
Representing Concerns in Source Code

by

Martin P. Robillard

B.Eng. (Computer Engineering),École Polytechnique de Montréal, 1997

M.Sc. (Computer Science), University of British Columbia, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

November 2003

c© Martin P. Robillard, 2003

Abstract

Many program evolution tasks involve source code that is not modularized as a single unit.
Furthermore, the source code relevant to a change task often implements different concerns, or
high-level concepts that a developer must consider. Finding and understanding concerns scattered
in source code is a difficult task that accounts for a large proportion of the effort of performing
program evolution. One possibility to mitigate this problem is to produce textual documentation
that describes scattered concerns. However, this approach is impractical because it is costly, and
because, as a program evolves, the documentation becomes inconsistent with the source code.

The thesis of this dissertation is that a description of concerns, representing program structures
and linked to source code, that can be produced cost-effectively during program investigation ac-
tivities, can help developers perform software evolution tasks more systematically, and on different
versions of a system.

To validate the claims of this thesis, we have developed a model for a structure, called concern
graph, that describes concerns in source code in terms of relations between program elements.
The model also defines precisely the notion of inconsistency between a concern graph and the
corresponding source code, so that it is possible to automatically detect and repair inconsistencies
between a description of source code and an actual code base.

To experiment with concern graphs, we have developed a tool, called FEAT, that allows devel-
opers to iteratively build concern graphs when investigating source code, to view the code related
to a concern, and to perform analyses on a concern representation. Using FEAT, we have evalu-
ated the cost and usefulness of concern graphs in a series of case studies involving the evolution
of five systems of different size and style. The results show that concern graphs are inexpensive
to create during program investigation, can help developers perform program evolution tasks more
systematically, and are robust enough to represent concerns in different versions of a system.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgments ix

1 Introduction 1

1.1 Concerns . 3

1.2 An Example of Program Evolution Involving Scattered Concerns. 5

1.3 Existing Support for Scattered Concerns. 10

1.4 Concern Graphs. 11

1.5 Overview of the Dissertation. 14

2 The Concern Graph Model 15

2.1 Design Goals. 15

2.2 Formal Representation. 16

2.2.1 Programs. 16

2.2.2 Fragments. 20

2.2.3 Concerns. 23

2.3 Analyses. 24

2.3.1 Concern Analysis. 24

2.3.2 Inconsistency Management. 25

2.4 Summary . 26

3 Tool Support for Concern Graphs 28

3.1 General Mapping Function for Java. 28

3.2 The Feature Analysis and Exploration Tool. 31

3.2.1 Usage Model. 32

3.2.2 User Interface. 33

3.2.3 Implementation. 42

iii

4 Validation 46
4.1 Methodology . 47

4.2 AVID Study . 48

4.2.1 Theory . 48

4.2.2 Study Design. 49

4.2.3 Results . 51

4.2.4 Validity . 52

4.3 Jex Study . 52

4.3.1 Theory . 53

4.3.2 Study Design. 53

4.3.3 Results . 54

4.3.4 Validity . 56

4.4 Redback Study. 56

4.4.1 Theory . 56

4.4.2 Study Design. 56

4.4.3 Results . 57

4.4.4 Validity . 57

4.5 jEdit Study . 57

4.5.1 Theory . 58

4.5.2 Study Design. 58

4.5.3 Results . 61

4.5.4 Validity . 66

4.6 ArgoUML Study . 67

4.6.1 Theory . 67

4.6.2 Study Design. 67

4.6.3 Results . 69

4.6.4 Validity . 72

4.7 Summary . 73

5 Automating Concern Graph Creation 75
5.1 Investigation Transcripts. 76

5.2 Inference Algorithm. 77

5.2.1 Calculating Probabilities. 77

5.2.2 Calculating the Correlation Metric. 78

5.2.3 Generating Concerns. 79

5.3 Empirical Evaluation. 80

5.3.1 Implementation Status. 80

5.3.2 Configurations. 81

5.3.3 Studies . 81

5.3.4 Results . 82

5.3.5 Observations. 85

5.4 Summary . 87

iv

6 Discussion 88
6.1 The Development and Evaluation of the FEAT Tool. 88
6.2 Training and the Use of FEAT. 89
6.3 Capturing System Behavior with Concern Graphs. 90
6.4 The Importance of a Good Seed. 91
6.5 Concern Interaction Analysis. 91
6.6 The Influence of Concern Graphs on the Evolution Process. 92
6.7 Future Work. 93

6.7.1 Automatic Concern Graph Construction. 93
6.7.2 Concern Databases. 93
6.7.3 Pattern-based Code Investigation. 94
6.7.4 Concern Graph-based Code Refactoring. 94

7 Related Work 95
7.1 Concern Code Location. 95

7.1.1 Cross-referencing Tools. 95
7.1.2 Program Slicing . 96
7.1.3 Feature Location Techniques. 97
7.1.4 Clustering Techniques. 99

7.2 Concern Documentation. 99
7.2.1 Textual Documentation. .100
7.2.2 Conceptual Modules. .100
7.2.3 Concern Visualization Tools. 101
7.2.4 Virtual Files. .101
7.2.5 Advanced Separation of Concerns Mechanisms. 101

7.3 Inconsistency Management. .102

8 Conclusions 104

Bibliography 118

Appendix A Relational Algebra 119
A.1 Notational Conventions. .119
A.2 Definitions. .119

Appendix B Relations in Java Programs 121

Appendix C Transcripts for the jEdit Case Study 123
C.1 Subject C1. .124
C.2 Subject C2. .125
C.3 Subject F1. .127
C.4 Subject F2. .129

v

List of Tables

4.1 Claims addressed by the different studies. 47
4.2 Characteristics of the different studies. 47
4.3 Concern completeness results. 55
4.4 Subject Characteristics. 63
4.5 Concern graph for the ArgoUML study. 69
4.6 Differences between classes of versions 0.11.4 and 0.13.4 of ArgoUML. 70
4.7 Overlap between studies and claims. 74

5.1 Configuration parameter values. 81
5.2 Characteristics of transcripts. 83
5.3 Results for Subject C1. 83
5.4 Results for Subject C2. 84
5.5 Results for Subject C3. 84
5.6 Results for Subject J1. 85
5.7 Results for Subject J2. 85

C.1 View codes .123
C.2 Action codes .124

vi

List of Figures

1.1 Concern scattering and tangling.. 3

1.2 Sorting program. 4

1.3 The main window of the jEdit application. 6

1.4 The options window of the jEdit application. 7

1.5 Partial code in the fileLoadSaveOptionPane.java 7

1.6 MethodAbstractOptionPane.save() . 8

1.7 MethodOptionGroup.save() . 9

1.8 Partial concern graph for SAVING WIDGET STATE 12

1.9 Partial concern graph for SAVING WIDGET STATE and MANAGING PROPERTIES . 13

2.1 Mapping function C1. 18

2.2 Mapping function J1 . 18

2.3 Program P1. 19

2.4 ModelP1J1 . 19

2.5 Mapping functionJ2 . 21

2.6 Program P2. 22

2.7 ModelP2J2 . 22

3.1 The mapping function Java Standard. 29

3.2 MethodOptionGroup.save() . 31

3.3 The Eclipse platform. 34

3.4 The FEAT Perspective. Area 1 holds the Concern Graph View. Area 2 holds the
Participants, Interactions, and Inconsistencies Views. Area 3 holds the Projection
and Relations Views. Area 4 holds the Java Editor.. 35

3.5 The Concern Graph View. 35

3.6 The Participants View. 36

3.7 The Relations View. 37

3.8 A FEAT query. 37

3.9 Query results in the Projection View. 39

3.10 The Interactions and Relations Views. 39

3.11 The Inconsistency View. 41

3.12 The architecture of the FEAT tool. 42

3.13 Model extraction time. 44

3.14 Model database size. 44

vii

4.1 Finding the important parts. 50
4.2 The anonymous class handling concern in Jex. 54
4.3 The ArgoUML application. 68
4.4 Representation of the inconsistent fragmentActionAddNote.SINGLETON accessed

by ALL in the fragment viewer of the FEAT Inconsistency View. 71
4.5 MethodAbstractUmlModelFactory.initialize(Object) in ArgoUML ver-

sion 0.11.4. 73
4.6 MethodAbstractUmlModelFactory.initialize(Object) in ArgoUML ver-

sion 0.13.4. 73

5.1 Example investigation transcript. 77
5.2 Calculating probabilities. 78
5.3 Calculating correlation metrics. 80

viii

Acknowledgments

If I completed this thesis and kept most of my sanity, it is only due to the many people who have
supported me along the way.

My deepest thanks go to my supervisor, Gail Murphy. Gail has an amazing talent for blending
encouragements, motivation, and advice in a subtle and clever mix that not only kept me on the right
track, but also made me think I had something to do with it. I must thank Gail for teaching me, in
the broadest sense possible, how to do research, and for being an example I will strive to follow for
the rest of my career.

Thanks also to my senior colleague Rob Walker for his advice, honest criticism, and LaTeX
templates, to Alex Brodsky for reviewing the formalism in the thesis, and to Jason Xu who, through
his enthusiasm and hard work during his internship in the Software Practices Lab, has facilitated the
evaluation of the tool-related aspects of the thesis.

The Department of Computer Science at UBC was in general a wonderful atmosphere for
conducting research. Many thanks go the the numerous students, faculty, and staff members who
have contributed to this thesis with their comments, help, and moral support.

I am also thankful to the members of my supervisory and examining committee who have gen-
erously contributed their time and expertise: Will Evans, Alan Hu, Jim Little, Panos Nasiopoulos,
Raymond Ng, and Barbara Ryder.

Finally, I thank my significant other, Dorothee, who was always understanding and stood with
me through the rushes and absences (both mine and hers), and my parents, who have believed in me
since day one.

My doctoral studies were financially supported by a Canadian NSERC postgraduate scholar-
ship and a University of British Columbia Graduate Fellowship.

