
Chapter 1
An Introduction to Recommendation Systems in
Software Engineering

Martin P. Robillard and Robert J. Walker

Abstract. Software engineering is a knowledge-intensive activity that presents

many information navigation challenges. Information spaces in software engineer-

ing include the source code and change history of the software, discussion lists

and forums, issue databases, component technologies and their learning resources,

and the development environment. The technical nature, size, and dynamicity of

these information spaces motivate the development of a special class of applications

to support developers: recommendation systems in software engineering (RSSEs),

which are software applications that provide information items estimated to be valu-

able for a software engineering task in a given context. In this introduction, we re-

view the characteristics of information spaces in software engineering, describe the

unique aspects of RSSEs, present an overview of the issues and considerations in-

volved in creating, evaluating, and using RSSEs, and present a general outlook on

the current state of research and development in the field of recommendation sys-

tems for highly-technical domains.

1.1 Introduction

Despite steady advancement in the state of the art, software development remains a

challenging and knowledge-intensive activity. Mastering a programming language

is no longer sufficient to ensure software development proficiency. Developers are

continually introduced to new technologies, components, and ideas. The systems on

which they work tend to keep growing and to depend on an ever-increasing array of

external libraries and resources.
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We have long since reached the point where the scale of the information space—

the set of all data sources that are potentially relevant to a development project—

facing a typical developer easily exceeds an individual’s capacity to assimilate it.

Software developers and other technical knowledge workers must now routinely

spend a large fraction of their working time searching for information, for example,

to understand existing code or to discover how to properly implement a feature.

Often, the timely or serendipitous discovery of a critical piece of information can

have a dramatic impact on productivity [6].

Although rigorous training and effective interpersonal communication can help

knowledge workers orient themselves in a sea of information, these strategies are

painfully limited by scale. Data mining and other knowledge inference techniques

are among the ways to provide automated assistance to developers in navigating

large information spaces. Just as recommendation systems for popular e-commerce

websites can help expose users to interesting itemsrecommendation item previously

unknown to them [15], recommendation systems can be used in technical domains

to help surface previously-unknown information that can directly assist knowledge

workers in their task.

Recommendation systems in software engineering (RSSEs) are now emerging

to assist software developers in various activities—from reusing code to writing

effective bug reports.

1.2 Information Spaces in Software Engineering

When developers join a project, they are typically faced with a landscape [4] of

information with which they must get acquainted. Although this information land-

scape will vary according to organization and to the development process employed,

the landscape will typically involve information from a number of sources.

The project source code. In the case of large software systems, the codebase itself

will already represent a formidable information space. According to Ohloh.net,

in October 2013 the source code of the Mozilla Firefox web browser totaled

close to 10 million lines written in 33 different programming languages. Under-

standing source code, even at a much smaller scale, requires answering numer-

ous different types of questions, such as “where is this method called?” [19].

Answering such structural questions can require a lot of navigation through the

project source code [11, 17], including reading comments and identifiers, fol-

lowing dependencies, and abstracting details.

The project history. Much knowledge about a software project is captured in the

version control system (VCS) for the project. Useful information stored in a

VCS includes systematic code change patterns (e.g., files A and B were of-

ten changed together [23]), design decisions associated with specific changes

(stored in commit logs), and, more indirectly, information about which devel-

opers have knowledge of which part of the code [13]. Unfortunately, the infor-

mation contained in a VCS is not easily searchable or browsable. Useful knowl-
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edge must often be inferred from the VCS and other repositories, typically by

using a combination of heuristics and data-mining techniques [22].

Communication archives. Forums and mailing lists, often used for informal com-

munication among developers and other stakeholders of a project, contain a

wealth of knowledge about a system [3]. Communication is also recorded in

issue management systems and code review tools.

The dependent APIs and their learning resources. Most modern software develop-

ment relies on reusable software assets (frameworks and libraries) exported

through application programming interfaces (APIs). Like the project source

code itself, APIs introduce a large, heavily-structured information space that

developers must understand and navigate to complete their tasks. In addition,

large and popular APIs typically come with extensive documentation [5], in-

cluding reference documentation, user manuals, code examples, etc.

