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Abstract

Exception handling mechanisms provided by programming languages are intended
to ease the difficulty of developing robust software systems. Using these mecha-
nisms, a software developer can describe the exceptional conditions a module might
raise, and the response of the module to exceptional conditions that may occur as it
is executing. Creating a robust system from such a localized view requires a devel-
oper to reason about the flow of exceptions across modules. The use of unchecked
exceptions, and in object-oriented languages, subsumption, makes it difficult for a
software developer to perform this reasoning manually. In this thesis, I describe
an approach for analyzing the flow of exceptions in Java source code to produce
views of the exception structure. The approach is supported by a tool called Jex. 1
demonstrate how Jex can help a developer identify program points where exceptions
are caught accidentally, where there is an opportunity to add finer-grain recovery

code, and where error handling policies are not being followed.
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Chapter 1

Introduction

From the early days of computing, software developers have recognized that pro-
grams can encounter various situations that prevent a correct continuance of the
sequence of instructions. Conditions such as an arithmetic logical unit reporting
a division by zero, a system running out of memory, or an error reported by in-
put/output devices can prevent programs from producing meaningful results. De-
tecting and reporting such situations presents an opportunity to recover from, or to
provide more details about these kinds of problems.

These disruptions of normal program execution are called exzceptions, and
the mechanism to detect and react to these exceptions is called exception handling.
Syntactically, an exception handling mechanism consists of a means to explicitly
raise an exceptional condition at a program point, and a means of expressing a block
of code to handle one or more exceptional conditions. Software exceptions can be
supported at the operating system level (e.g., Mach [3], Windows NT [9]), or at the
programming language level (e.g. Ada95 [1], C++ [26], Java [12], Modula-3 [5]).

One of the main goals of exception handling is to separate code dealing with



unusual situations from the code supporting normal processing. This usually leads
to cleaner, more understandable programs.

Unfortunately, since exceptions can propagate in a program, local reasoning
about the code is not generally sufficient to develop a module that will react appro-
priately to all unexpected situations. This thesis shows that the lack of information
describing the global flow of exceptions, especially in object-oriented languages, can
prevent developers from fully leveraging the power of exception handling mecha-
nisms. For example, a lack of information about which exceptions can arise at a
particular program point can make it difficult for developers to effectively imple-
ment error handling policies. To compensate for this information gap, I introduce
an approach to provide information about the flow of exceptions. The approach has
been implemented in a tool that performs the extraction of exception information
from programs written in Java.

The remainder of this chapter presents the general concepts of exception

handling.

1.1 Exception Handling Concepts and Terminology

1.1.1 Defining Exceptions

Although the implementation of exception systems varies in different programming
languages and operating systems, there seems to be a consensus on the more general
concept of an exception [8, 11, 19, 20, 21]. An ezception can be defined as “an abnor-
mal computation state” [21, p. 86]. This definition applies both to programming-
language-based and operating-system-based exceptions [19]. This thesis, however,

focuses exclusively on programming-language-based exceptions.



Exceptions can be classified as either pre-defined or user-defined [8, 11, 19].
Pre-defined exceptions are generally associated with conditions that are detected
by the system. User-defined exceptions are defined and detected at the application
level [19].

An exception is raised, or signaled, when the corresponding abnormal state
is detected. Exceptions can be raised implicitly or explicitly [11]. Exceptions poten-
tially raised by function calls or language-defined operators (e.g., arithmetic opera-
tors) are said to be raised implicitly, while exceptions raised deterministically using
a command or language-defined keyword, like raise or signal, are said to be raised

explicitly.

1.1.2 Exception Handling Mechanisms

Exceptions would not be useful if they always resulted in the abnormal termina-
tion of a program. For this reason, programming languages supporting exceptions
also provide exception handling mechanisms. Exception handling mechanisms allow
programmers to define code to be executed when certain exceptions are detected,
and to link the occurrence of exceptions to the corresponding code. An ezception
handler is the code executed in response to an exception. In most languages, when
an exception is raised, the system halts the execution of the program and searches
for a handler for the exception. The search starts in the target, usually the enclosing
syntactic scope. An exception is said to be handled when a handler for it is found
and the corresponding code has been executed. If the handler is found directly in the
target, the exception is said to be masked. Otherwise, the exception is propagated
to an enclosing scope selected according to the implementation of the exception

handling mechanism. Exceptions can be propagated implicitly (automatic propa-



gation), or explicitly. In systems supporting automatic propagation, if no handler
for an exception is found in a target, the exception is automatically re-raised. With
explicit propagation, in order to be propagated, an exception has to be explicitly
re-raised in a handler. There exists different models describing the control flow be-
tween signalers, targets, and handlers. The most common models are described in

the next section.

1.1.3 Exception Models

This section describes three well-known exception models: the termination model,
the resumption model, and the retry model. The descriptions of the models are

adapted from [21].

Termination Model In the termination model, the scope of the signaler is de-
stroyed, and, if a handler is found, control resumes at the first syntactic unit follow-

ing this handler.

Resumption Model In the resumption model, once an exception is handled,

computation continues from the point where the exception was originally raised.

Retry Model In the retry model, when the exception is handled, the signaler’s
block is terminated and then retried.

Figure 1.1 illustrates the three models. In every schema, the topmost block
represents the syntactic unit where the exception is raised. The shaded block repre-
sent the exception handling code, the bottommost block represents the next logical

control block, and the arrows represent control flow.
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Figure 1.1: Exception Models

1.1.4 Hierarchies of Exceptions

Exceptions are represented differently in different languages. They can be defined
as various program entities, such as data types, procedures, values, or programming
language primitives. Depending on their representation, we can classify exceptions
as having either a singular or hierarchical structure [19].) Exceptions implementing
the singular structure are unrelated and there is no way to group them together.
Examples of programming languages implementing the singular exception structure
include CLU and Ada.

In languages implementing exceptions in a hierarchical structure, an excep-
tion can have several sub-exceptions (and, in some cases, an exception can have
several parents). This is the de facto standard for object-oriented languages rep-
resenting exceptions as objects (e.g., Java, C++). There are obvious advantages
to representing exceptions in a hierarchy. First, the hierarchy provides a semantic

organization for exceptions. For example, an exception representing a file not found

IFor the purpose of this work, I do not retain the nuance between the hierarchical and ob-
ject structures as described by Lang and Stewart [19]. Both type of structures are considered
hierarchical.



and an exception representing the end of a file being read are both 10 exceptions.
A second advantage, for languages that map the exception structure to their type
system, is that the handler for a parent exception can naturally handle all its child
exceptions [19]. As we will see in section 1.2, there is unfortunately a cost associated

with this property.

1.2 The Flow of Exceptions

1.2.1 Exception Interfaces

The propagation of exceptions introduces the possibility of non-local control flow. If
the caller of a module ignores the exceptions that can cross the module’s boundary,
the caller cannot adequately prepare for these exceptions, and robustness problems
may arise. For this reason, many programming languages support ezception inter-
faces [19] (or exception specifications [21]). An exception interface “is the part in a
module interface that explicitly specifies the exceptions that might be raised by the
module” [19, p. 295]. Usually the system prevents exceptions that are not declared
in the interface to propagate outside of the module boundaries. C++, CLU, and
Java are examples of languages supporting exception interfaces (see section 2.1). In
addition to providing information to users of a module, exception interfaces can be
statically checked and enforced, thus providing an additional level of reliability.
The problem with exception interfaces is that, in practice, they cannot be
exhaustive. Indeed, it would be prohibitive for a programmer to have to both figure
out and to declare the complete set of exceptions that a module can raise, mostly
because of the high frequency of redundant system exceptions, like arithmetic, null

pointer, or memory-related exceptions. To address this issue, languages enforcing



exception interfaces typically provide a means to bypass the checking mechanism.
This is done, for example, by providing mechanisms for specifying exceptions that
do not have to be checked (see section 2.1). In object-oriented languages repre-
senting exceptions as objects, there exists a second way of limiting the precision
of exception interfaces. Since exceptions are organized in a hierarchy, declaring a
general supertype of some exceptions automatically declares, by extension, all of its

more specialized subtypes.