MARTIN P. ROBILLARD

The University of British Columbia
November 2003

ix

Chapter 1

Introduction

Useful programs keep changing. This simple observation, proposed as a law of program evolution
dynamics by Belady and Lehman more than 25 years ago [12], is still true today. Although much has
changed in the way we design and build programs, the need to repair, adapt, and enhance production
software is still a reality for software development organizations [64, 124]. The process of affecting
modifications to a software system, often called the maintenance process [128], can vary between,
and even within, organizations. Although many models have been proposed to structure the process
of software maintenance [16, 79, 80, 117, 153], these models can typically be summarized by the
three steps originally described by Boehm: understand the existing software, modify the existing
software, and revalidate the modified software [14, 15]. Thus, before performing a modification to a
software system, developers must explore the system’s source code to find and understand the subset
relevant to the change task. The large size of most production software, and the usual pressures
on development and maintenance time-frames, render the program exploration activity a serious
challenge for developers [17]. These factors make it unrealistic to expect developers to master
the complete details of a system’s design and implementation prior to undertaking a modification.
Rather, a developer must efficiently discover a sufficient amount of the structure and behavior of
a program relevant to a modification. The discovery of this structure and behavior is a difficult
task. Besides the basic difficulty of understanding source code [13, 152], developers must usually
consider conceptually-related subsets of the structure and behavior of a program addressing specific
concerns. In this dissertation, we use the term “concern” to refer to any consideration a developer
or team of developers might have about the implementation of a program. For example, in a file
server application based on the File Transfer Protocol (or FTP server), one possible concern is the
requirement to log every file transfer command issued by the client programs. The source code
corresponding to this concern might consist of calls to functions such aslog(String) , and the
implementation of these functions.

Unfortunately, it is often the case that the program code corresponding to a concern is not
well encapsulated, and ends up being scattered across many modules [69]. For example, in the
FTP server application described above, the logging code might be scattered throughout the im-
plementation of all of the modules implementing file transfer commands. Scattered concerns pose
an additional challenge to developers, who must reason about which pieces of code interact with
which other ones to implement a concern, and about how different concerns interact with each other.
The incomplete understanding of a scattered concern prior to a software modification can lead to
incorrect or inefficient program modifications [74] or a modification not respecting an existing de-

1

sign [101]. The difficulty of locating and understanding scattered concerns is the first problem
motivating the work described in this dissertation. This problem can be stated as follows.

Concern Location and Understanding Problem: It is difficult for developers to locate and under-
stand the code implementing a concern when this code is not encapsulated within a single module.

Given the difficulty of locating and understanding the implementation of concerns relevant to
a change task, it is desirable to capture, even partially, knowledge about the implementation of a
concern. A representation of the knowledge about the implementation of a concern can help devel-
opers perform modification tasks by supporting a more systematic investigation of the source code
oriented along the lines of concerns, avoiding potentially erratic, “hit-and-miss” code investigation
behavior. Additionally, preserving knowledge about the implementation of concerns allows other
developers working on tasks involving the same concerns to capitalize on previous effort spent on
similar modification tasks. The need to document scattered concerns to support software evolution
was previously identified by Soloway et al. [73, 127]. Unfortunately, traditional documentation
such as that proposed by Soloway suffers from the two principal drawbacks of any software doc-
umentation: it is costly to produce and difficult to maintain consistent with the source code. This
observation identifies the second problem this dissertation will address, the problem of concern
documentation.

Concern Documentation Problem: It is difficult for developers to cost-effectively document con-
cerns in source code and to keep the documentation consistent.

Because of this last problem, concerns are practically never documented, and developers tack-
ling a software change task must usually start their investigation from scratch.

One way to address both of the problems described above is to integrate the production of
documentation for concern code with the activity of locating and understanding the implementation
of concerns, and by producing a concern description robust enough to be reusable with different
versions of a code base. The thesis of this dissertation is that a representation for concerns in
source code that can support the task of locating and understanding concern code, and that can
represent concerns in more than one version of a program, can help developers evolve programs
more systematically.

Thesis: A description of concerns, representing program structures and linked to source code,
that can be produced cost-effectively during program investigation activities, can help developers
perform software evolution tasks more systematically, and on different versions of a system.

In Section1.1we describe in more detail the concept of implementation concerns. This section
is followed by a case study of program evolution involving scattered concerns (Section1.2). The
case study will serve as a running example motivating the work described in the dissertation. In
Section1.3, we provide a brief overview of tools and techniques that can partially address the
problem of concern code location and understanding. In section1.4, we introduce the representation
we propose to address both of the problems identified previously. Finally, Section1.5is an overview
of the dissertation.

2

(a) Scattering

� �

(b) Tangling

Figure 1.1: Concern scattering and tangling.

1.1 Concerns

The idea of considering separate concerns in the implementation of software originates from Dijk-
stra [33, 34] and Parnas [99]. From these early works on system design and structured programming,
the term “concern” has emerged as a general and flexible notion, intended to include anything a de-
veloper might want to consider as a conceptual unit in a program. Examples include the implemen-
tation of data stores, algorithms, the need for synchronization, and user interface considerations.
Ideally, as a result of the design of a program, concerns should be neatly encapsulated within a
module. For example, in a C [66] program requiring the sorting of integer arrays, the “sorting”
concern can be encapsulated in asort function. This way, the details of the sorting algorithm,
such as whether a quick sort or bubble sort implementation is used, are confined to thesort func-
tion [122]: modification of the implementation of the sorting algorithm will not require updating
the callers of thesort function. Unfortunately, in practice, the concerns a developer must consider
during program evolution are not always well separated, and their implementation is often found to
be scattered through different modules, and, at the same time, tangled within one module [134].1

Figure1.1illustrates schematically the scattering and tangling of concerns. The illustrations use the
SeeSoft program view [37], where white rectangles represent the source code for a module (e.g.,
a C file or a Java [48] class). In the representation of concern scattering(a), gray rectangles indi-
cate source code relevant to a concern. This source code is scattered across multiple modules. In
the representation of tangling(b), we show a single module. The module comprises two concerns,
shown by the boxes in the two different shades of gray. These two concerns also have overlap-
ping code, represented by the area in black. In other words, tangling involves the presence of code
implementing different concerns within a module.

1Alternatively, one may say that the concernscrosscutthe basic program decomposition [69].

3

The scattering and tangling of concerns in source code is the consequence of four principal
causes: inadequate design, the fundamental limitations of programming languages, emergence dur-
ing program evolution, and code decay.

Inadequate Design Sometimes, scattered concerns result from a failure on the part of the initial
developers of a system to create modules hiding implementation details associated with a con-
cern [99]. The lack of concern separation results in a system that displays signs of scattering and
tangling. For example, consider the partial C program of Figure1.2. Line 2 is the prototype of a
function sorting an array of integers. This function takes as its third parameter a value for the size
of a buffer used in the sorting of the array. Although the flexibility afforded by thebuffer size

parameter might help to improve the memory consumption of the function, it has negative conse-
quences for the evolvability of the system. Because details of the sort function implementation are
exposed to client code (e.g., lines 78 and 490), a developer asked to improve the sorting algorithm
will need to consider this client code as part of the sorting concern. A more evolvable design would
have hidden the use of a buffer during sorting within thesort function.

1: /* Sort function */
2: int [] sort(int [] a, int n, int buffer_size);

...
78: sorted_array = sort(current_array, 200, 600);

...
490: sorted_codes = sort(codes, 250, BUFFER_SIZE);

...

Figure 1.2: Sorting program

In brief, even though guidelines exist to prevent unnecessary coupling between modules, de-
sign is a human activity and as such is prone to errors and oversights that result in scattered concerns.

Programming Language Limitations In some cases, competing design and implementation goals
make it impossible to separate every concern with only the basic constructs of a programming lan-
guage. This situation has been called the “tyranny of the dominant decomposition” [134]: a base
decomposition of principal concerns is imposed on the system by the designer and the programming
language, while secondary concerns must remain scattered. Sometimes, it is possible to mitigate
the inflexibility of the dominant modular decomposition through the use of special-purpose design
strategies, such as design patterns [46]. For example, the Visitor design pattern [46] is a solution to
the problem of separating structure from behavior in hierarchical object collections. Although de-
sign patterns can help address a small set of well-identified problems, they do not provide a solution
for the majority of idiosyncratic modular decomposition problems. Extensions to popular program-
ming languages have been proposed to help re-modularize scattered concerns into separate modules.
These extensions usually come under the banner ofadvanced separation of concern mechanisms.
Examples for the Java language include AspectJ [67, 68], and the Hyperspaces approach [97, 134]
as embodied in the Hyper/J tool [96]. As we discuss in the rest of this section, there exists causes for
concern scattering and tangling besides programming language limitations. While advanced sepa-
ration of concern mechanisms can provide additional flexibility in separating some concerns, which
can lead to less scattering, they cannot address all of the possible causes of concern scattering and

4

tangling. As a result, programs built with advanced separations of concerns mechanisms can also
suffer from the presence of scattered concerns [83, 85].

Emergence Another cause for the scattering and tangling of concern code is theemergenceof
concerns. Emerging concerns are concerns that did not exist at one stage of the development of a
system, but that do need to be considered as a unit for the purpose of an evolution task. In other
words, emerging concerns result from unforeseen changes. Although some flexibility for accom-
modating emerging concerns can be achieved through the use of design for change paradigms [100]
and design patterns [46], not all changes can be foreseen. Furthermore, designing for change in-
evitably involves an increase in code size and design complexity which can be difficult to justify at
development time. For this reason, some organizations are moving towards development practices,
such as extreme programming [11], where design for change is avoided and replaced by periodical
refactorings [43] of the design and implementation of a system to accommodate emerging concerns.
In this latter case, the refactoring of a system is itself a program evolution task, usually requiring
the consideration of scattered concerns.

Code Decay The last cause for the presence of scattered concerns in source code that we discuss is
code decay. This phenomenon can be described with Lehman and Belady’s second law of program
evolution dynamics, theLaw of increasing entropy.

The entropy of a system (its un-structuredness) increases with time, unless specific
work is executed to maintain or reduce it [71: p.169]

Strictly speaking, as digital media, programs are not altered by the sole effect of time. The real cause
for the decay of programs is repeated maintenance [36]. The difficulty of locating and understanding
the code relevant to a change, the absence of design documentation, the lack of adequate techniques
for determining the impact of a modification [18], and time pressure all contribute to software modi-
fications being performed by developers lacking a complete understanding of the implementation of
the relevant concerns. As a result of such “ignorant surgery” [101], design constraints are violated
and additional coupling between modules is introduced, often resulting in a further scattering and
tangling of concerns in source code.