The development environment. The development environment for a software sys-

tem includes all the development tools, scripts, and commands used to build

and test the system. Such an environment can quickly become complex to the

point where developers perform sub-optimally simply because they are unaware

of the tools and commands at their disposal [14].

Interaction traces. It is now common practice for many software applications to

collect user interaction data to improve the user experience. User interaction

data consists of a log of user actions as they visit a website or use the various

components of the user interface of a desktop or mobile application [8]. In soft-

ware engineering, this collection of usage data takes the form of the monitoring

of developer actions as they use an integrated development environment such

as Eclipse [10].

Execution traces. Data collected during the execution of a software system [16,

Table 3] also constitutes a source of information that can be useful to software

engineers, and in particular to software quality assurance teams. This kind of

dynamically-collected information includes data about the state of the system,

the functions called, and the results of computation at different times in the

execution of the system.

The web. Ultimately, some of the knowledge sought by or useful to developers can

be found in the cloud, hosted on servers unrelated to a given software devel-

opment project. For example, developers will look for code examples on the

web [2], or visit the StackOverflow Questions-and-Answers (Q&A) site in the

hopes of finding answers to common programming problems [12]. The problem

with the cloud is that it is often difficult to assess the quality of the information

found on some websites, and near impossible to estimate what information ex-

ists beyond the results of search queries.

Together, the various sources of data described above create the information

space that software developers and other stakeholders of a software project will

face. Although, in principle, all of this information is available to support on-going

development and other engineering activities, in reality it can be dispiritingly hard

to extract the answer to a specific information need from software engineering data,
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or in some case to even know that the answer exists. A number of aspects of soft-

ware engineering data make discovering and navigating information in this domain

particularly difficult.

1. The sheer amount of information available (the information overload prob-

lem), while not unique to software engineering, is an important factor that only

grows worse with time. Automatically-collected execution traces and interac-

tion traces, and the cumulative nature of project history data, all contribute to

making this challenge more acute.

2. The information associated with a software project is heterogeneous, leading to

a problem of high dimensionality when attempting to model or represent the

data. While a vast array of traditional recommender systems can rely on the

general concepts of item and rating [15], there is no equivalent universal base-

line in software engineering. The information sources described above involve a

great variety of information formats, including highly structured (source code),

semi-structured (bug reports), and loosely structured (mailing lists, user manu-

als).

3. Technical information is highly context-sensitive. To a certain extent, most in-

formation is context-sensitive; for example, to interpret a restaurant review, it

may be useful to know about the expectations and past reviews of the author.

However, even in the absence of such additional context, it will still be pos-

sible to construct a coarse interpretation of the information, especially if the

restaurant in question is either very good or very bad. In contrast, software en-

gineering data can be devoid of meaning without an explicit connection to the

underlying process. For example, if a large amount of changes are committed

to a system’s version control system on Friday afternoons, it could either mean

that team members have chosen that time to merge and integrate their changes,

or that a scheduled process updates the license headers at that time.

4. Software data evolves very rapidly. Ratings for movies can have a useful life-

time measured in decades. Restaurant and product reviews are more ephemeral,

but could be expected to remain valid for at least many months. In contrast,

some software data experiences high churn, meaning that it is modified in some

cases multiple times a day [9]. For example, the Mozilla Firefox project receives

around 4000 commits per month, or over 100 per day. Although not all software

data gets invalidated on a daily basis (APIs can remain stable for years), the

highly dynamic nature of software means that inferred facts must, in principle,

continually be verified for consistency with the underlying data.

5. Software data is partially-generated. Many software artifacts are the result of a

combination of manual and automated processes and activities, often involving

a complex cycle of artifact generation with manual feedback. Examples include

the writing of source code with the help of refactoring or style-checking tools,

the authoring of bug reports in which the output or log of a program is copied

and pasted, and the use of scripts to automatically generate mailing list mes-

sages, for example when a version of the software is released. These complex

and semi-automated processes can be contrasted, for example, with the author-

ing of reviews by customers who have bought a certain product. In the latter
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case, the process employed for generating the data is transparent, and interpret-

ing it will be a function of the content of the item and the attributes of the author;

the data generation process would not normally have to be taken into account

to understand the review.