1.2.2 A Metric of Exception Flow

Keeping in mind the exception interfaces between modules, we can imagine a sim-
ple metric of exception flow between module boundaries. The metric describes the
precision and completeness of information that is available to programmers (and to
static checkers). This metric can be described as a simple two-dimensional space.
The first dimension quantifies the completeness of the exception interface, and the
second dimension quantifies the granularity (or precision) of the interface. Com-
pleteness designates the relative fraction of different exceptions crossing the module
boundary that are actually declared in the interface. Let (), be the completeness
of the exception interface for a given module m, let F be the complete set of ex-
ceptions that can cross a module’s boundary, and let E; be the set of exceptions
declared in m’s exception interface. To take into account any hierarchical properties
of exceptions that may exist in a system, F. is defined as the set of exceptions in ¥
that are either elements of Fy, or that can be functionally considered as a child of

any exception in Fj.



Completeness can then be defined as

| Ee |

Crn
| £

(1.1)

The granularity G,, of an exception interface for a given module m, cannot
be defined as intuitively as the completeness. For the purpose of this discussion, I
shall define the granularity of an exception interface as the fraction of elements in

F. that are explicitly declared in the interface. Formally, we have

| Eq |

Gp=r—r""7—
|ECUEd|

(1.2)

I chose to include the set of declared exceptions (Fy) in the denominator
both to bound the granularity metric to one, and to avoid the situation where an
exception e € Fy, e € E. cancels the effect of another exception in F..

We see that in the case where Fy; = F., we can assume a very fine granular-
ity, as every exception that crosses the interface and that can actually match it is
precisely known. Thus finer granularity is represented by a G, closer to one, while
a coarser granularity is represented by a value closer to zero.

Figure 1.2 shows the basic representation of the two-dimensional quantifica-
tion of exception flow through exception interfaces. The points noted m; through
my represent four particular cases of exception interfaces. The interface correspond-
ing to module my has a high granularity but low completeness. This means that
exceptions crossing the module’s boundary, if they are in F., will tend to correspond
exactly to what is declared in the interface, and not to some subtype. However, many
exception are not in F.. The interface corresponding to module my has both a high
granularity and completeness. Exceptions crossing msy’s boundaries are precisely
and exhaustively defined. Module mgs is an example of a very complete but coarse

specification. This kind of specification can be found in practice when a module



simply declares to be raising a very general type of exception, and all the more spe-
cialized children are thus implicitly declared. Finally, module m4 has a very weak
exception interface, in the sense that it is both incomplete and coarse-grain. Very

little information can be obtained from such an interface.

Gm
Y
1
ml m2
[ ] [
o [ ]
m4 m3
Cm
0 1

Figure 1.2: A Metric for Quantifying Exception Interfaces

In the general sense we can interpret the metric presented in this section the
following way: the closer a point is to the upper-right corner, the more descriptive
the corresponding interface. Conversely, the closer a point is to the origin, the more
loosely defined the corresponding interface.

The C,,—~G,, metric has some obvious limitations. First, it can only quan-
tify module interfaces actually declaring exceptions, even though not declaring any
exceptions does not imply that no exception will be raised. Second, the value of its
interpretation decreases with the values of | ' |, | Fy |, and | F. |. However, we
can see that, over a large number of modules, the metric is sufficient to describe
the quantity of information provided by the use of exception specifications. Refer-
ence to this simple metric will be used later to describe various exception handling

approaches (section 4.3).



1.3 Exception Handling in Java

Since the work described in this thesis applies to the Java language, it is necessary
to describe how the exception system is implemented in this language. This section
describes how the concepts presented previously are implemented in Java.

In Java, exceptions are represented as first-class objects. As such, they can
be instantiated, assigned to variables, passed as parameters, etc. An exception is
explicitly signaled using a throw statement. Code can be guarded for exceptions
within a try block. A try block is basically a syntactic scope defining the target.
Exceptions signaled through execution of code within a try block may be caught in
one or more catch clauses declared immediately following the try block. Optionally,
a programmer can provide a finally block that is executed independently of what
happens in the try block. Exceptions thrown in the finally block mask any ex-
ception that would have been thrown in the try block. Figure 1.3 illustrates Java’s

basic exception handling structures.

try
{
// Code potentially raising IOException
}
catch( IOException e )
{
// Code recovering from an IOException
}
finally
{
// Some finalization code
}

Figure 1.3: Exception Handling Structures in Java

Java supports the termination model (see section 1.1.3) with automatic prop-

agation. Exceptions not caught in any catch block are propagated back to the next

10



level of try block scope, possibly in the caller module.

Like all other objects in Java, exceptions are typed. KExceptions are thus
organized in a hierarchy corresponding to their type.

What distinguishes exceptions from other objects is that all exceptions in-
herit from the class type java.lang.Throwable. The exception type hierarchy defines
three semantically and functionally different groups of exception types: errors, run-

time exceptions, and checked exceptions (Figure 1.4).

javalang.Object

javalang.Throwable

javalang.Error javalang.Exception

? ‘

T
Error Types javalang.RuntimeException javalang.Exception

| !

Runtime Exception Types Checked Exception Types

Figure 1.4: The Java Exception Type Hierarchy

Java enforces a partial exception interface. Errors and runtime exceptions
are unchecked by the compiler and do not have to be declared in the method headers.
Unchecked exceptions can be thrown at any point in a program and, if uncaught,
may propagate back to the program entry point, causing the Java Virtual Machine
to terminate abnormally. Errors represent unrecoverable conditions and are typi-
cally raised by the virtual machine. As opposed to unchecked exceptions, checked
exceptions that can potentially be raised in a method and that are not masked
need to be declared in the header of the corresponding method. The language also

requires exception conformance [21], so a method M’ overriding the method M of

11



a supertype must not declare any exception type that is not the same type or a
subtype of the exception types declared by M. Exceptions types present in the
exception interface thus vary covariantly with the method type.

The ability to declare exceptions within a hierarchy also means that an excep-
tion may be cast back implicitly to one of its supertypes when a widening conversion
requires it. For example, this conversion occurs when the assignment of an object
of a subtype is made to a variable declared to be of its supertype. This property is
called subsumption [2]; a subtype is said to be subsumed to the parent type. When
looking for a handler, exceptions can be subsumed into the type of the target catch
clause if the type associated with the catch clause is a supertype of the exception
type. Similarly, a method declaring an exception type F can throw any of the
subtypes of E without having to explicitly declare them.

As we will see in more detail later, Java’s support for unchecked exceptions
and subsumption means that it is difficult for a software developer to know the
actual set of exceptions that may cross a method’s boundaries. The following section

describes the information that is necessary to gain this knowledge.

1.4 Motivation and Thesis Statement

To design and implement a robust and reliable system, local reasoning about the
code is generally insufficient. In some applications, such as games, it may be suffi-
cient to trap an unexpected condition, write a generic error message, and terminate.
In many other applications, it is preferable to either recover silently, or at least pro-
vide a meaningful error message. For example, a user of a word-processor trying
to open a file may want to know that a file sharing violation has occurred and be

allowed to correct the problem, rather than just being told there was a file problem.

12



Fine-grain reactions to exceptions require a software engineer to reason about the
code on which the module being constructed depends. This includes being able to
reason about the exceptions that might flow out of a module.

In section 1.2.2, we have seen that the precision of exception interfaces—
represented as the combination of granularity and completeness—can basically vary

between all extremes. This variability is a factor of three things:

e the characteristics of the language of implementation;

e the actual interface specification; and

e the implementation of the module.