1.2 An Example of Program Evolution Involving Scattered Concerns

We illustrate the problem of locating, understanding, and documenting concerns during program
evolution with an example of feature enhancement in a medium-size open-source project. The
system we use for this example is the jEdit text editor.2 The jEdit application is written in Java and
consists of approximately 65 000 non-comment, non-blank lines of source code, distributed over
301 classes in 20 packages. jEdit allows users to view and edit text files (calledbuffers), perform
regular expression searches, etc. Figure1.3 show the main window of jEdit. Among its many
features, jEdit saves open file buffers automatically. Our example focuses on this autosave feature.
In version 4.6-pre6, any changed and unsaved (or dirty) file buffer is saved in a special backup file at
regular intervals (e.g., every 30 seconds). This frequency can be set by the user through an Options
page brought up with a menu command in the application’s menu bar (see Figure1.4). If jEdit

2Version 4.6-pre6, http://www.jedit.org.

5

Figure 1.3: The main window of the jEdit application

crashes with unsaved buffers, the next time it is executed, it will attempt to recover the unsaved
files from the autosave backups. A user can disable the autosave feature by specifying the autosave
frequency as zero. However, this option is undocumented, and can only be discovered by inspecting
the source code.

Let us assume the following modification request for the jEdit program is assigned to a devel-
oper.

The application should be modified so that users can explicitly disable the autosave
feature. The modified version should meet the following requirements.

1. jEdit shall have a check box labeled ”Enable Autosave” above the autosave fre-
quency field in the Loading and Saving pane of the global options. This check
box shall control whether the autosave feature is enabled or not.

2. The state of the autosave feature shall persist between different executions of the
tool.

3. When the autosave feature is disabled, all autosave backup files for existing buffers
shall be immediately deleted from disk.

4. When the autosave feature is enabled, all dirty buffers shall be saved within the
specified autosave frequency.

5. When the autosave feature is disabled, the tool shall not attempt to recover from
an autosave backup, if for some reason an autosave backup is present. In this case
the autosave backup shall be left as is.

6

Figure 1.4: The options window of the jEdit application

Executing this modification request requires understanding different, scattered, implementation con-
cerns. At first glance, without investigating the code, we can already identify potential concerns,
such as the implementation of widgets on the options pane, the timing of the autosave event, the
management of the buffer state (dirty or not), and the implementation of the autosave recovery
operation.

public void _init()
{

/* Autosave interval */
autosave = new JTextField(jEdit.getProperty("autosave"));
addComponent(jEdit.getProperty("options.loadsave.autosave"),autosave);
...

}

public void _save()
{

Edit.setProperty("autosave",autosave.getText());
...

}

Figure 1.5: Partial code in the fileLoadSaveOptionPane.java

Let us first look at some of the code managing the options pane, as shown in Figure1.5. The
code partially shows two methods of the classLoadSaveOptionPane : init() and save() .
Looking at this code, a developer can easily determine that theinit() method is responsible
for creating the text field used for the input of the autosave frequency. Examining the rest of the
method (not shown here), it would be possible to establish that all the code for creating the widgets

7

for the option pane is located in theinit() method. The WIDGET CREATION concern is thus
modularized, and the addition of a check box controlling the autosave feature requires the addition
of code only to theinit() method. Now let us look at thesave() , method. Clearly, the method
saves the state of a widget somewhere. Let us call this concern SAVING WIDGET STATE. In our
scenario, it is necessary to understand this concern because changing the state of the check box
controlling the autosave feature must take immediate effect. It is thus necessary to answer several
questions:

• When is thesave() method called()?

• Where do properties get saved?

• How is the system notified that some properties have changed?

• How is the state of a property accessed?

These are all questions that cannot be answered by simply examining the code of thesave()

method. The SAVING WIDGET STATE concern is thus scattered. Attempting to answer the first ques-
tion by eliciting the call sites for thesave() method reveals that it is called at a single point, within
methodsave() of classAbstractOptionPane , the superclass ofLoadSaveOptionPane . The
definition of thesave() method is shown in Figure1.6.

public void save()
{

if (initialized)
_save();

}

Figure 1.6: MethodAbstractOptionPane.save()

Far from elucidating the circumstances in which thesave() is called, the identification of the
call site reveals additional complexity for SAVING WIDGET STATE. First, one now must determine
the circumstances in which thesave() method of classAbstractOptionPane is called, and the
circumstances in which theinitialized field is true. SinceLoadSaveOptionPane is a subclass
of AbstractOptionPane , additional investigation might also be required to determine whether
methods ofLoadSaveOptionPane can affect the state of theinitialized field. Taking an
additional step in the investigation of SAVING WIDGET STATE, we show the source code of method
OptionGroup.save() , the method callingAbstractOptionPane.save() (Figure1.7). In this
case we see that the call to thesave method (line 12) is embedded in some structure traversal code.

Further investigation would show that detecting when thesave() method is called requires
eliciting relationships between at least nine methods and one field in six different classes. Reason-
ing about all these interactions at once is impeded by the effects of both scattering and tangling.
Because the concern is scattered, using an integrated development environment, the developer must
understand and reason about the implementation of the concern by cycling through multiple edi-
tor windows, each providing only a fragment of the information required to understand the concern.
Because the implementation of the concern is tangled, each piece of code implementing the concern
is cluttered with details not pertaining to the concern, such as structure traversal or error handling
code (as exemplified in Figure1.7).

8

1: public void save()
2: {
3: Enumeration enum = members.elements();
4:
5: while (enum.hasMoreElements())
6: {
7: Object elem = enum.nextElement();
8: try
9: {
10: if (elem instanceof OptionPane)
11: {
12: ((OptionPane)elem).save();
13: }
14: else if (elem instanceof OptionGroup)
15: {
16: ((OptionGroup)elem).save();
17: }
18: }
19: catch (Throwable t)
20: {
21: Log.log(Log.ERROR, elem,
22: "Error saving option pane");
23: Log.log(Log.ERROR, elem, t);
24: }
25: }
26: }

Figure 1.7: MethodOptionGroup.save()

Going back to the four questions posed about the implementation of SAVING WIDGET STATE,
we observe that three of them relate to the management of a collection of property objects. This
raises the additional question of whether properties are used only to store the state of the widgets,
or are used as a form of global variables to store properties of jEdit. In the latter case, it would be
important to gather a minimum understanding of how properties work to ensure that any modifi-
cation involving properties management respects the existing design. As such, it might be useful
to consider global properties management as a separate concern interacting with SAVING WIDGET

STATE. The presence of properties management code within SAVING WIDGET STATE illustrates
the important point that concerns do not exist in isolation. Concerns are integrated in an existing
code base, they interact with other concerns, and the boundaries between different concerns and
between a concern and the base code is not clearly defined. Reasoning about fuzzy boundaries for
concerns adds an additional dimension to the difficulty of dealing with scattered concerns. In fact,
studies have show that interacting concerns are often construed as major obstacles during program
evolution tasks [8].

To summarize, a program evolution task such as the enhancement of the autosave feature
in jEdit requires considering different concerns, such as saving the information contained in user
interface widgets, and managing global properties of the application. Although concerns can often
be simple and obvious concepts at an abstract level, their implementation is often scattered and
tangled, making it difficult to fully understand their structure and behavior at once. Additionally,
the boundaries of concerns are not clearly defined, and concerns often interact with other concerns,
making it difficult to focus on a single concern at the time.

9

1.3 Existing Support for Scattered Concerns

Many program understanding and reverse engineering approaches have been developed to help a de-
veloper discover the code related to a maintenance task. In this section we present a brief overview
of the different types of approaches currently available to developers. Chapter7 provides a more
comprehensive survey of techniques that can help developers find and manage the code implement-
ing scattered concerns.

Searching and cross-referencing Lexical searching tools, such as grep [2], and cross-reference
databases, such as the C Information Abstractor [25], can help a developer identify points in the
code relevant to a concern, and, in the case of cross-reference databases, the relationships between
the different points identified. Regular expression searches and cross-reference queries have also
been integrated in software development environments [47, 93, 94, 119]. However, the basic search-
ing and cross-referencing facilities of integrated environments follow a discover-and-discard model
that provides little or no help for managing, understanding, and preserving the information discov-
ered. At best, query results will be kept in a history list, allowing developers to revisit the results of
searches. We argue that such minimalistic features cannot properly help developers document con-
cerns in large, evolving code bases because they do not help the developer localize and synthesize
the information related to the concern of interest [7]. Additionally, basic search mechanisms do not
provide a means to document concerns across versions of a system. In brief, basic search features
are not intended to, and do not, address the concern documentation problem.

Program Slicing Program slicing denotes a type of analysis intended to identify the parts of a
program that may affect the values computed at some point of interest [138]. Slicing was originally
defined as a static analysis technique [146], but many variants have since been proposed, including
variants relying on dynamic information. Slicing and similar techniques can be used in maintenance
activities to help find and manage the code related to a specific statement [45]. From the perspective
of finding and understanding concerns, a major limitation of slicing is that only one type of concern
can be identified: code related through a control- and data-flow criterion. Another drawback of
slicing is that it does not discriminate between interesting and boilerplate code that would typically
be ignored by developers (e.g., calls to a low-level library).

Reverse engineering and design recoveryReverse engineering [26] tools provide developers
with views of the different elements in a program (e.g., classes, methods), and of the relations
between them (e.g., Rigi [81]). Such tools can be construed as a visual representation of cross-
reference tools. As such, they do not address the concern documentation problem.

Revision history A developer wishing to determine which subsets of the source code were af-
fected by previous modifications can rely on data from a version control system such as RCS [137],
SCCS [116], or CVS [22]. Although source code identified in this fashion can help point to inter-
esting concerns, it often represents an incomplete picture of a concern. For instance, concerns that
a developer needs to understand typically involve much more source code and program interactions
than the code that was actually changed [8].