Finally, in addition to the challenging attributes of software engineering data that

we noted above, we also observe that many problems in software engineering are

not limited by data, but rather by computation. Consider a problem like change
impact analysis [1, 21]: the basic need of the developer—to determine the impact

of a proposed change—is clear, but in general it is impossible to compute a precise

solution. Thus, in software engineering and other technical domains, guidance in the

form of recommendations is not only needed to navigate large information spaces,

but also to deal with formally undecidable problems, or problems where no precise

solutions can be computed in a practical amount of time.

1.3 Recommendation Systems in Software Engineering

In our initial publication on the topic, we defined a recommendation system for

software engineering to be [18, p.81]:

. . . a software application that provides information items estimated to be valuable for a
software engineering task in a given context.

With the perspective of an additional four years, we still find this definition to be

the most useful for distinguishing RSSEs from other software engineering tools.

RSSEs’ focus is on providing information as opposed to other services such as

build or test automation. The reference to estimation distinguishes RSSEs from

fact extractors, such as classical search tools based on regular expressions or the

typical cross-reference tools and call-graph browsers found in modern integrated

development environments. At the same time, estimation is not necessarily predic-
tion: recommendation systems in software engineering need not rely on the accurate

prediction of developer behavior or system behavior. The notion of value captures

two distinct aspects simultaneously: (1) novelty and surprise, because RSSEs sup-

port discovering new information; and (2) familiarity and reinforcement, because

RSSEs support the confirmation of existing knowledge. Finally, the reference to a

specific task and context distinguish RSSEs from generic search tools, e.g., tools to

help developers find code examples.

Our definition of RSSEs is, however, still broad and allows for great variety in

recommendation support for developers. Specifically, a large number of different

information items can be recommended, including:

Source code within a project. Recommenders can help developers navigate the source

code of their own project, for example by attempting to guess the areas of the

project’s source code a developer might need, or want, to look at.
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Reusable source code. Other recommenders in software engineering attempt to

help users discover the API elements (such as classes, functions, or scripts)

that can help to complete a task.

Code examples. In some cases, a developer may know which source code or API el-

ements are required to complete a task, but may ignore how to correctly employ

them. As a complement to reading textual documentation, recommendation sys-

tems can also provide code examples that illustrate the use of the code elements

of interest.

Issue reports. Much knowledge about a software project can reside in its issue

database. When working on a piece of code or attempting to solve a problem,

recommendation systems can discover related issue reports.

Tools, commands, and operations. Large software development environments are

getting increasingly complex, and the number of open-source software devel-

opment tools and plug-ins is unbounded. Recommendation systems can help

developers and other software engineers by recommending tools, commands,

and actions that should solve their problem or increase their efficiency.

People. In some situations recommendation systems can also help finding the best

person to assign a task to, or the expert to contact to answer a question.

Although dozens of RSSEs have been built to provide some of the recommenda-

tion functionality described above, no reference architecture has emerged to-date.

The variety in RSSE architectures is likely a consequence of the fact that most

RSSEs work with a dominant source of data, and are therefore engineered to closely

integrate with that data source. Nevertheless, the major design concerns for recom-

mendation systems in general are also found in the software engineering domain,

each with its particular challenges.

Data preprocessing. In software engineering, a lot of preprocessing effort is re-

quired to turn raw character data into a sufficiently interpreted format. For ex-

ample, source code has to be parsed, commits have to be aggregated, software

has to be abstracted into dependency graphs, etc. This effort is usually needed in

addition to more traditional preprocessing tasks such as detecting outliers and

replacing missing values.

Capturing context. While in traditional domains, such as e-commerce, recommen-

dations are heavily dependent on user profiles, in software engineering, it is

usually the task that is the central concept related to recommendations. The

task context is our representation of all information about the task to which the

recommendation system has access in order to produce recommendations. In

many cases, a task context will consist of a partial view of the solution to the

task: for example, some source code that a developer has written; an element in

the code that a user has selected; or an issue report that a user is reading. Con-

text can also be specified explicitly, in which case the definition of the context

becomes fused with that of a query in a traditional information retrieval sys-

tem. In any case, capturing the context of a task to produce recommendations

involves somewhat of a paradox: the more precise the information available

about the task is, the more accurate the recommendations can be, but the less
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likely the user can expected to need recommendations. Put another way, a user

in great need of guidance may not be able to provide enough information to

the system to obtain usable recommendations. For this reason, recommendation

systems must take into account that task contexts will generally be incomplete

and noisy.