Since Java supports both exception type hierarchies and unchecked excep-
tions, we can assume that exception interfaces in that language can take any value
on the granularity-completeness grid. Hence, it is possible for developers to specify
exception interfaces that carry very little information about the flow of exceptions
across module boundaries. The rationale behind such a design is not necessary
negligence. It can stem from a lack of information about the modules being used.
With languages actually enforcing interfaces at compile time, the choice to broadly
define the specification of an interface might be additionally driven by the concern
for greater compatibility with other components, or simply by convenience for users
of the module.

Whatever the reasons, it is not practical to expect an exception interface to
completely and unambiguously specify every single type of exception that can cross
a method’s boundary. The hypothesis underlying the work described in this thesis
is that, to produce quality code, developers need to have access to more complete

and precise exception flow information than what typical exception interfaces can
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provide them. In an attempt to provide this information to software developers, |
propose an approach, based on static analysis techniques, to extract exception flow

information from source code.

1.5 Overview

This chapter presented the use of exceptions, provided general background on excep-
tion handling, and motivated the purpose of the research described in this thesis.
The remaining chapters of the thesis are organized as follows. Chapter 2 covers
the related work. Chapter 3 describes the approach chosen to address the problem
of exception handling in Java. Chapter 4 shows the results that can be obtained
using the approach and the corresponding tool. Finally, chapter 5 discusses the

applicability and general future directions of the work.
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Chapter 2

Related Work

There exists two basic ways to obtain information about various aspects of a pro-
gram. One is to refer to information that a software developer has explicitly pro-
vided, either in syntactic declarations or in the source code documentation. Another
approach is to extract this information from unannotated program representations.

This chapter describes how both approaches can provide information about
the flow of exceptions. Section 2.1 presents an overview of the mechanisms used to
specify and check exception declarations in languages supporting exception handling.
Section 2.2 discusses typical program analysis techniques. Unfortunately, to this
day, most program analysis tools and techniques typically overlook exceptions. The
section also provides an overview of analysis techniques that integrate exception
flow analysis. Finally, section 2.3 describes some tools that were specifically built to
extract information about the flow of exceptions, and explains how they differ from

the work described in this thesis.
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2.1 Specifying and Verifying Exception Interfaces

This section describes and compares six relatively modern programming languages
directly supporting exceptions: Ada [1], C++ [26], CLU [20], Java [12], ML [14],
and Modula-3 [5].

ML, Ada95 and Modula-3 do not support specification of exceptions in func-
tion declarations. ML is a functional language in which exceptions are values that
can be declared anywhere in a program. These values can be signaled at any point
following their declaration. Similarly, in Ada95, exceptions are simple name declara-
tions. In Modula-3, exceptions are also names, but they can optionally be associated
with a data type. In all three, ML, Ada95, and Modula-3, the representation of ex-
ceptions follows the singular structure (see section 1.1.4).

CLU, C++ and Java, on the other hand, support exception specifications. In
CLU, like in Modula-3, exceptions are represented by a name to which is associated
zero or more values. However, in CLU, for every exception signaled in a routine,
the compiler ensures that there is a corresponding exception present in the routine
declaration. Since exceptions have a singular representation, modules do not suffer
from the granularity problem presented in section 1.1.4. However, completeness
can be a problem because of a special exception called failure. This exception is
implied in every exception interface (i.e., it does not have to be declared), and
can represent any type of failure. Since a failure exception can describe all the
different types of failures, this special exception reduces the descriptive power of the
exception specification. In comparison to Java, the use of failure in CLU is roughly
equivalent to using the Java exception type RuntimeException without specializing it.
Nevertheless, according to the criteria of section 1.1.4, CLU is one of the languages

enforcing the highest level of exception flow information in its module interfaces.
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Table 2.1: Exception Handling Characteristics of Some Programming Languages

Language Representation Category  Exception Interface
ML Named value singular No

Ada9b Name singular No
Modula-3 Named value singular No

CLU Named set of values  singular Yes (checked)
C++ Object hierarchical Yes (unchecked)
Java Object hierarchical Yes (checked)

The C++ language specification ensures that a method can only raise ex-
ceptions it declares. If a method signature does not include the declaration of
exceptions, it is assumed that all types of exceptions may be raised. However,
C++ adopts a different strategy to enforce interfaces. It does not check clients of
a function to make sure that declared exceptions are either masked or re-declared.
Instead, any exception raised within the method that is not declared is re-mapped to
a special unexpected exception. The developer of a client is not informed of missing
handlers. Furthermore, in C++, exceptions are typed objects, and thus are subject
to granularity degradation (see section 1.2.2).

Finally, as we have seen in section 1.3, exceptions in Java are typed objects.
Java supports exception interfaces, and checks these interfaces only for a subset of
all exceptions (checked exceptions). The combination of the type hierarchy in Java,
and the fact that not all exceptions have to be declared in exception interfaces means
that developers do not have precise and complete information about the number and
type of exceptions potentially crossing a method’s boundary.

Table 2.1 summarizes the characteristics of the exception systems of the

languages discussed in this section.
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2.2 Analysis Tools and Techniques

Many approaches and tools exist to help software engineers obtain information about
properties of programs. These approaches are usually based on some form of inter-
mediate program representation, such as system dependence graphs [16] or abstract
syntax trees (AST). Historically, these approaches have mostly been used for lan-
guages without exceptions. In the case of languages that do support exceptions,
the integration of exception-related structures complicates the intermediate repre-
sentations of programs and is not relevant for most tasks, such as compiling. These
reasons can serve to explain why most program analysis techniques typically avoid
the consideration of exceptions.

Slicing [28] is a technique used to identify the flow of information responsible
for a specific value at a program point. It is based on data-flow and control-flow anal-
ysis of programs, and has many software engineering applications, such as debugging
and testing [25]. Recent work is beginning to incorporate exception information into
data-flow and control-flow representations of programs. Sinha and Harrold describe
techniques to model control-flow in the presence of exceptions [24, 25]. Choi et al. [7]
describe a representation to improve procedural optimizations in the presence of
exceptions. These efforts differ from my work in that their focus is on modeling pro-
gram execution rather than on enabling a developer to make better use of exception
mechanisms.

Program databases, like the C Information Abstraction System (CIA) [6], are
tools that allow users to retrieve various types of information about a program, and
to perform some analysis tasks, like call-graph generation and subsystem extraction.
Most of the implementations of such systems were designed for the C language,

which does not support exceptions. In the case of CIA, there exists a version for
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C++ called ACACIA, but it does not currently support the querying of exception
information.!

Finally, there exists many other systems that perform various analyses on
Java programs specifically. Recent examples include CoffeeStrainer [4], an AST-
based framework for the static checking of constraints on Java programs, and the
Womble tool [17], built to extract object models from Java bytecode. Although
such tools have access to much of the exception handling information, they typically

ignore this information, mostly because the tasks they are intended to support do

not involve exceptions.

2.3 Exception Analysis Approaches

Many exception analysis tools have been developed for ML, a functional language
that represents exceptions as singular values and that does not support exception
interfaces (see section 2.1). Theses two characteristics make it difficult for pro-
grammers to ensure that all exceptions are caught. Pessaux and Leroy report that
uncaught exceptions are the most frequent mode of failure in large ML applica-
tions [22]. The goal of the tools is thus obvious: to help programmers identify the
points in a program where different exceptions can be thrown.

Guzméan and Sudrez have proposed an extension of the ML type system by
which it is possible to estimate all uncaught exceptions that can be raised [13]. Their
type system is limited in that it does not handle exceptions carrying arguments.

A different approach has been adopted by Yi, who developed an exception
analyzer based on abstract interpretation techniques [29]. Since this analyzer suf-

fered from severe performance problems, Yi and Ryu developed a more efficient

!'Emden R. Gansner. AT&T Labs-Research. May 1999. Personal Communication.
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one [31], using control-flow analysis and a set-constraints framework [15].