10

Dynamic analysis Other approaches to finding code relevant to one or more concerns use in-
formation about a program’s execution. For example, using the Software Reconnaissance tech-
nique [149, 150], a developer determines the code implementing a feature by comparing a trace of
the execution of a program in which a certain feature was activated to one where the feature was
not activated. Software Reconnaissance and other dynamic analysis approaches like it, however,
depend on an available suite of quality test cases. More importantly, the features expressible at the
user level may not necessarily correspond to concerns a developer wishes to investigate. Often,
developers must investigate code overlapping different features to understand enough of the system
to respect existing design.

Concern analysis Finally, specialized program navigation and analysis tools have been proposed
that to address the problem of scattered concerns. For example, conceptual Modules [7] allow a de-
veloper to form logical modules composed of scattered lines of code, and support an investigation of
the control- and data-flow relationships between the different logical units. The Aspect Browser [50]
allows users to find and assess concerns based on which lines of code match user-specified regular
expressions. Most of these tool address a very specific issue relating to scattered concerns, be it
discovery and visualization (AspectBrowser), or analysis (Conceptual Modules). None of the ap-
proaches proposed focus on documenting concern representations as a general, long-term artifact
for program evolution.

1.4 Concern Graphs

To help developers locate, analyze, understand, and document scattered concerns during multiple
evolution tasks on a program, we propose an approach that relies on a representation of concerns
in source code as a principal artifact. We call our concern representation aconcern graph. Simply
put, a concern graph is a description of a subset of a program relevant to one or more concerns.
However, a concern graph representation differs from an actual program in two important ways:

1. it mitigates tangling by abstracting the implementation details of the implementation of a
concern, and

2. it mitigates scattering by making explicit the relationships between the different, scattered,
pieces of code implementing a concern.

Let us illustrate these properties with the example of Section1.2. Figure1.7 shows the code of
methodsave() of classOptionGroup . The subset of this method relevant to the SAVING WID -
GET STATE concern is the call to methodsave() of classAbstractOptionPane (line 12). The
statement corresponding to this fact is reproduced here:

((OptionPane)elem).save();

Although simple, this statement contains information that is extraneous to our concern investigation.
Specifically, in our case, it is not necessary to know that thesave() method is called on the object
stored in theelem variable. Moreover, we do not need to know that a down cast is required for this
call to correctly type-check. The mere presence of this method call contributes to our understanding
of the concern, and additional details resulting from the tangling of the call with the traversal of
an enumeration is mere cluttering. Recognizing this problem, our intent for the concern graph

11

representation is to do away with the useless details, and store only the essential information, that
OptionGroup.save() callsAbstractOptionPane.save() .

The second difference between a concern graph and the source code is that a concern graph
documents explicitly the relationships between the different elements of a concern. Returning to our
example, we see that the method call statement shown above does not tell us where the implemen-
tation of thesave method exists. Although the down cast toOptionPane tells us that is will be
found in a class implementing or extendingOptionPane , cross-reference searches are required to
obtain this information. In contrast, a concern graph stores this information explicitly. To complete
our example, the information stored in a concern graph for the statement above includes:

OptionPane.save() CALLS AbstractOptionPane.save()

Of course, a concern graph is not limited to asingleinteraction between two elements (e.g., classes,
methods, fields, variables, constants, etc.), but can comprise many different interactions, together
forming a graph of relationships corresponding to the implementation of a concern. For example,
Figure1.8shows the graph corresponding to the information about jEdit elicited in Section1.2.

LoadSaveOptionPane _save()

AbstractOptionPane

save()

initialized

OptionGroup save()

init()

calls

extends

accesses

declares

Figure 1.8: Partial concern graph for SAVING WIDGET STATE

In the figure, nodes represent elements declared in jEdit (three methods, one field, and three
classes), and edges represent the relationships between the elements. The graph provides a single
and abstract view of the implementation of (part of) the SAVING WIDGET STATE concern, enabling
a developer to reason about only the code of interest.

A concern graph must be based on a program model that can be extracted automatically from
either the source code or an intermediate representation of a program. As a result, a developer is able

12

LoadSaveOptionPane _save()

AbstractOptionPane

save()

initialized

OptionGroup save()

init()

jEdit setProperty(...)

defaultProps props

Saving widget state

Managing properties

Figure 1.9: Partial concern graph for SAVING WIDGET STATE and MANAGING PROPERTIES

to manipulate and navigate a concern representation at a more abstract level than the source code
without investing any effort to create the abstract representation. Automatically providing the part
of a program model related to an element allows a concern graph to be augmented incrementally
from related elements in the code base, potentially to include more than one concern. For example,
we can augment the graph of Figure1.8to include some of the elements related to the management
of properties (shown in Figure1.9). The concern graph allows us to investigate the interactions
between the two concerns. Of course, SAVING WIDGET STATE and MANAGING PROPERTIEScan
also be specified as two different concern graphs, and merged at a later stage.

Finally, since concern graphs are intended to represent the source code relevant to a concern,
there should exist an unambiguous mapping between the abstract representation and the source
code. In other words, it should not be possible to specify information as part of a concern graph that
cannot be automatically and unambiguously associated with source code. Inspection of the graphs
in Figures1.8 and1.9 demonstrates that all of the structures present in the graph can be mapped
back to the original code in jEdit: the nodes correspond to the declarations of classes, methods, and
fields, and the edges correspond to more specific, sub-method information, such as method calls.

To summarize, the approach we propose to address the problems of concern location and un-
derstanding and the problem of concern documentation relies on an abstract representation of con-

13

cerns in source code called a concern graph. A concern graph describes the structural links between
different program elements potentially relevant to a concern, and supports a direct mapping to the
corresponding source code.

1.5 Overview of the Dissertation

In the remainder of this dissertation, we present the details of the concern graph approach, demon-
strate how eliciting and focusing on different concerns can help a developer perform software evo-
lution tasks more systematically, and demonstrate how the information gathered about the imple-
mentation of concerns can be reused with different versions of a system.

In Chapter2, we present a mathematical model for the definition of concern graphs on a pro-
gram. This model is general and language-independent, and supports the definition of concerns by
combining minimal descriptions, called fragments, into structures of increasing complexity. The
concern graph model is also designed to support the detection and repair of inconsistencies between
a concern graph and a program, making concern descriptions tolerant to the evolution of the cor-
responding source code. The description of the concern graph model, and of the mechanism we
designed to detect and repair inconsistencies between a concern graph and the source code, form
the first two contributions of this dissertation.

To evaluate the practical value of representing concerns in source code, we instantiated our
concern graph model for the Java language. In Chapter3, we provide the details of the concrete
concern graph model we produced for use with Java programs, and we discuss the issues of usability
and scalability related to our concrete model for Java. The presentation of the Java model and the
accompanying discussion constitutes the third contribution of this dissertation. In Chapter3, we also
describe the tool we implemented to support the use of concern graphs with Java programs. This
tool, and the discussion of the challenges we addressed regarding its design and implementation,
form the fourth contribution of this dissertation.

Based on the tool support for concern graphs described in Chapter3 we conducted five case
studies to validate the thesis of this dissertation. In Chapter4, we describe each case study to show
that concern graphs can help developers perform evolution tasks more systematically, are inexpen-
sive to create, and are robust enough to be used on different versions of a system. The description
of the design of the five case studies, and the discussion of the problems we have encountered, and
of the steps we have taken to address them, constitutes the fifth contribution of our work.

The basic concern graph approach, as introduced in this chapter, relies on developers manu-
ally building concern graphs during program investigation activities. However, one way to further
reduce the cost of producing concern descriptions is through automation techniques. In Chapter5,
we show how we can lower even further the cost of producing concern graphs by describing an
algorithm for automatically inferring concern descriptions from the program investigation activities
of a developer. The algorithm presented in Chapter5 is the sixth contribution of this dissertation.

In Chapter6, we describe the main issues that arose during the development and investigation
of the concern graph approach, summarize our views on the potential impact of concern graphs on
the process of software evolution, and present a plan for future research involving concern graphs.

In Chapter7, we put our research in perspective and highlight its novelty by providing an
overview of the related work. Finally, in Chapter8, we conclude and summarize the contributions
of the work described in this dissertation.

14

Chapter 2

The Concern Graph Model

Generally speaking, aconcernis any consideration a developer or team of developers might have
about the implementation of a subset of a program. Aconcern graphis an artifact intended to
describe the source code that might be relevant to a concern. A concern graph is thus associated
with a program. To explicitly state what can and cannot be expressed about a program in a concern
graph, and the type of reasoning and analyses that developers can perform on concern graphs, we
define a formal model of concern graphs.

2.1 Design Goals

The concern graph model is designed to meet several goals: to be language independent, flexible,
precise, simple, robust, and tolerant to inconsistencies.

The first requirement is for the concern graph model to belanguage independent. The con-
cept of an implementation concern is by no means limited to a particular programming language.
Although mapping a concern to source code must inevitably involve the consideration of program-
ming language syntax and semantics at some level, we wanted the general structure representing
concerns to be language independent, to enable any reasoning performed at the level of the model
to be applicable to concerns for code in any language.

The requirement for flexibility relates to the type of information that can be expressed about
a program. For example, to capture concerns about the hierarchical organization of modules in
a program, it is necessary only to capture information about the interactions between high-level
declarations, such as classes or data structures. To capture concerns about general control-flow of
an imperative program, it is necessary to represent interactions (calls) between methods or functions.
Finally, to capture concerns about the flow of data during the execution of a program, it is necessary
to include local variables in the model. Technically, any information about a program that can
be produced statically (by a compiler or specialized analyzer) is available to describe part of a
program. Examples include the basic declarative structure of a program, but also control- and
data-flow information as represented by the program dependence graph (a program representation
used in compiler optimization [40]), or the system dependence graph (used in software engineering
applications such as testing [57]). We wanted a model flexible enough to be customizable for
different levels of granularity of program information.

Our third requirement for a concern graph model is for it to beprecise. Here, by precision, we
mean that there should exist a non-ambiguous mapping between any structure present in a concern
representation and the corresponding source code.

15

As much as possible, we wanted to ensure that the concern graph model remainedsimple
andintuitive. In this way, developers working with a concern graph can determine the interactions
between the different pieces of source code it represents without having to perform complicated
calculations or logic reasoning.

