Software Repositories, pp. 15:1–15:5 (2005). DOI
10.1145/1083142.1083163

40. Pariser, E.: The Filter bubble: What the Internet Is Hiding from You. Penguin Press HC (2011)
41. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. In:

Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer
(2011). DOI 10.1007/978-0-387-85820-3 1

42. Robbes, R., Lanza, M.: Characterizing and understanding development sessions. In: Pro-
ceedings of the IEEE International Conference on Program Comprehenension, pp. 155–166
(2007). DOI 10.1109/ICPC.2007.12

43. Robbes, R., Lanza, M.: Improving code completion with program history. Automated Soft-
ware Engineering: An International Journal 17(2), 181–212 (2010). DOI 10.1007/s10515-
010-0064-x

44. Robillard, M.P., Coelho, W., Murphy, G.C.: How effective developers investigate source code:
An exploratory study. IEEE Transactions on Software Engineering 30(12), 889–903 (2004).
DOI 10.1109/TSE.2004.101

45. Schuler, D., Zimmermann, T.: Mining usage expertise from version archives. In: Proceedings
of the International Workshop on Mining Software Repositories, pp. 121–124 (2008). DOI
10.1145/1370750.1370779

46. Singer, J., Elves, R., Storey, M.A.D.: NavTracks: Supporting navigation in software mainte-
nance. In: Proceedings of the IEEE International Conference on Software Maintenance, pp.
325–334 (2005). DOI 10.1109/ICSM.2005.66

47. Sleeman, D., Brown, J.S.: Intelligent Tutoring Systems. Academic Press (1982)
48. Steichen, B., Ashman, H., Wade, V.: A comparative survey of Personalised Information Re-

trieval and Adaptive Hypermedia techniques. Information Processing and Management 48(4),
698–724 (2012). DOI 10.1016/j.ipm.2011.12.004

49. Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests
and activities. In: Proceedings of the ACM SIGIR International Conference on Research and
Development in Information Retrieval, pp. 449–456 (2005). DOI 10.1145/1076034.1076111

50. Viriyakattiyaporn, P., Murphy, G.C.: Improving program navigation with an active help sys-
tem. In: Proceedings of the IBM Centre for Advanced Studies Conference on Collaborative
Research, pp. 27–41 (2010). DOI 10.1145/1923947.1923951

51. Wahlster, W., Kobsa, A.: User models in dialog systems. In: Kobsa, A., Wahlster, W. (eds.)
User Models in Dialog Systems, Symbolic Computation, Chap. 1, pp. 4–34. Springer (1989).
DOI 10.1007/978-3-642-83230-7 1

52. White, R.W., Ruthven, I., Jose, J.M.: Finding relevant documents using top ranking sentences:
An evaluation of two alternative schemes. In: Proceedings of the ACM SIGIR International
Conference on Research and Development in Information Retrieval, pp. 57–64 (2002). DOI
10.1145/564376.564389

53. Ye, Y.: Supporting component-based software development with active component repository
systems. Ph.D. thesis, Department of Computer Science, University of Colorado, Boulder
(2001)

54. Ye, Y., Fischer, G.: Supporting reuse by delivering task-relevant and personalized information.
In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp.
513–523 (2002). DOI 10.1145/581339.581402

55. Ye, Y., Yamamoto, Y., Nakakoji, K.: A socio-technical framework for supporting program-
mers. In: Proceedings of the European Software Engineering Conference/ACM SIGSOFT

8 Developer Profiles for Recommendation Systems 227

International Symposium on Foundations of Software Engineering, pp. 351–360 (2007). DOI
10.1145/1287624.1287674

56. Ye, Y., Yamamoto, Y., Nakakoji, K., Nishinaka, Y., Asada, M.: Searching the library and ask-
ing the peers: Learning to use Java APIs on demand. In: Proceedings of the International
Symposium on Principles and Practice of Programming in Java, pp. 41–50 (2007). DOI
10.1145/1294325.1294332

57. Ying, A.T.T., Robillard, M.P.: The influence of the task on programmer behaviour. In: Proceed-
ings of the IEEE International Conference on Program Comprehenension, pp. 31–40 (2011).
DOI 10.1109/ICPC.2011.35

58. Zimmermann, T., Weißgerber, P.: Preprocessing CVS data for fine-grained analysis. In: Pro-
ceedings of the International Workshop on Mining Software Repositories, pp. 2–6 (2004)