Fahndrich et al. [10] have built an Exception Analysis Tool (EAT) “that
allows the programmer to display uncaught exceptions at certain program points
while browsing the code” [10, p. 1]. EAT is based on BANE, a general framework
for implementing constraint-based program analyses. Yi’s tool is more precise than
EAT, but EAT, which uses a more conservative approach, is more scalable. The EAT
tool also provides support for visualizing the declaration and handling of exceptions
at different points in the program. Pessaux and Leroy [22] propose a type-based
analysis of uncaught exceptions in ML that offers different speed/precision tradeoffs
than the previous constraint-based approaches.

The analysis tools proposed for ML, have basically the same goal as the work
described in this thesis: to provide programmers with information about the flow
of exceptions, in order to allow them to design more robust code. However, there
are many differences between functional and object-oriented languages in general,
and between ML and Java in particular. Exception interfaces and hierarchies of
exceptions, two concepts present in Java and absent in ML, introduce subtleties and
tradeoffs that programmers must take into account, and that an analysis tool must
consider. The focus of this work is on these latter concepts.

Finally, Yi and Chang [30] have sketched an approach within the set-constraint
framework that would provide an exception flow analysis for Java similar to that
implemented by the tool presented in this thesis. It is unclear whether formalization
in the set-constraint framework will cause them to make different trade-offs between

precision and scalability than have been made in the approach I propose.
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Chapter 3

The Jex Approach and Tool

In the previous chapters, I have justified the need for providing information about
the flow of exceptions in object-oriented programs. There remains the questions of
what information should be extracted, and of how it should be presented to a user.
Extracting information flow is not a well-defined problem and, as such, there exists
numerous possible solutions. The specification and design of my approach is based
on two considerations of a practical nature, namely, accessibility and usefulness of
the information. In other words, the initial goal of the Jex approach is that the
information produced has to be easy to interpret and useful.

This chapter describes the approach taken to extract exception information
from Java programs (section 3.1), and discusses the details of the tool used to realize

the extraction (section 3.2).

3.1 Extracting Exception Structure

Understanding and evaluating how exceptions are handled within a method requires

reasoning about which exceptions might arise as a method is executing, which ex-
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ceptions are handled and where, and which exceptions are passed on.

Manually extracting this information from source code is a tedious task for
all but the simplest programs. In the case of an object-oriented program, a developer
must consider how variables bind to different parts of the type hierarchy, the methods
that might be invoked as a result of the binding, and so on. For this reason, I have
built the Jex tool, that automates this task for Java programs.

To retain meaning for a developer, [ wanted to present a view of the exception
flow within the context of the structure of the existing program. The Jex tool thus
extracts, synthesizes, and formats only the information that is pertinent to the
task. In the case of Java, for each method, our tool extracts, the nested try block
structures, including the guarded block, the catch clauses, and the £inally block.
Within each of these structures, Jex displays the precise type of exceptions that
might arise from operations, along with the possible origins of each exception type.
If an exception originates from a method call, the name of the class and method
raising the exception are identified. If an exception originates from the run-time
environment, the qualifier environment is used. This information is placed within a
Jex file corresponding to the analyzed class.

We can illustrate this exception structure using code from one of the con-
structors of the class java.io.FileOutputStreamfrom the JDK 1.1.3 APL! Figure 3.1
shows the code for the constructor; Figure 3.2 shows the exception structure ex-
tracted according to the proposed technique.? The extracted structure shows that
the code preceding the explicit try block may raise a SecurityException, and that

the code inside the try block may result in an I0Exception being raised by the call

ISource code for the JDK 1.1.3 API is publicly available. This source code can be used
to determine the exceptions possibly thrown by the various methods.

2Figure 3.2 is a simplified view of the information generated by Jex. Specifically, for clar-
ity in presentation, the full qualification of Java names that is usually shown was removed.
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to openAppend or to open on an object of type FileOutputStream. The catch clause
indicates that any IOException raised during the execution of the code in the try
block may result in a FileNotFoundException being raised. FileNotFoundException

is a subtype of I0Exception, the exception declared in the constructor’s signature.

public FileOutputStream(String name, boolean append)
throws IOException
{
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkWrite(name) ;
}
try {
fd = new FileDescriptor();
if (append)
openAppend (name) ;
else
open(name) ;
} catch (IOException e) {
throw new FileNotFoundException(name);

}

Figure 3.1: The Source Code for the Constructor of FileOutputStream

FileOutputStream(String,boolean) throws IOException
{
SecurityException:SecurityManager.checkWrite(String);
try {
I0Exception:FileOutputStream.openAppend(String);
I0Exception:FileOutputStream.open(String);
}
catch ( IOException ) {
throws FileNotFoundException;
}
}

Figure 3.2: The Structure of Exceptions for the Constructor of FileOutputStream

This analysis provides two useful kinds of information to a software devel-

oper implementing or maintaining this constructor. First, the developer can see that
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the constructor may signal an unchecked SecurityException that originates from a
checkWrite operation; a comment to this effect may be added to the constructor’s
header for the use of clients. Second, the developer can determine that the ex-
ceptions that may be raised within the scope of the try block are actually of type
I0Exception and not some more specialized subtype; thus, finer-grained handling of
the exception is not possible and should not be attempted. Neither of these cases
would be detectable based on an inspection of the constructor’s source code alone.

The analysis can also benefit a client of the constructor. Consider the code for
the doSomething method in Figure 3.3. This code will pass the checking of the Java
compiler as there is a handler for the declared exception, I0Exception. Applying
the exception extraction technique to this code returns the information that the
invocation of the FileOutputStream constructor might actually result in the more
specialized FileNotFoundException or an unchecked SecurityException.

Knowing the details about the exceptions flowing out of the constructor
allows the developer of the client code to introduce additional handling. Figure 3.4
shows an enhanced version of the doSomething client code. A handler has been
introduced to catch SecurityException. This handler warns the user that permission
to modify the file is missing. A handler is also introduced to provide a specialized
error message for the case when a FileNotFoundException occurs.

To conform to the constructor’s interface, it is also necessary to provide
a handler for I0Exception: this handler serves to protect the client from future
modifications of the constructor, which may result in the throwing of an 1O exception

different from FileNotfoundException.
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public void doSomething( String pFile )
{
try {
FileOutputStream lOutput = new FileOutputStream( pFile, true );
}
catch( IOException e ) {
System.out.println( "Unexpected exception." );
}
}

Figure 3.3: An Example of Code not Using Jex Information

public void doSomething( String pFile )

{
try{
FileOutputStream 10utput = new FileOutputStream( pFile, true );
// Various stream operations
} catch( SecurityException e ) {
System.out.println( "No permission to write to file " + pFile );
} catch( FileNotFoundException e ) {
System.out.println( "File " + pFile + " not found" );
} catch( IOException e ) {
System.out.println( "Unexpected exception" );
}
}

Figure 3.4: An Example of Code Making Use of Jex Information

3.2 The Architecture and Implementation of Jex

As described in the previous section, Jex is a tool for extracting exception informa-

tion from Java source files. It is entirely developed in Java and comprises 23 000

lines of commented Java source code spread over 138 classes and interfaces. It con-

sists of two command-line applications: jex.Analyzer (or Jex), the main source code

analyzer, and jex.subsumption.Analyzer (or JSA), a higher-order analysis tool used

to perform analysis on the information extracted by Jex.

The architecture of Jex consists of five components: the application con-

troller, the parser, the abstract syntax tree (AST), the type system, and the Jex

loader (Figure 3.5).
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Figure 3.5: The Simplified Architecture of Jex.

3.2.1 The Application Controller

The application controller is the entry point to Jex. It processes the command-
line arguments, loads the type system (section 3.2.4), and parses the input file
(section 3.2.2), which returns a reference to a corresponding AST (section 3.2.3).
It then passes the type system to the AST component, and requests the AST to
perform the exception analysis.

The application controller is implemented as a standard Java program entry

point, that is, a static main method.