Producing recommendations. Once preprocessed data and a sufficient amount of

task context are available, recommendation algorithms can be executed. Here

the variety of recommendation strategies is only bounded by the problem space

and the creativity of the system designer. However, we note that the tradi-

tional recommendation algorithms commonly known as collaborative filtering

are only seldom used to produce recommendations in software engineering.

Presenting the recommendations. In its simplest form, presenting a recommenda-

tion boils down to listing items of potential interest—functions, classes, code

examples, issue reports, and so on. Related to the issue of presentation, how-

ever, lies the related question of explanation: why was an item recommended?

The answer to this question is often a summary of the recommendation strat-

egy: “average rating”, “customers who bought this item also bought”, etc. In

software engineering, the conceptual distance between a recommendation al-

gorithm and the domain familiar to the user is often much larger than in other

domains. For example, if a code example is recommended to a user because it

matches part of the user’s current working code, how can this matching be sum-

marized? The absence of a universal concept such as ratings means that for each

new type of recommendation, the question of explanation must be revisited.

1.4 Overview of the Book

In the last decade, research and development on recommendation systems has seen

important advances, and the knowledge relevant to recommendation systems now

easily exceeds the scope of a single book. This book focuses on the development of

recommendations systems for technical domains and, in particular, for software en-

gineering. The topic of recommendation systems in software engineering is broad to

the point of multidisciplinarity: it requires background in software engineering, data

mining and artificial intelligence, knowledge modeling, text analysis and informa-

tion retrieval, human–computer interaction, as well as a firm grounding in empirical

research methods. This book was designed to present a self-contained overview that

includes sufficient background in all of the relevant areas to allow readers to quickly

get up to speed on the most recent developments, and to actively use the knowledge

provided here to build or improve systems that can take advantage of large informa-

tion spaces that include technical content.

Part I of the book covers the foundational aspects of the field. Chapter 2 presents

an overview of the general field of recommendation systems, including a presen-

tation of the major classes of recommendation approaches: collaborative filtering,

content-based recommendations, and knowledge-based recommendations. Many
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recommendation systems rely on data mining algorithms; to help readers orient

themselves in the space of techniques available to infer facts from large data sets,

Chap. 3 presents a tutorial on popular data mining techniques. In contrast, Chap. 4

examines how recommendation systems can be built without data mining, by re-

lying instead on carefully designed heuristics. To-date, the majority of RSSEs have

targeted the recommendation of source code artifacts; Chap. 5 is an extensive review

of recommendation systems based on source code that includes many examples of

RSSEs. Moving beyond source code, we examine two other important sources of

data for RSSE: bug reports in Chap. 6, and user interaction data in Chap. 7. We

conclude Part I with two chapters on human–computer interaction (HCI) topics: the

use of developer profiles to take personal characteristics into account, in Chap. 8,

and the design of user interfaces for delivering recommendations, in Chap. 9.

Now that the field of recommendation systems has matured, many of the ba-

sic ideas have been tested, and further progress will require careful, well-designed

evaluations. Part II of the book is dedicated to the evaluation of RSSEs with four

chapters on the topic. Chapter 10 is a review of the most important dimensions and

metrics for evaluating recommendation systems. Chapter 11 focuses on the prob-

lem of creating quality benchmarks for evaluating recommendation systems. The

last two chapters of Part II describe two particularly useful types of studies for eval-

uating RSSEs: simulation studies that involve the execution of the RSSE (or of

some of its components) in a synthetic environment (Chap. 12), and field studies,

which involve the development and deployment of an RSSE in a production setting

(Chap. 13).

Part III of the book takes a detailed look at a number of specific applications

of recommendation technology in software engineering. By discussing RSSEs in an

end-to-end fashion, the chapters in Part III provide not only a discussion of the major

concerns and design decisions involved in developing recommendation technology

in software engineering, but also provide insightful illustrations of how computation

can assist humans in solving a wide variety of complex, information-intensive tasks.