The last two requirements,robustnessandtolerance to inconsistencies, relate to the capability
of concern graphs to represent concerns in evolving source code. Since a concern graph is essen-
tially a representation of a subset of a code base, changes to this code base are bound to affect
the representation. The requirement for robustness states that a concern graph should remain valid
through minor code modifications. As such, it should not be dependent on non-essential and brittle
aspects of the source code, such as line numbers or indentation. Also, major source code modifi-
cations affecting the code represented by a concern graph should not invalidate the concern graph.
Rather, it should be possible to detect any inconsistencies between a concern graph and its associ-
ated code base and to use the consistent part of a concern graph, while preserving the inconsistent
information to help repair the inconsistencies.

2.2 Formal Representation

We define concern graphs formally as a mathematical model based on relational algebra. Ap-
pendixA presents the notation and important relational operations we use in the definition of the
model.

2.2.1 Programs

Concern graphs must be able to represent a subset of a program that relates to a concern a developer
has about the implementation of the program. As a result, the definition of a concern graph must
be linked to an underlying program model that specifies which information about a program can
be captured by a concern graph. This section deals with the modeling of programs. It forms the
groundwork on which the concern graph model is built.

Our model of a program relies on the notion of anamed relation. Named relations allow us to
directly attach a meaning to a mathematical relation.

Definition 1 (Named Relation) A named relationRn = (n, R) consists of a namen associated
with a binary relationR.

We model a program as a set of elements declared in the program, and a set of named relations
between these elements.

Definition 2 (Program Model) A program model(E,N) consists of a set of program elements
E = {e1, e2, ..., em} and a set of named relations overE, N = {Rn1 , Rn2 , ..., Rnk

}.

This definition states that anything that can be known about a program in our model must be ex-
pressed in terms of relations between elements. The generality of this definition allows the program
model to apply to any representation of program code that can be expressed as a set of relations
between elements. It applies equally to executable, intermediate, or source code. It applies to stand-
alone programs as well as libraries. Finally, it applies to complete and correct programs as well as
incomplete or incorrect programs.

16

For convenience in presentation, we provide a shorthand to represent the set of all relation
names in a program model.

Definition 3 (Names Set)LetN = {Rn1 , Rn2 , ..., Rnk
} be a set of named relations. We define the

set of all relation names inN as

names(N) = {n | ∃ R : (n, R) ∈ N}.

This definition of a program model is equivalent to the definition of a labeled directed graph
(E,names(N),∆), with E a set of nodes,names(N) a set of labels, and∆ ⊆ E×names(N)×E

a set of triples representing the labeled edges [102]. The name “concern graph” is thus intended to
capture the idea of a graph of elements (nodes) and named relations (labeled edges) representing
the subset of a program model addressing a concern.

Given a concrete programP in some programming language, a model of this program is ob-
tained by applying a language-specificmapping functionM to the program. A model of program
P according to mapping functionM is represented byPM . Different mapping functions can be
defined for a single programming language.

Definition 4 (Mapping Function) Let PM = (E,N) be a program model. The mapping function
M consists of:

• A criterion defining which elements declared in programP should be listed inE.

• A set of relation names supported by the model.

• The definition of an analysis functiona(n, P) taking as parameters a relation namen and
a programP , and returning a named relationRn ⊆ E × E representing the relationships
between elements ofP (meeting the mapping criterion), according to the semantics ofn.

Because mapping functions are a means to obtain a program model from a concrete program, and do
not support any reasoning about concern graphs, they will not be further formalized. All the formal
reasoning for concern graphs involves modeled programs. In this dissertation, mapping functions
are specified in a box, listing from top to bottom:

• the name of the mapping function,

• the criterion for inclusion of an elementx of programP into E (the set of elements modeled),

• the setnames(N) of supported relation names, and

• the definition of the analysis functiona(n, P).

By convention, analysis functions will be defined here using first-order logic. In practice, other
notations can be used. As mentioned above, the definition of mapping functions is only an accessory
issue which does not influence the characteristics of the concern graph model.

For example, Figure2.1presents a minimal mapping function for the C language modeling a
program only as its call graph. The boolean functions used in the definition of the analysis function
are normally defined in terms of the language specifications. For the purpose of the simple examples
in this chapter, we assume that the behavior of the functions can be inferred from their name. Rela-
tion names in a model are set in italics to distinguish them from the names of boolean functions over

17

Mapping Function C1
E = {x | IsAFunction(x)}
names(N) = {Calls,CalledBy}
a(Calls, P) = {(x, y)|Calls(x, y)}
a(CalledBy ,P) = a(Calls, P)>

Figure 2.1: Mapping function C1

a program; boolean functions remain in normal type (see AppendixA for the complete notational
conventions).

The mapping function C1 states that the only information available about a program in the
model is the program’s call graph, represented by the relationsCalls andCalledBy(the transpose
of theCalls relation). At this point it might seem superfluous to specifyCalledByas a relation in
the mapping function since this relation represents redundant information, which can be obtained
by a simple operation on theCalls relation. However, there exists an important semantic distinction
between the two relations that can provide additional expressiveness in describing concerns. This
issue is discussed in further details in Section2.2.2.

The application of a mapping functionM to a programP yields a program modelPM . The
application process consists in extracting the concrete set of program elementsEP and named re-
lationsNP .1 The elicitation is performed by applying the selection criterion to all the elements
declared inP , and by applying the analysis function toP for all relation names specified in the
mapping function. In practice, this step is performed via standard static analyses, such as pars-
ing [35], type-checking [3], control- or data-flow analysis [84, 91], and exception flow analy-
sis [27, 111, 114, 120, 125].

We illustrate the process of producing a program model with an example of a simple Java pro-
gram. In Java, in addition to methods and fields, classes can also declare other classes (calledinner
classes). These inner classes can extend any class visible in the scope of their declaration, creating
intricate dependencies between different classes. In this example, we define a mapping function
for the Java language capable of only representing the declaration and specialization relationships
between classes. Figure2.2specifies this mapping function.

Mapping Function J1
E = {x | IsAClass(x)}
names(N) = {Declares,Extends,SuperclassOf ,SubclassOf }
a(Declares, P) = {(x, y) | Declares(x, y)}
a(Extends, P) = {(x, y) | Extends(x, y)}
a(SubclassOf , P) = a(Extends, P)+

a(SuperclassOf , P) = a(SubclassOf , P)>

Figure 2.2: Mapping function J1

1Variables names for elements in a concrete program model resulting from the application of a mapping
function to a program will be indexed with the name of the program. For abstract entities independent from
a specific program model, the index is omitted.

18

This mapping function specifies that the only declarations considered in a modeled program
are the classes declared in the program: interfaces, fields, methods, local variables, and other dec-
larations are not modeled. Furthermore, the only relationships between classes documented by
this model are whether a class declares another class (Declares), whether a class extends another
class directly (Extends) or transitively (SuperclassOf), or whether a class is transitively extended
by another class (SubclassOf). Like the mapping C1 of Figure2.1, the mapping J1 illustrates how
relations can be defined in terms of other relations to add expressiveness to the model. In this case
the use of the transpose and non-reflexive transitive closure operations support the definition of the
SubclassOfrelation. This example also illustrates an additional point: there are no constraints (such
as symmetry) on the set of relations specified in a mapping function. This set can be customized to
include only relations that offer a useful means of representing a program to users of the model. As
such, we have purposefully excluded the transpose of theExtendsrelation as part of the model. If
this relation had been deemed to be necessary to describe concerns, it could have easily been added
to the model.

Let us now apply this mapping function to the program P1 of Figure2.3. This application
yields the model of Figure2.4. Program models are presented with a structure similar to mapping
functions, but with a double line under the model name.

public class A
{

int aField;
class B {}

}

class C extends A
{

void aMethod() {};
class D extends A {}
class E extends D {}

}

Figure 2.3: Program P1

ModelP1J1

EP1 = {A, B, C, D, E}
DeclaresP1 = {(A, B), (C, D), (C, E)}
ExtendsP1 = {(C, A), (D, A), (E, D)}
SubclassOf P1 = {(C, A), (D, A), (E, D), (E, A)}
SuperclassOf P1 = {(A, C), (A, D), (D, E), (A, E)}

Figure 2.4: ModelP1J1

This application results in the elements{A, B, C, D, E} being considered.2 Even though the
program declares other elements, such as fieldA.aField and methodC.aMethod() , these are

2In Java, classes that do not declare to extend any class extend the classjava.lang.Object by default.
For this reason, theObject class should be part ofEP1 and the relations inNP1. We have left this detail
out of our example for simplicity.

19

not included because they do not match the type specification for elements ofE according to the
mapping function J1. Likewise, only pertinent relations between elements ofEP1 are produced as
a result of the application.

2.2.2 Fragments

With the conceptual foundations for modeling programs in place, we can now address the definition
of a concern representation. Simply put, a concern graph is a description of a subset of a program
model. Concern graphs are defined as a collection of small building blocks calledfragments, which
can be assembled to form concern descriptions of increasing complexity. A fragment describes
a relationship between two sets of elements in a program model. It is the smallest unit of concern
graph description. A fragmentfP is always defined on a program modelPM . A fragment consists of
an intentpart and aprogram subsetpart. The intent of a fragment captures a high-level description
of what one wishes to capture about a program (e.g., “all the subclasses of classC”). The program
subset part captures the actual subset of the program corresponding to the intent (e.g., “classesA

andB”).
To define the intent of a fragment, we use adomainset, a relation name, and arangeset.3 For

example, to specify a fragment representing a function call from functiona to functionb, we would
specify{a} as the domain,Calls as the relation name, and{b} as the range.

To describe the program subset part of a fragment, we need to define a projection operator on
the objects defining the intent of a fragment and a program model.

Definition 5 (Projection Operator) LetPM = (EP , NP) be a program model,DomP ⊆ EP and
RanP ⊆ EP be two subsets ofEP , andnP ∈ names(NP) the name element of a named relation
Rn,P in NP .

proj(DomP , nP ,RanP , PM) = DomP / RP . RanP .

In other words, the projection operator takes the intent of a fragment (a domain, relation name, and
range) and a program model, and produces the relation corresponding to the intent. The distinction
between the intent and program subset part of a fragment is important when one considers the
evolution of programs. A fragment describing code for a program version P1 might still apply
to a program version P2. The presence of the projection in the fragment supports answering this
question precisely. The algorithms described in Section2.3.2detail how inconsistencies between a
fragment and a program model can be detected and reconciled through the use of the projection.