3.2.2 The Parser

The parser loads and parses a Java source file specified as input. The parser also

contains actions to build an abstract syntax tree representation of the program
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analyzed (section 3.2.3). The parser was constructed using version 0.8prel of the
Java Compiler Compiler™ (JavaCC) [27]. The current implementation of the tool
supports the Java 1.0 language specification, which does not include the support for

inner classes and initializer blocks [12].

3.2.3 The Abstract Syntax Tree

The AST is built by parser actions. It contains the functionality to extract excep-
tion information from the representation of the program and to generate a Jex file
containing this information. A Jex file is a normal text file containing a description
of the exception flow for all the methods of a class, following the technique high-
lighted in section 3.1 and illustrated in Figure 3.2. Appendix A contains the formal
description of Jex files.

From the original version of the AST created by the parser, it takes four

steps to generate a Jex file:

1. Type analysis. The AST resolves the type of every expression in the source
code. The type system is not used at this preliminary step, because the types

of program expressions can all be derived from declared types.

2. Control-flow analysis. The AST performs a total ordering of the methods to
analyze in the input source code file. The order is based on the call hierarchy
within the methods of a class, so that a method A called by a method B would
be analyzed first. The current version of Jex does not support cycles in the

call graph.

3. Jex analysis. Every operation (i.e., operator, method call) that can generate

an exception is examined, and the exceptions that can be thrown by that
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operation are mapped to a dynamically-allocated data structure representing
the exception handling constructs.> For every method call, a type analysis
using the type system component (section 3.2.4) is performed to determine
all of the possible implementations of the method being called. For all of the
implementations identified, the Jex loader (section 3.2.5) is used to obtain
the list of exception types that can be thrown by the method. In the case
of operations that are built in the language (such as multiplicative operators
and array accesses), the exceptions generated are based on the Java language
specifications [12]. The list of environment-related exceptions generated by

Jex can be found in appendix B.

. Generation of the Jex files. Finally, the data structure representing the ex-
ception information is written to Jex files corresponding to every class in the

input source.

Steps 1 to 3 correspond to a traversal of the AST, while step 4 corresponds

to a traversal of the exception data structure. The AST was built using the JJTree

preprocessor distributed with JavaCC.

3.2.4 The Type System

The AST relies on the type system to return a list of all types that override or

implement a particular method. Ensuring all possible types are considered in such

an operation would require global analysis of all Java classes reachable through the

Java class path. This approach has the disadvantage of being overly conservative

because unrelated classes may be considered. For example, the method toString

3The exception to this statement is that exceptions potentially thrown as a consequence

of the initialization of static variables are not considered because it is not always possible
to statically identify the program points where a class is first loaded.
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of class Object is often redefined by application classes. Two classes, both in the
class path but from two unrelated applications, might each redefine toString. If a
method in a class of the first application makes a call to toString, it is reasonable
to assume that the method toString implemented by the second class will not be
invoked. To prevent this, we restrict the analysis to a set of packages defined by
the user. The normal Java method conformance rules are taken into account in
establishing the potential overriding relationships between methods.

The type system is implemented as a 3-level hash table. This hash table maps
package names to class names, to method signatures, to a list of types possibly
implementing the methods. Loading the type system component is done in two
steps. A first step loads all the classes of all the packages specified in the data
structure. The second step establishes the implementation relationships between all

the methods in the system, using introspection to extract type hierarchies.

3.2.5 The Jex Loader

To determine the actual exceptions thrown by a Java method call, the AST compo-
nent relies on the Jex loader. Given a fully qualified Java type name, the Jex loader
locates the Jex file describing that type. The AST component can then query the
Jex loader to return the exceptions that might arise from a method conforming to a
particular method signature for that type. The Jex files for a Java type are stored
in a directory structure that parallels the directory structure of the Java source files.
It is necessary to have a different directory structure for Jex files because some class
files might not be in writable directories. The Jex files thus serve both to provide a
view of the exception structure for the user, and as an intermediate representation

for the Jex system.
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The Jex loader is implemented as a parser for Jex files, enhanced with actions
to recognize method matching according to the conformance rules of Java, and to

extract uncaught exceptions.

3.2.6 Using Jex

To use Jex, a user must specify a list of packages, a path to search for Jex files, and
a Java source code file. The list of packages and the path for Jex files are specified
in a resource file named .include. The first line of the file must be a valid directory
pointing to the root of the Jex file hierarchy. The subsequent lines are a list of
packages to include in the type system. The Java source file to analyze is specified
as a command-line argument.

Currently, the Jex system requires that all necessary Jex files to analyze
a source code file be available. Since an analysis will terminate abnormally if a
such a Jex file is missing, the user must make sure that all necessary Jex files are
available before launching an analysis. For this reason, Jex supports the command-
line option —-d, that will simply produce a list of all the Jex files necessary for the

analysis of the input file specified.

3.2.7 The Subsumption Analysis Tool

Jex files provide two different kinds of detailed information to users: types of excep-
tions that can be raised, and the program structures in place to handle them. To
make efficient use of this information, it is sometimes necessary to reason about the
interaction between the two types of information. This requires knowing which types
of exception can be caught by which types of catch clauses. Because of subsumption,

this is sometimes difficult, because developers have to keep in mind the complete
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type hierarchy of exceptions. For example, Figure 3.6 shows Jex information for a

print method.?

print ()
{
try
{
java.lang.NullPointerException:environment;
java.lang.OutOfMemoryError:environment;
java.io.IOException:FileWriter.<C>FileWriter(String);
java.io.FileNotFoundException:FileReader.<C>FileReader(String);
java.io.IOException:BufferedReader.readLine();
java.io.IOException:LineNumberReader.readLine();
}
catch ( java.io.IOException )
{
X
}
Figure 3.6: An Example of Jex Information
print ()
{
try
{
java.lang.NullPointerException -> *UNCAUGHT=*
java.lang.OutOfMemoryError -> *UNCAUGHT*
java.io.IOException -> java.io.IOException
java.io.FileNotFoundException -> java.io.IOException
X
catch ( java.io.IOException )
{
}
}

Figure 3.7: The Result of Applying JSA to the Code of Figure 3.6

Without knowing how the exception types appearing in the try block relate to
I0Exception, it is not possible to infer what exception will get caught. To help devel-
opers perform this task, Jex includes an accessory tool called jex.subsumption.Analyzer,

or JSA. JSA takes a Jex file as input, and produces a reduced, annotated version

4For clarity in presentation, the full qualification of origin type names was removed.

31



of the Jex file. The information produced by JSA consists of, for every block, a set
of unique exception types (without origin information), and an indication of which
type is used to catch it. If the exception is not caught by any catch clause attached
to the try block, the exception type is simply identified as “uncaught”. Figure 3.7
gives the JSA information corresponding to the Jex information of Figure 3.6. It is
now clear that NullPointerException and OutOfMemoryError remain uncaught, and
that both I0Exception and FileNotFoundException are caught by the catch clause
declaring the type I0Exception. Of course, this is a trivial example; in cases where
try blocks contain numerous exception types and have more than one catch clause,
JSA greatly simplifies the task of inferring exception flow.

When Jex files contain nested try blocks, an important issue to consider is
whether to make a global or local analysis of the exceptions escaping a try block.
In the strictly local view, exceptions escaping an inner try block are not propagated
to the outer try block. In the global view, these exceptions are propagated. Both
views are supported by JSA. The default is the local view, and the global view can
be selected using the -propagate command-line argument.

JSA is implemented as a Jex parser with actions. Like the Jex loader, JSA
parses a Jex file and stores the information in a dynamic structure. The structure

is then written to a file according to the choice of view determined by the user.
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Chapter 4

Validating the Jex Approach

As mentioned in the introduction, the hypothesis of this thesis is that to produce
quality code, developers need to have access to more complete and precise exception
flow information than what typical exception interfaces can provide them. This
initial hypothesis can be separated into two clauses: (a) in practice, programming
languages cannot provide complete exception flow information, and (b) information
about the flow of exceptions is necessary to build robust programs. The first clause is
based on a survey of programming languages supporting exception handling (see sec-
tion 2.1), while the second clause is based on observations made while programming
in Java. Particularly in the initial construction of a method, it is often tempting,
for expediency, to insert a catch clause that will simply handle all exception types.
A developer might choose this course of action not as the result of negligence, but
rather because of a lack of access to information that allows an appropriate decision
to be made. As an example, a developer may not have suitable information about
the recovery possible for a particular kind of exception in the absence of knowledge

about the application as a whole. Introducing these generalized handlers causes
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exceptions to be caught through subsumption. Although such short-cuts should be
refined as development proceeds, some occurrences may evade detection.