Chapter 14 discusses the techniques underlying the recommendation of reusable

source code elements. Chapters 15 and 16 present two different approaches to rec-

ommend transformations to an existing code base. Chapter 17 discusses how recom-

mendation technology can assist requirements engineering, and Chap. 18 focuses on

recommendations that can assist tasks involving issue reports, such as issue triage

tasks. Finally, Chap. 19 shows how recommendations can assist with product line

configuration tasks.

1.5 Outlook

As the content of this book shows, the field of recommendation systems in software

engineering has already benefited from much effort and attention from researchers,

tool developers, and organizations interested in leveraging large collections of soft-
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ware artifacts to improve software engineering productivity. We conclude this intro-

duction with a look at the current state of the field and the road ahead.

Most of the work on RSSEs to-date has focused on the development of algorithms

for processing software data. Much of this work has proceeded in the context of the

rapid progress in techniques to mine software repositories. As a result, developers

of recommendation systems in software engineering can now rely on a mature body

of knowledge on the automated extraction and interpretation of software data [7].

At the same time, developments in RSSEs had, up to recently, proceeded somewhat

in isolation of the work on traditional recommender systems. However, the parallel

has now been recognized, which we hope will lead to a rapid convergence in ter-

minology and concepts that should facilitate further exchange of ideas between the

two communities.

Although many of the RSSEs mentioned in this book have been fully imple-

mented, much less energy has been devoted to research on the human aspects of

RSSEs. For a given RSSE, simulating the operation of a recommendation algorithm

can allow us to record very exactly how the algorithm would behave in a large

number of contexts, but provides no clue as to how users would react to the rec-

ommendations (see Part II). For this purpose, only user studies can really provide

an answer. The dearth of user studies involving recommendation systems in soft-

ware engineering can be explained and justified by their high cost, which would

not always be in proportion to the importance of the research questions involved.

However, the consequence is that we still know relatively little about how to best in-

tegrate recommendations into a developer’s workflow, how to integrate recommen-

dations from multiple sources, and more generally how to maximize the usefulness

of recommendation systems in software engineering.

An important distinction between RSSEs and traditional recommendation sys-

tems is that RSSEs are task-centric, as opposed to user-centric. In many recom-

mendation situations, we know much more about the task than about the developer

carrying it out. This situation is reflected in the limited amount of personalization

in RSSEs. It remains an open question whether personalization is necessary or even

desirable in software engineering. As in many cases, the accumulation of personal

information into a user (or developer) profile has important privacy implications. In

software engineering, the most obvious one is that this information could be directly

used to evaluate developers. A potential development that could lead to more per-

sonalization in recommender systems for software engineering is the increasingly

pervasive use of social networking in technical domains. Github is already a plat-

form where the personal characteristics of users can be used to navigate information.

In this scenario, we would see a further convergence between RSSE and traditional

recommenders.

Traditional recommendation systems provide a variety of functions [15, Sect. 1.2].

Besides assisting the user in a number of ways, these functions also include a num-

ber of benefits to other stakeholders, including commercial organizations. For ex-

ample, recommendation systems can help increase the number of items sold, sell

more diverse items, increase customer loyalty, etc. Although, in the case of RSSEs

developed by commercial organizations, these functions can be assumed, we are not
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aware of any research that focuses on assessing the non-technical virtues of RSSEs.

At this point, most of the work on assessing RSSEs has focused on the support they

directly provide to developers.

1.6 Conclusion

The information spaces encountered in software engineering contexts differ markedly

from those in non-technical domains. Five aspects—quantity, heterogeneity, context-

sensitivity, dynamicity, and partial generation—all contribute to making it especially

difficult to analyze, interpret, and assess the quality of software engineering data.

The computational intractability of many questions that surface in software engi-

neering only add to the complexity. Those are the challenges facing organizations

that wish to leverage their software data.

Recommendation systems in software engineering are one way to cope with these

challenges. At heart, they must be designed to acknowledge the realities of the tasks,

of the people, and of the organizations involved. And while RSSEs give rise to new

challenges, we have already learned a great deal about techniques to create them,

methodologies to evaluate them, and details of their application.
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