We now have all of the tools required to formally define a fragment.

Definition 6 (Fragment) Let PM = (EP , NP) be a program model. LetDomP ⊆ EP be a
domain defined onP , RanP ⊆ EP a range defined onP , andnP ∈ names(NP). We define a
fragment asfP = (DomP ,nP ,RanP ,ProjP), whereProjP = proj(DomP , nP ,RanP , PM). We
say thatfP is defined onPM .

Given these definitions, we see that specifying a fragment consists in specifying a domain and range
sets and a relation name, and applying the projection operator on a program model. The resulting

3The domain and range of a fragment are set variables, and are not to be confused with the relational
operators defined in AppendixA.

20

fragment describes a subset of the program model. An important consideration when specifying
fragments is the specification of the domain and range sets. Technically, for a program model
PM = (EP , NP), any specification resulting in a setS ⊆ EP constitutes a valid domain (or range).
In particular, we recognize three types of domain/range specifications:

• A non-empty set of elements (e.g.,Dom = {A}, Ran = {A, C, D}).

• The universal domain (or range), represented by the setEP . SpecifyingEP as the domain or
range of a fragment will result in the projection including all elements in the domain of the
specified relation.

• A subset specified as the range of a fragment projection. For example, to specify a do-
main as all of the members of classA in a program modelPM , we would specifyDomP =
ran(proj({A},Declares, EP , PM))).

This flexibility in fragment specification affords us the capability to capture cohesive groups of
relations as one fragment, and allows us to capture the semantic relationships between the relations
as the intent of the fragment.

We illustrate different possibilities for fragment specification through a series of examples
based on the mapping function J2 for the Java language (Figure2.5).

Mapping Function J2
E = {x | IsAType(x) ∨ IsAMethod(x)}
names(N) = {I,Declares,Calls,CalledBy}
a(Declares, P) = {(x, y) | Declares(x, y)}
a(Calls, P) = {(x, y) | CallsStatic(x, y)}
a(CalledBy , P) = a(Calls, P)>

Figure 2.5: Mapping functionJ2

The J2 mapping only considers types (classes and interfaces), and methods. The relationships
modeled are restricted to the identity relation (I), the declarative structure of the program, and
static method calls. As will be illustrated below, the identity relation serves the special purpose of
allowing the definition of fragments corresponding to a single program element.

Based on mapping function J2, we can specify fragments of program P2 (Figure2.6). The
model for program P2 is shown in Figure2.7.4

To describe a single program element as a fragment, we use the identity relationI. In the
examples, fragments are named with a phrase describing their intent.

Class A
({A}, I, {A}, {(A, A)})

We can also describe a single method call as a fragment:

c calls b
({c},Calls, {b}, {(c, b)})

4The notation has been simplified by omitting the parentheses in method signatures.

21

public class A
{

public static void b() {};
public static void c() { c();b(); D.f(); }

}

class D
{

public static void e() { f(); }
public static void f() {}

}

Figure 2.6: Program P2

Model P2J2

EP2 = {A, b, c, D, e, f}
IP2 = {(A, A), (b, b), (c, c), (D, D), (e, e), (f, f)}
DeclaresP2 = {(A, b), (A, c), (D, e), (D, f)}
CallsP2 = {(c, b), (c, c), (c, f), (e, f)}
CalledByP2 = {(b, c), (c, c), (f, c), (f, e)}

Figure 2.7: ModelP2J2

Fragments containing a single element in the domain and a single element in the range are called
primitive fragments. If the relation represented by the primitive fragment actually exists in the
model, the fragment projection is a set comprising a single pair formed by the single element in the
domain and range. If the relation does not exist in the program model, the fragment projection is
represented by the empty relationO. As a last example of primitive fragment, we can capture the
fact that classD declares methodf :

D declares f
({D},Declares, {f}, {(D, f)})

Obviously, primitive fragments do not exercise the full expressive power of the fragment structure.
We can describe slightly more elaborate interactions using the universal range. For example, to
capture all members of classA, we specify:

Members of A
({A},Declares, EP2, {(A, b), (A, c)})

If we apply the range operator to the projection of this fragment, we see that it correctly produces
all the members of class A:

ran({(A, b), (A, c)}) = {b, c}.

We can also use the universal range to capture all the callers off .

Callers of f
({f},CalledBy , EP2, {(f, c), (f, e)})

22

Even though relationCalledByis simply the transpose of relationCalls, there is additional value in
specifyingCalledBy as part of a model, because it allows the use of the meaning of the relation to
describe fragments. Without theCalledByrelation, it would be difficult to intuitively represent the
intent to capture all of the calls to methodf in a single fragment.

Finally, it is possible to specify even more extensive fragments through the specification of a
domain through a fragment. For example, to capture all calls by methods of classA, we can specify

Calls by methods of A
(ran(proj(({A},Declares, EP2, P2J2))),Calls, EP2, {(c, b), (c, c), (c, f)})

Obtaining the range of this last fragment’s projection, we get:

ran({(c, b), (c, c), (c, f)}) = {b, c, f}.

The last operation we define on fragments is theparticipantsoperation. For any fragment, it pro-
duces a set of elements involved in the fragment.

Definition 7 (Participants) LetfP = (Dom,n,Ran,Proj) be a fragment.

participants(fP) = dom(Proj) ∪ ran(Proj)

2.2.3 Concerns

With fragments, it is possible to express different interactions between program elements. By ac-
cumulating fragments, we can capture an increasingly large subset of a program model. However,
a flat structure consisting of a list of fragments does not allow us to capture different and poten-
tially related concerns. Often, when investigating source code, developers must reason about the
code implementing concerns that are related because they are involved in a same task; other times,
developers must consider the code implementing concerns that are related through a specialization
relationship, where one concern addresses a specific subset of a more general concern. It is thus
desirable to define a means of organizing fragments.

To address this requirement, our model includes a way to classify fragments into potentially
overlapping sets. To do this, we define the notion ofconcern representation(or simply, concern)
recursively, as a set of fragments and a set ofsubconcerns.

Definition 8 (Concern) Let PM be a program model. A concernCP = (FP , SP) defined onPM

is a tuple comprising a set of fragmentsFP = {f1, f2, ..., fn} and a set of concerns defined onPM ,
SP = {s1, s2, ..., sm}.

The only constraint on the composition of fragments into a concern representation is that all of the
fragments be defined on the same program modelPM . We then say that a concern is defined on
PM . Either or both ofF or S can be the empty set. A fragment inF can also be in any subconcern
s ∈ S. Fragments and concerns are composed into other concerns based on the requirements of
a user of the representation. A root concern, not included in any parent concern, represents the
broadest abstraction for a particular concern. It is called aconcern graph.

23

The participants of a concern are defined as any element participating in a fragment within the
concern.

Definition 9 (Concern Participants) Let C = (F, S) be a concern, whereF = {f1, f2, ..., fn} is
a set of fragments andS = {s1, s2, ..., sm} a set of concerns. The participants of C are defined as:

participants(C) =
n⋃

i=1

participants(fi)
m⋃

j=1

participants(sj)

As an example of the organization of fragments into concerns, let us return to the example
of program P2 (Figure2.6). Say we are interested in investigating the uses of classesA andD.
We first define a concern graphG based on the modelP2J2 (Figure 2.7). Then we define two
subconcerns,Uses of AandUses of D. We thus haveG = (∅, {Uses of A, Uses of D}), where
both subconcerns are currently empty. To complete the concern graph description we add fragments
describing all calls to methods of classA to Uses of A, and all calls to methods of classD to Uses
of D, respectively. We now have:

Uses of A= ((ran(proj(({A},Declares, EP2, P2J2))),CalledBy , EP2, {(b, c), (c, c)}), ∅)
Uses of D= ((ran(proj(({D},Declares, EP2, P2J2))),CalledBy , EP2, {(f, c), (f, e)}), ∅)

The participants of subconcernUses of Aare thus the methodsb andc , and the participants of
subconcernUses of Dare the methodsc,e andf . As expected, the set of participants for concern
graphG is the union of both sets:{b, c, e, f}.

2.3 Analyses

This section describes different operations and analyses that can be performed on concern represen-
tations.

2.3.1 Concern Analysis

Given the flexibility afforded in the composition of fragments into concerns, two concern repre-
sentations can potentially overlap or be related. Given two concern representations defined on a
common program model, we define their common participants as any program element participat-
ing in both concerns.

Definition 10 (Common Participants) Let CP and DP be two concerns defined on a program
modelPM , the set of common participants is defined as:

common(CP , DP) = participants(CP) ∩ participants(DP)

Even if two concerns have no element in common, they can still interact. We define the inter-
action between two concerns, defined on a common program modelPM , as the set of all modeled
relations between an element in one concern and an element in the other concern.

24

Definition 11 (Concern Interaction) LetCP andDP be two concerns defined on a program model
PM = (EP , NP). The interaction betweenCP andDP is defined as:

interaction(CP , DP) = {(x, n, y, {(x, y)}) | x ∈ participants(CP) ∧
y ∈ participants(DP) ∧
∃ (n, R) ∈ NP : (x, y) ∈ R}

In other words, the interaction between two concerns is a set of primitive fragments represent-
ing the relations between the participants of one concern and the participants of the other concern.

The interactions between participants can also be defined for a single concern, enabling us
to establish a closure of interactions between the participants of a concern. Specifically, given a
concernC, the operationinteraction(C,C) produces a set of primitive fragments representing all
the interactions between participants ofC.

2.3.2 Inconsistency Management

Since concern graphs are defined on a specific program model, any change to the program impacting
the model may render a concern graph inconsistent with the new program model corresponding to
the changed source code. Such inconsistencies can be formally defined through a boolean function
IsInconsistent(x, PM) wherePM is a program model andx a set of elements, a fragment, or a
concern.

Definition 12 (Element set Inconsistency)Let P1M = (EP1, NP1) andP2M = (EP2, NP2) be
the models corresponding to two versions of a program produced with the same mapping function
M . Letx ⊆ EP1.