To validate my initial hypothesis, I was interested in determining how often
cases of exception subsumption and uncaught exceptions occur in released code,
and in quantifying how well Java formally describes the flow of exceptions across a
method’s boundary (clause a). | was also interested in determining how knowing
about the flow of exceptions could suggest ways in which programs could be made
more robust (clause b).

The last chapter presented an approach to provide information about the flow
of exceptions, and a tool, Jex, implementing the approach. This chapter uses results
obtained from applying Jex to demonstrate the relevance of the initial hypothesis,
and the contribution of the approach to providing information about exception flow.
Section 4.1 describes the code that was analyzed with Jex and the conditions in
which the analysis was performed. Sections 4.2 and 4.3 provide arguments demon-
strating that, in practice, Java cannot provide complete and precise exception flow
information. Section 4.4 is a qualitative analysis of the results obtained with Jex and
discusses how information about the flow of exceptions is necessary to build robust

programs. Finally, section 4.5 summarizes the conclusions of the experiments.

4.1 Methodology

To investigate the various factors mentioned in the previous section, a variety of

source code was analyzed using Jex:

e JTar, a command-line utility for the extraction of tar files;!

!Package net.vtic.tar, developed by J. Marconi and available from the Giant Java
Tree, http://uww.gjt.org.
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A GNU regular expression package;?

e the java.util.Vector and java.io.FileOutputStream classes from the Sun™

Java Development Kit version JDK 1.1.3;

3

a command-line rule parser;

e four database and networking packages from the Atlas web course server

project [18]: userDatabase, userData, userManager, and userInfoContainers;

the code of Jex itself.*

Together, these packages comprise roughly 32 000 commented lines of code, including
input/output, networking, and parsing operations.

To perform an analysis on a source file, Jex requires a Jex information file
corresponding to every class referenced in the source file, and to all subclasses indi-
cated by the Jex type system (see sections 3.2.3 and 3.2.4). These Jex files contain
information about the exceptions potentially raised by the various methods called
by the code being analyzed. This implies that Jex files for most of the JDK API
be available. Since performing Jex analyses on the bulk of the JDK class libraries
would not have been a cost effective measure at this stage of the experimentation
with Jex, I decided not perform the Jex analysis on the classes comprising the JDK
API (except for the two mentioned in the list above). Instead, a Jex file for each of

the relevant API classes was generated using a script that extracts the information

ZPackages gnu.getopt and gnu.regexp, also available from the Giant Java Tree

3 Available from a compiler course web page of the School of Computing, National Uni-
versity of Singapore (http://dkiong.comp.nus.edu.sg/compilers/a/).

*The code of Jex was analyzed both to test the Jex tool itself and to provide insight into
the usefulness of the approach. It was not, however, used in the statistical compilations
of sections 4.2 and 4.3. Because Jex was designed with exception policies in mind, I have
chosen to leave Jex out of the statistical analyses so it would not bias the results. The
statistics of sections 4.2 and 4.3 thus only represent independent code.
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from corresponding HTML files produced by Javadoc. Javadoc is a tool that auto-
matically converts Java source code files containing special markup comments into
HTML documentation. The Jex files produced from these scripts simply consist
of a list of exception types potentially thrown by each method of the class. The
list consists of a union of the exception types declared in the method’s signature
with the exception types annotated in the special markup comments. The exception
types annotated in the comments for a class may include both checked and runtime

exception types.

4.2 Analysis of Subsumption in try Blocks

A first aspect investigated was whether or not subsumption in try blocks actually
occurred in practice. By “subsumption in try block”, I mean the situation in which
a catch clause declaring to catch an exception type T can also catch exceptions
that are subtypes of T. A first experiment was performed with a version of Jex
that did not include runtime exceptions generated by the environment [23]. A
subsequent experiment was done including such exceptions. Figures 4.1 and 4.2 show
a comparison of the data, both with and without runtime exceptions, respectively.

The graph in Figure 4.1 shows a breakdown of exceptions and their associ-
ated handling in the analyzed code. It represents information from the packages
that contain at least one try block. Each bar in the graph shows the number of
occurrences of different levels of subsumption in handlers. The level of subsumption
between the type 7" of an exception potentially raised in a try block and the type 7’
declared in a catch clause is the difference in depth in the type hierarchy between 7’
and T'. Levels zero and one are labeled by their semantic equivalent: “same type”

and “supertype”, respectively. Exception types raised in a try block that cannot be
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subsumed to any of the types declared in the catch clauses remain uncaught by the
try block. In all but one case, the Rule Parser, some exceptions in try blocks re-
main uncaught. All but one of the packages, the Java JDK code, contain exception

handlers that catch exceptions through subsumption.
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Figure 4.1: Exception Matching in catch Clauses, no Environment-Related Excep-
tions

Because of its similarity to Figure 4.1, Figure 4.2 shows that the presence
of runtime exceptions generated by the runtime environment does not significantly

influence the distribution of subsumption in catch clauses. We can notice two mi-
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nor effects: an increase in the number of uncaught exceptions and an increase in
subsumption levels greater than or equal to one. Both of these effects can be ex-
plained by the observation that environment-related runtime exceptions are usually
not considered by the user and thus no catch clause is inserted to explicitly catch
these types of exceptions. These types of exceptions either remain uncaught, or are

caught by subsumption by more generalized types, such as Exception.
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Figure 4.2: Exception Matching in catch Clauses, with Environment-Related Ex-
ceptions
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Table 4.1: Levels of Subsumption Required to Catch an Exception

. Frequency
Level of subsumption No Environment Environment
Same type 24 % 14 %
Supertype 14 % 11 %
2 Levels 22% 20 %
3 Levels 9% 6 %
Uncaught 31 % 49 %

Table 4.1 provides a different view of the data. This view illustrates that, for
the analysis including environment-related exceptions, 49% of the different exception
types present in try blocks remain uncaught in the target. In 37% of the cases,
exceptions are not caught with the most precise type available (i.e., some degree of
subsumption occurs), and in only 14 % of the cases the exceptions potentially raised
in a try block are caught by their exact type (i.e., no subsumption occurs).

This data lends evidence to support the claims that exception subsumption
and unhandled exceptions are prevalent in Java source code. However, this quan-
titative data does not indicate whether the quality of the code could be improved
through the use of Jex-produced information. Quantitative aspects are discussed in

section 4.4.

4.3 Analysis of Exception Specifications

A second aspect investigated was how much information about the flow of excep-
tions is actually present in formally-declared method headers. This information was
favored as opposed to program documentation because formally-declared exceptions

are less likely to be subject to errors and inconsistencies than program documenta-
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tion. Furthermore, the formal syntax allows a more conservative verification.

To investigate how methods in Java typically describe localized exception
flow, I used the metric described in section 1.2.2. I applied this metric to all pack-
ages analyzed by Jex, except for Jex itself. Of the 375 methods present in the 10
packages considered, only 55 (15%) specified exceptions. For these 55 methods, the
completeness (C',) and granularity (G,,) of the interfaces was calculated. Figure 4.3
shows the distribution of the interfaces in the completeness-granularity graph (some

data points overlap).