IsInconsistent(x, P2M) = x 6⊆ EP2

Definition 13 (Fragment Inconsistency)Let P1M = (EP1, NP1) and P2M = (EP2, NP2) be
the models corresponding to two versions of a program produced with the same mapping function
M . Let fP1 = (DomP1, nP1,RanP1,ProjP1) be a fragment defined onP1.

IsInconsistent(fP1, P2M) = IsInconsistent(DomP1, P2M) ∨
IsInconsistent(RanP1, P2M) ∨
ProjP1 6= proj(DomP1, nP1,RanP1, P2M).

In other words, a fragment is inconsistent with a program model if either of its domain or range
is inconsistent, or if its projection does not match the equivalent projection on the new program
model. This support for detection of inconsistencies is the main justification for the existence of
projections. Fragment projections store only the minimal subset of a program model required to
check for inconsistencies with a different model.

Given the above definitions, we can define the inconsistency operator for concerns.

Definition 14 (Concern Inconsistency)Let P1M = (EP1, NP1) andP2M = (EP2, NP2) be the
models corresponding to two versions of a program produced with the same mapping functionM .
LetCP1 = (FP1, SP1) be a concern defined onP1M .

IsInconsistent(CP1, P2M) = ∃f ∈ FP1 | IsInconsistent(f, P2M) ∨
∃s ∈ SP1 | IsInconsistent(s, P2M).

25

Finally, it is possible to define, at the level of the concern graph model, the conditions in which an
inconsistency between a fragment and a model can be automatically repaired, and the semantics of
the repair operation. This way, we can ensure a common behavior for inconsistency repair across
programming languages and tools supporting the concern graph model. A repairable fragment is
defined as a fragment for which both the domain and the range are consistent (i.e., the fragment
is only inconsistent in terms of its projection in the new program model). The repair operation is
modeled as a function taking as parameters a repairable program fragment defined on a model and
inconsistent with a second model, and the second model. The operation returns a fragment with the
same intent as the original, but that is consistent with the second program model.

Definition 15 (Fragment Repair Operator) Let P1M = (EP1, NP1) and P2M = (EP2, NP2)
be the models corresponding to two versions of a program produced with the same mapping function
M . LetfP1 = (DomP1, nP1,RanP1,ProjP1) be a fragment defined onP1M such that:

IsInconsistent(fP1, P2M) ∧
¬IsInconsistent(DomP1, P2M) ∧
¬IsInconsistent(RanP1, P2M)

We have

repair(fP1, P2M) = (DomP1, nP1,RanP1,proj(DomP1, nP1,RanP1, P2M)).

In informal terms, the repair function simply replaces the inconsistent projection of a fragment with
a new projection consistent with the second program model. The practical implications of the in-
consistency management support intrinsic to concern graphs are described in detail in Section3.2.2.

2.4 Summary

In the light of the complete definition of our concern graph model, we now briefly revisit and discuss
the design goals presented in Section2.1.

Language independence In our model, concern graphs are defined on a program model that
abstracts the details of specific programming languages. Concern graphs can thus be defined for
programs in any language that can be modeled as a set of elements and a set of relations on these
elements. Although a complete survey of the applicability of our model to different programming
languages is outside the scope of this dissertation, we expect that most imperative languages, and
possibly many others, can meet this simple criterion.

Flexibility All the features of our model (e.g., fragment definition, interaction analysis, inconsis-
tency detection) are based solely on the basic definition of a program modelP = (E,N). It is
thus possible, through the definition of a mapping function, to include arbitrarily complex relations
between elements as part of the model. The level of information that can be recorded by a concern
graph is thus under the control of users of the model.

26

Precision The goal of precision implied that there should exist a non-ambiguous mapping between
any structure present in a concern representation and the corresponding source code. In our model,
the relations in a program model are obtained through analysis functionsa(n, P) defined by the
mapping function used to instantiate the model for a language. Assuming the availability of such
functions implies the existence of a corresponding function capable of mapping a relation back to
the corresponding source code.

Simplicity The mechanism by which we compose fragments into a concern graph is limited to
the simple inclusion operation. The use of logic operators, such as the negation operator, is not sup-
ported by the model. Given a concern and a fragment, the only reasoning required from developers
is to determine whether the fragment should be included or excluded from the concern.

Robustness As in the case of language independence, the goal of robustness is achieved by the
use of an abstract program model to describe concerns. Because fragments record relations between
program elements, as opposed to concrete references to a source code artifact (e.g., lines of code),
minor changes to a program, such as re-ordering function definitions in a file, leaves the program
model unchanged, and as such does not impact descriptions based on this model.

Tolerance to Inconsistencies Tolerance to inconsistencies is explicitly supported by our model.
Section2.3.2describes the mechanism by which we can detect and repair inconsistencies between
a concern graph and a program model.

27

Chapter 3

Tool Support for Concern Graphs

In the previous chapter we presented a general model for capturing descriptions of scattered concern
code as artifacts called concern graphs. To use concern graphs effectively developers must be able
to interactively specify, view, analyze, and manage concern representations for large programs.
Providing support for these tasks requires the extraction of a model from a concrete program. In
turn, the automatic extraction of a program model requires a definition of a mapping function that
can produce models that are both useful, usable, and scalable.

To experiment with concern graphs, we developed support for using concern graphs with
Java programs. Based on a combination of experience, experimentation, and the work of other
researchers, we designed a mapping function that produces models which allow developers to de-
scribe a variety of concerns in source code. In Section3.1we present the mapping function we have
designed and discuss and justify our choices in elaborating this mapping function. Then, in Sec-
tion 3.2, we describe a tool we have developed to support concern graphs according to our mapping
function for Java.

3.1 General Mapping Function for Java

A mapping function specifies how to produce a program model on which concern graphs can be
specified (see Chapter2). Many different mapping functions can be defined for a programming
language, each one presenting a tradeoff between, on one hand, the expressiveness of a model to
represent details of a program, and on the other, simplicity, usability, and scalability. The mapping
function we have designed to support concern graphs for Java is intended to be both scalable and
capable of representing a wide range of concerns. This mapping function, named Java Standard, is
presented in Figure3.1. The detailed definition of the boolean functions involved in the mapping
function are presented in AppendixB.

The program elements captured by the Java Standard mapping function are limited to classes,
interfaces, fields, and methods. Local (intra-method) elements, such as method parameters and
local variables, are not captured in models produced by the mapping function. We decided not to
consider intra-method elements for two main reasons. First, we wanted to establish a practical bound
to the size and complexity of models required to define concern graphs, so that the approach would
remain usable and scalable. Second, intra-method program elements are not considered because we
are mostly interested in capturing scattered concerns, that is, concerns presenting interactions not
limited to a module.

28

Mapping Function Java Standard
E = {x | IsAClass(x) ∧ IsAnInterface ∧ IsAField(x)∧

IsAMethod(x)}
names(N) = {Accesses,AccessedBy ,Calls,CalledBy ,Checks,

Creates,Declares,ExtendsClass,ClassExtendedBy ,
ExtendsInterface, InterfaceExtendedBy ,
HasParameterType,HasReturnType, I, Implements,
ImplementedBy ,OfType,Overrides,OverridenBy ,
TransitivelyExtends,TransitivelyExtendedBy ,
TransitivelyImplements,TransitivelyImplementedBy}

a(Accesses, P) = {(x, y) | Accesses(x, y)}
a(AccessedBy , P) = a(Accesses, P)>

a(Calls, P) = {(x, y) | Calls(x, y)}
a(CalledBy , P) = a(Calls, P)>

a(Checks, P) = {(x, y) | Checks(x, y)}
a(Creates, P) = {(x, y) | Creates(x, y)}

a(Declares, P) = {(x, y) | Declares(x, y)}
a(ExtendsClass, P) = {(x, y) | ExtendsClass(x, y)}

a(ClassExtendedBy , P) = a(ExtendsClass, P)>

a(ExtendsInterface, P) = {(x, y) | ExtendsInterface(x, y)}
a(InterfaceExtendedBy , P) = a(ExtendsInterfaces, P)>

a(HasParameterType, P) = {(x, y) | HasParamterType(x, y)}
a(HasReturnType, P) = {(x, y) | HasReturnType(x, y)}

a(I, P) = {(x, y) | x = y}
a(Implements, P) = {(x, y) | Implements(x, y)}

a(ImplementedBy , P) = a(Implements, P)>

a(OfType, P) = {(x, y) | OfType(x, y)}
a(Overrides, P) = {(x, y) | Overrides(x, y)}

a(OverridenBy , P) = a(Overrides, P)>

a(TransitivelyExtends, P) = a(ExtendsClass, P)+

a(TransitivelyExtendedBy , P) = a(TransitivelyExtends, P)>

a(TransitivelyImplements, P) = (a(ExtendsClass, P)∗ ◦ a(Implements, P))∪
(a(ExtendsClass, P)∗ ◦ a(Implements, P)◦
a(ExtendsInterface, P)+)

Figure 3.1: The mapping function Java Standard

The first reason, to limit the model size, comes from the realization that the more expressive
a program model is, the higher the computational and memory cost to produce it, and the higher
the human effort required to use it. From the perspective of memory cost, detailed program models
inevitably comprise more nodes and edges than more abstract ones. The inclusion of local variables
and detailed control- and data-flow relations into a program model, such as the program dependence
graph [40], can seriously impact the scalability of the representation. For example, in their work
on chopping (a variant of slicing), Jackson and Rollins noted this problem with the dependence
graphs required to manage intra-module relations: “Graphs of even the smallest chops tend to be
huge” [62: p. 9]. Producing precise and fine-grained program models also incurs a non-significant

29

cost in terms of computational time [118]. Finally, with an increase in the variety of program
element types supported by a model comes a significant increase in the number of potential relation
types between elements that a developer must consider (e.g., data-dependence, control-domination).

The second argument for not considering intra-method elements is that in most cases they are
not needed to model scattered concerns, and the cost of their inclusion in the model is, as such,
unwarranted. Specifically, since elements such as local variables cannot be referenced by elements
outside the method, they are not useful for describing a concern scattered in multiple methods. As
the designers of the C Information Abstractor tool have noted, “Details of interactions between local
objects are ignored because they are only interesting in a small context” [25: p. 326]. We followed
a similar philosophy in elaborating the design of our mapping function.