09

0.8

0.7

0.6

04r

03

02r

01r

Cm

Figure 4.3: C,,—G,, Distribution for all Packages Except the Jex Packages

In analyzing the completeness and granularity of exception specifications,
several observations were made. First, in the packages analyzed, exception interfaces
are never used to specify runtime exceptions. Indeed, there is not much incentive for
a Java programmer to specify runtime exceptions since these are not checked by the
compiler. As a result, completeness of the exception specification in Java is strongly
related to the number of different runtime exception types that can be raised by

the method. As expected, the number is usually high, leading to low C,, values.
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A second observation is that the completeness and granularity metrics are non-
orthogonal. The relationship between the two aspects is subsumption. Declaring a
general supertype will result in low granularity, but on the other hand will tend to
encompass a bigger set of the exceptions potentially thrown by the method. Finally,
I observed that, in the packages analyzed, granularity usually has a value of one for
user-defined exceptions, which allows one to think that when a developer defines an
exception, it is used with precision.

The distribution of exception specifications on the C,,~-G,, graph, shown in
Figure 4.3, is somewhat extreme in that most of the specifications represented have
a granularity of 1.00. As a comparison, Figure 4.4 shows the distribution of a low-
level package of the Jex application, jex.util. We can notice that the distribution is
more scattered than the one represented in Figure 4.3, with some interfaces having
a granularity of 0.5 and lower. A possible explanation for this is that jex.util deals

with components involving more hierarchical exception types, such as I0Exception.
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4.4 Quantitative Considerations

The first part of this chapter showed that, in practice, not all exceptions flowing out
of try blocks and methods are specified by the programming language constructs.
As a result, developers do not always leverage the full expressiveness of an excep-
tion system. In section 3.1, I have shown the approach by which Jex fills in these
information gaps. Based on experience, this section illustrates how Jex can be used
to improve code, and thus provides evidence for the clause b of the hypothesis.

To investigate the usefulness of the Jex information, I performed an after-
the-fact manual inspection of the source code. I focused this inspection on cases of
subsumption since the benefits of identifying uncaught exceptions are straightfor-
ward and are discussed in greater depth elsewhere [10, 29, 31].

The investigation of the cases of exception subsumption found several in-
stances in which knowledge of the subsumption could be used to improve the code.
In the RuleParser application, for instance, the body of a method reading a line
from an input buffer is guarded against all exceptions using the Exception type.
This type is a supertype to much of the exception hierarchy. Expecting input
problems, the code produces a message about a source input exception. How-
ever, Jex analysis reveals that two other types of runtime exception may also arise:
StringIndexOut0fBoundsException and SecurityException. These two unchecked
exceptions will be caught within the Exception handler, producing an inappropri-
ate error message. More specific exception handlers could be added to improve the
coherence of termination messages, or to implement recovery actions.

Cases of subsumption were also useful in pointing out program points at
which exception handling code did not conform to the strategy established by the

developer. For example, in one of the Atlas classes, an exception was explicitly
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thrown in a try block, caught in a catch clause corresponding to the same try block,
and re-thrown. In another case, two similar accessor methods displayed different
exception handling strategies: one masked all exceptions; the other one masked
only two specific exceptions. A discussion with the developer of Atlas allowed the
irregular exception handling strategies to be traced to unstable or unfinished code.
The abstract view of the exception flow provided by Jex made it easy to identify
these suspicious cases.

I found other uses of subsumption in the Atlas packages. For example, in a
database query, exceptions signaled by reading from a stream are all caught by a gen-
eralized catch clause which generates a generic “read error” message and which re-
throws a user-defined exception. However, the exceptions thrown in the try block in-
clude such specialized types as StreamCorruptedException, InvalidClassException,
OptionalDataException, and FileNotFoundException. It may be advantageous to
catch these exceptions explicitly, producing a more descriptive error message when
one of the exceptions occurs.

As I have already pointed out, the use of Jex is not only beneficial to sloppy
programs, or to programs written without a general exception handling strategy.
It can also help fine-tune programs designed with exception handling in mind. As
an example, we can take the code of Jex itself. In the code of Jex, knowing about
the precise local flow of exceptions allowed the identification of methods declaring
exceptions that were never thrown. The cause of this incoherence is one of evolution:
a method called another method that threw an I0Exception. The called method then
evolved to perform its own handling of the exception.

Other high-level improvements stemming from such detailed knowledge of

how exceptions flow include limiting the scope of some exception types. For example,
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a specification of the Jex type system was that all ClassCastExceptions had to be
caught in the type system component, and only rethrown as TypeExceptions when
necessary. Since ClassCastException is a type of runtime exception, and thus not
checked, it was very difficult to verify that the specification was respected. With

Jex, this turned into a trivial task.

4.5 Summary

In brief, experimentation with Jex allowed to validate the hypothesis of this thesis,
namely that, to produce quality code, developers need to have access to more com-
plete and precise exception flow information than what typical exception interfaces
can provide them. An analysis of cases of subsumption and uncaught exceptions in
Java code (section 4.2) showed that developers do not always use the most precise
type available to catch exceptions, and do not catch all exceptions. An analysis of
exception specifications (section 4.3) showed that the Java language structures in
place to provide information about the flow of exception do not provide complete and
precise information. Finally a qualitative study of the code analyzed (section 4.4)
showed that knowing about the flow of exceptions could help developers build more

robust and reliable code.
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Chapter 5

Conclusions

During the initial conception of the Jex approach, and all through the development
of the corresponding tool, many tradeoffs and decisions have been made. Most of
them were engineering tradeoffs that have no impact on the use of the approach,
and as such are of limited interest to readers. A few aspects, however, inevitably
have had an influence on the use of Jex and on the quality of the information
that can be obtained from it. These aspects include the information included in
Jex files, the expressiveness of the information, and the level of conservatism of the
information. In this chapter, I discuss how these decisions influence the performance
and usefulness of Jex, and compare my technique to other potential approaches. 1
then present the future avenues for Jex and discuss how it generalizes to object-

oriented languages other than Java. Finally, I summarize the thesis.
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5.1 Discussion

5.1.1 White-box Exception Information

By expressing the actual exceptions that may flow out of a method invocation, we
expose knowledge about the internals of a supplier method to a client. If a software
developer relied upon this knowledge of a supplier’s implementation rather than
on the supplier’s declared interface, unintended dependencies could be introduced,
potentially limiting the evolution of the client.

For instance, consider the case for Atlas described in section 4.4, in which
the developer learned that a particular method could receive a number of specialized
exception types, such as StreamCorruptedExceptionand InvalidClassException. As-
sume that the methods that can raise these exceptions declare more general excep-
tion types as part of their interfaces. If the developer introduced handlers only for
each of the specialized types that could actually occur, the code might break if a
method evolved to signal a different specialized exception type. In the case of Java,
this situation cannot arise because the compiler forces the presence of handlers for
the exception types declared by supplier operations. If the language environment
did not provide this enforcement, the Jex approach would have to be extended to

ensure that the use of white-box information did not complicate evolution.

5.1.2 Alternative Approaches

Increasing the robustness and recovery granularity of applications does not require
a static analysis tool. One alternative currently in use is to document the precise
types of exceptions that a method may throw in comments about the method. With

this approach, a developer can retain flexibility in a method interface, but still pro-
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vide additional information to clients wishing to perform finer-grained recovery. A
disadvantage of this approach is that it forces the developer to maintain consistency
between the program code and the documentation, an often arduous task. Moreover,
this approach assumes that a developer knows all of the exception types that might
be raised within the body of the method being developed; the presence of runtime
exceptions makes it difficult for a developer to provide complete documentation.
Another course of action available is for a software developer to inspect the
exception type hierarchy, and to provide handlers for all subtypes of a declared
exception type. It is unlikely that in most situations the extra cost of producing and
debugging these handlers is warranted. Furthermore, this solution is not robust since
subtypes can be added to the exception hierarchy at any point in the development.
The Jex approach provides a means of determining cost-effectively which of the

many possible handlers might be warranted at any particular source code point.

5.1.3 The Descriptive Power of the Current Exception Structure

The current exception structure extracted for source files enables a developer to
determine the exceptions that can be signaled at any point in the program, along
with the origin of these exceptions. The former information allows a developer
to determine the actual exceptions that can cross a module boundary. The latter
information allows a developer to trace exceptions to their source, enabling a more
thorough inspection.

One aspect missing from the information currently produced by Jex is a link
to the particular statements that can produce an exception. As a result, it is not
possible to trace actual instances of exceptions. For example, when an exception is

explicitly thrown, it is not possible to determine, only from Jex information, if it is
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a new exception or if an existing exception instance is being re-thrown. Informa-
tion about exception instances would allow developers to reason about how specific
exceptional conditions circulate in a program. However, it is unclear whether the
additional benefits that could be obtained from the more specific origin information
outweigh the possible disadvantage of reducing the clarity and succinctness of the

exception structure.

5.1.4 The Precision of Jex Information

There are three cases in which the Jex tool may not return conservative information.
First, Jex uses the packages specified by the user as the “world” in which to search
for all possible implementations of a particular method. If a user fails to specify
a relevant package, Jex may not report certain exceptions. If, in specifying the
packages, the user fails to include a package defining a type being analyzed, Jex can
issue a warning message. If the user fails to specify packages that extend types that
are already defined, then Jex is unable to warn the user.

Second, Jex relies on a model of the language environment to determine the
exceptions that might arise from basic operations, such as an add operation, and
the exceptions that might arise from native methods. Although the model of the
environment used when applying Jex to the code described in chapter 4 was partial,
Jex still returned information useful to a developer.

Third, Jex does not report asynchronous exceptions [12]. An asynchronous
exception may arise from a virtual machine error, such as running out of memory,
or when the stop method of a thread object is invoked. Since these exceptions can
arise at virtually any program point, one can assume a user of Jex will find it easier

to use the output of the tool if it is not cluttered with this information. However, it
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may prove useful, once more experience is gained with Jex, to introduce an option
into the tool to output such exceptions as a means of reminding the user.

If Jex returned information that was too conservative, the usability of our ap-
proach would likely be impacted. With Jex, this situation can arise when reporting
all possible runtime exceptions because there are many points in the code that can
raise exceptions such as NullPointerException. This situation can be managed by
providing a means of eliding this information when desired. To make this possible,
the structure of the files generated by Jex is designed to make it possible to remove
certain types of exceptions by using the UNIX command grep -v <exception type>
on a Jex file. This command has the effect of producing a new Jex file where
information about the exception type specified does not appear.

Another source of imprecision in Jex arises from the assumption that a call
to a method made through a variable might end up binding to any conforming
implementation on any subtype of the variable’s type. In some cases, it may be
possible to use type inference to limit the subtypes that are considered. However,
with my current experience with Jex, I have not found that this assumption greatly

increases the exception information returned.

5.2 Future Work

This thesis addressed the problem of providing information about the flow of excep-
tions in a localized way. It described a mean to analyze how exceptions flow in and
out of try blocks and methods. Although this solution provides useful information
to developers, there remains a need for a more global method of representing the
flow of exceptions. Coming up with a practical method of representing the flow of

exceptions in software applications would enable software engineers to better design
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and test applications. For example, a method for representing the global flow of
exceptions would allow developers to trace exceptions to their origins, or to better
understand how exception evolve in programs.

A second aspect of this research that appears worthy of further investiga-
tion is the generalization of the Jex technique to other object-oriented languages.
Even though most object-oriented languages supporting exceptions display the same
fundamental concepts justifying Jex, their exception handling systems differs from
Java. It would prove useful to explore how useful and effective the Jex approach
can prove for such languages, such as C++.

Finally, in order to be able to address a wider base of source code and a
larger pool of user, the Jex tool necessitates some improvements. The most impor-
tant of these improvements include supporting the Java 1.1 language specification,
and resolving cycles in method and class dependencies. Supporting Java 1.1 basi-
cally means supporting the concept of inner classes. This introduces difficulties in
the organization of Jex information, and requires a more complex analysis at the
AST level. It is nevertheless feasible. For Jex to be able to resolve cycles in method
and class dependencies, although strictly a usability improvement, would allow de-
velopers to analyze source code files in batches, thus greatly reducing the level of

intervention currently required of Jex users.

5.3 Summary

It is not uncommon for users of software applications to become frustrated by mis-
leading error messages or program failures. Exception handling mechanisms present
in modern languages provide a means to enable software developers to build ap-

plications that avoid these problems. Building applications with appropriate error
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handling strategies, though, requires support above and beyond that provided by
a language’s compiler or linker. To encode an appropriate strategy, a developer
requires some knowledge of how exceptions might flow through the system.

In this thesis, I have described an approach to help developers access this
information. The approach, based on static analysis techniques, is supported by
a tool named Jex. The Jex tool extracts information about the structure of ex-
ceptions in Java programs, providing a view of the actual exceptions that might
arise at different points and of the handlers that are present. Use of this tool on
a collection of Java library and application-oriented source code demonstrates that
the approach can help detect both uncaught exceptions, and uses of subsumption
to catch exceptions.

The view of exception flow synthesized and reported by Jex can provide sev-
eral benefits to a developer. First, a developer can introduce handlers for uncaught
exceptions to increase the robustness of code. Second, a developer can determine
cases in which unanticipated exceptions are accidentally handled; refining handlers
for these cases may also increase code robustness. Third, inspection of subsumption
cases may indicate points where the addition of finer-grain recovery code could im-
prove the usability of a system. Finally, the abstract view of the exception structure
can help a developer detect potentially problematic or irregular error handling code.
The approach described in the thesis and the benefits possible are not limited to

Java, but can also apply to other object-oriented languages.
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Appendix A

Grammar for Jex Files

A.1 Notation

In the production rules, the string representation of terminal symbols are displayed
in boldface font and non-terminal symbols are shown in étalic font. Special token
parsed during the lexical analysis are underlined. The definition of a non-terminal
symbol is introduced by the name of the symbol being defined followed by a colon.
Symbols inclosed in square brackets ([1) are optional. Parenthesis can be used to
indicate sets of related symbols. An asterisk (*) indicates zero or more repetitions
of a symbol or set of symbols. A plus sign (4) indicates one or more repetitions of
a symbol,or set of symbols. A vertical bar (|) indicates different possibilities among

a set. The epsilon (¢) letter represents the null symbol.
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A.2 Grammar

Jexlile: ( MethodDeclarator Block )* EOF

MethodDeclarator: SimpleMethodName FormalParameters | throws Namelist |
SimpleMethodName: [<C>] IDENTIFIER

NamelList: Name ( , Name )*

FormalParameters: ( [ Type (, Type )* 1)

Block: { ( ExceptionGet ;| FrceptionThrow ;| TryCatch )* }

FzceptionGet: Name : ( environment | MethodName FormalParameters)
FErceptionThrow: throws Name

TryCatch: try Block ( catch ( Name ) Block )+ [ finally Block ]

Name: IDENTIFIER (. IDENTIFIER )*

MethodName: ( Name | ¢ ) SimpleMethodName
Type: ( PrimitiveType | Name | ArrayType )
ArrayType: (D+ (B C|D|F|T3[8[Z)| (L Name ;)

PrimitiveType: ( boolean | char | byte | short | int | long | float | double )
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Appendix B

Environment-Generated

Exceptions

The following is a list of all environment-generated exceptions supported by Jex.
Every type of exception is followed by an enumeration of all the environment op-
erations potentially raising the exception. The list is based on the Java language
specifications [12].

e java.lang.ArithmeticException (multiplicative expression);

e java.lang.ArrayStoreException (Assignment to an array element);

® java.lang.ArrayIndexOutOfBoundsException (al‘ray access);

® java.lang.ClassCastException (Cast eXpl‘ession);

e java.lang.NegativeArraySizeException (array allocation);

® java.lang.NullPointerException (field access, method invocation, array ac-

cess);

e java.lang.OutOfMemoryError (additive expression with string arguments, allo-

cation expression);
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