We categorize the 22 relations supported by the mapping function as eitherstructural or be-
havioral. Structural relations represent static, declarative relations between elements in a program.
Roughly speaking, static relations are the type of relations that would be documented in a UML
static structure diagram [51]. As explained in Section2.2.2, the identity relation (I) is an artificial
relation used to include individual elements in a concern graph. TheDeclaresrelation expresses the
basic declarative structure of a program. This relation can be used to specify fragments representing
classes or interfaces with all their members. Additional relations exposing the declarative structure
of a program are theHasParameterType, HasReturnType, andOfTyperelations. These relations
expose, respectively, the parameter types of a method, the return type of a method, and the type of
a field. The transpose of relations exposing the declarative structure of a program are not included
in the mapping function because we could not foresee any use of these relations. The relations
ExtendsClass, ExtendsInterface, andImplements(and their respective transpose) expose the basic
class hierarchy of a program. Because of the coarse granularity of such relations, we included a
transitive version of theExtendsand Implementsrelations. This way, it is possible to specify an
inheritance or implementation relation between two classes (and/or interfaces) even if the classes
are not in direct relation with each other. Finally, theOverridesrelation and its transpose expose
whether a method is substitutable for another one at run-time.

Behavioral relations represent code within a method. TheAccessesrelation and its transpose
represent code reading or writing to a field. TheCalls relation and its transpose represent method
calls. TheCreatesrelation represents the creation of a new object using the keywordnew, and the
Checksrelation represents a downcast or the comparison of the run-time type of an object with a
certain type. The transpose of theChecksandCreatesrelations are not included in the mapping
function because it is not clear how useful fragments defined using these relations would be in
specifying concerns. Using the behavioral relations above, it is possible to specify a subset of a
method as part of a concern. For example, Figure3.2 shows the code of a method that resets the
state of an object. To capture all of the code dealing with accessing object state, we can use the
Calls relation, such as in the fragment

resetState Calls getFlag(int) .1

1For the examples in this section, we use a simplified representation for fragments, and we omit the fully-
qualified names of Java elements that would normally be present. For the complete description of fragments
structures, see Section2.2.2.

30

This fragment captures the method calls togetFlag() on lines 3–6. To capture the code dealing
with the state of theAUTOSAVEDIRTY flag, we can use theAccessesrelation, such as in the fragment

resetState() Accesses AUTOSAVE DIRTY.

This fragment captures code on lines 3 and 9.

1: public void resetState()
2: {
3: if (!getFlag(AUTOSAVE_DIRTY)
4: || !getFlag(DIRTY)
5: || getFlag(LOADING)
6: || getFlag(IO))
7: return ;
8:
9: setFlag(AUTOSAVE_DIRTY, false);
10: }

Figure 3.2: MethodOptionGroup.save()

One of the characteristics of models produced with the Java Standard mapping function is that
they do not support the distinction between different contexts in source code corresponding to a
behavioral relation. For example, in the method of Figure3.2, it is not possible to include the call to
getFlag(int) on line 6 as part of a concern, while excluding the other calls togetFlag(int) .
Context sensitivity of this form would require a more detailed program model [140]. As we will
explain in Chapter4, context-insensitivity has been a reasonable choice because when a call to a
non-library method contributes to the implementation of a concern, most of the calls to that method
are usually part of the concern as well. In situations where this has not been the case, the small
number of false positives have not caused problems with the task.

Finally, the mapping function does not support exception handling. Exception handling in-
troduces a particular type of control-flow that can be difficult to abstract [27, 111, 114, 125]. For
the purpose of experimenting with concern graphs and validating the thesis, we chose to leave ex-
ception handling aside. Although this prevents users of the approach to specify concerns related to
error handling, there exists many other possible types of concerns.

3.2 The Feature Analysis and Exploration Tool

To support the task of finding the source code implementing concerns of interest to a developer, and
of representing those concerns with concern graphs, we built the Feature Exploration and Analysis
Tool (FEAT). FEAT supports three main functions.

1. Model Extraction It extracts a model of a program based on the mapping function Java
Standard described in Section3.1, and provides a user of the tool access to the model.

2. Concern Construction It allows a user to build and modify concern representations by spec-
ifying fragments on the model extracted from a program. It supports the saving of a concern
representation to permanent storage, and the loading of a concern representation in the tool.

3. Analysis It supports the analysis of the interactions between different concerns. It also sup-
ports the detection and repair of inconsistencies between a concern graph and a program.

31

To integrate building, viewing, and modifying concern graphs with the activities of code in-
vestigation and modification, we have implemented the FEAT tool as a plug-in for the Eclipse
Platform [93]. Eclipse is an integrated development environment for Java with an architecture that
supports the addition of modules (called plug-ins) that add to the development environment’s func-
tionality. With the FEAT plug-in installed in Eclipse, developers can use the integrated development
environment as usual, to browse and modify source code, perform searches, etc. However, if a user
desires to create a concern representation, the functionality provided by the FEAT plug-in is acti-
vated, providing the three functions described above.

3.2.1 Usage Model

When investigating and modifying source code during a program evolution task, a developer typ-
ically starts using the features of the FEAT plug-in when a concern of interest is identified. In
general, for a developer working on a non-familiar code base, the use of the FEAT tool proceeds as
follows:

1. Broad investigation outside FEAT A developer performs broad searches in an attempt to
discover an area of the code related to the modification task. For example, a developer asked
to implement an enhancement to the autosave feature of the jEdit application described in
Section1.2might perform a lexical search for the keyword “autosave” on all the source code
files. This type of general investigation does not focus on any particular concern and is usually
performed using the basic features of the Eclipse platform, and without help from the FEAT
plug-in.

2. Identification of a concernWhen trying to understand the code related to a modification task,
a developer realizes that the code related to the modification implements one or more concerns
that need to be considered [8]. For example, while preparing for the autosave enhancement
task, a developer might come across the PROPERTIES MANAGEMENTconcern. At this point,
the FEAT tool can be used to capture the implementation of the concern.

3. Creating a concern graphUsing a menu in the user interface, a developer creates a concern
graph associated with a code base (also called aproject in Eclipse). Creating a concern graph
initializes the FEAT tool and extracts the program model for the code base.

4. Seeding the concern graphWhen a new concern graph is created, it is originally empty
(i.e., it describes no source code). Elements (classes, methods, or fields) from the code base
must be moved to the concern graph. This process is calledseedingthe concern graph. For
example in the case of the autosave task, a method relevant to MANAGING PROPERTIES,
jEdit.setProperty(String,String) can be added to the concern.

5. Building the concern graph Once a concern graph is seeded, queries are performed on
the elements in the concern graph, to elicit the relations between elements in the concern
and the rest of the code base. For example, a FEAT query can reveal all the callers of the
jEdit.setProperty(String,String) method. Query results that are relevant to the
concern are added to the concern representation in FEAT.

32

6. Analyzing the concern graph If necessary, a concern graph can be divided into different
sub-concerns. While building a concern graph, a developer can then add elements and rela-
tions specifically to the sub-concern under investigation. Returning to the example of the au-
tosave task, the concern graph for the task can be subdivided into a SAVING WIDGET STATE

concern and a PROPERTIES MANAGEMENTconcern. When a concern comprises different
sub-concerns, it is possible to analyze the interactions between elements in the different sub-
concerns.

7. Saving the concern graphWhen the concern graph captures enough of the implementation
of the concerns of interest, it can be saved to disk.

The steps above represent a simplified process. In practice, many variations can take place. For
example, instead of creating a new concern graph, a developer can load an existing concern graph
produced as part of a prior task. Additionally, investigation and concern graph construction activities
within the FEAT tool can be interleaved with basic Eclipse searches and code modifications. The
next section describes in more detail how users interact with the FEAT tool.

3.2.2 User Interface

The description of the user interface of the FEAT plug-in (version 2.3.0) focuses on how a user inter-
acts with the FEAT tool when performing four principal tasks: viewing a concern graph, exploring
the code and building a concern graph, comparing concerns, and managing the inconsistencies be-
tween a concern graph and the source code.2 Although the four tasks are separated for the purpose
of their description, they would, in practice, be overlapping. To set the context for the tool, we first
describe the Eclipse platform.

Eclipse

In Eclipse, functionality is provided at two different levels: theworkbenchlevel, and theview level.
The workbench is the main application window (Figure3.3). The workbench is the interface to a
collection ofresources, called theworkspace. Resources in the workspace correspond to files or di-
rectories on a system. For example, Java source code files are typical Eclipse resources. Within the
workspace, resources are organized into differentprojects. The workbench is the user interface that
provides general-purpose functionality, such as opening and closing resources, performing searches,
etc. Within the workbench, more specialized functionality is provided through differentviews. A
view is a user interface window that displays some data and that provides operations on this data.
For example, in Figure3.3, the window on the left is a view called the Package Explorer. It presents
a hierarchical view of the different packages in a Java project, of the Java source code files in each
package, and of the elements (classes and class members) declared in each file. The Package Ex-
plorer also supports operations on the elements visible in the view, such as cross-reference searches
on an element. Each view has a separate tool bar that provides operations specific to the data in the
view. For example, the tool bar for the Package Explorer allows a user to filter out certain types of
elements from the view.Editorsare a special type of view that allow users to modify resources. A

2Readers interested in the details of the FEAT user interface can consult the manual distributed with the
FEAT tool [109].

33

collection of views addressing a specific purpose is called aPerspective. In Figure3.3, the active
perspective is the Java perspective. The Java perspective includes views supporting Java develop-
ment, and an editor area. Users can switch between different perspectives using the vertical tool
bar on the left of the workbench window. Switching perspectives does not affect the state of the
resources in the workspace.

Figure 3.3: The Eclipse platform

Viewing a Concern Graph

A user views an existing concern graph by switching to the FEAT Perspective. The FEAT Perspec-
tive is a collection of views showing a concern graph in decreasing levels of abstraction (Figure3.4).

The Concern Graph View (area 1) shows the hierarchy of concerns for a concern graph (see
Section2.2.3). From this view, users can create new child concerns, delete existing concerns, and
move concerns in the hierarchy. Figure3.5 shows a concern hierarchy for the task of enhancing
the autosave feature in the jEdit application (see Section1.2). This hierarchy consists of a top-level
concern (or concern graph) namedAUTOSAVE, and two sub-concerns, SAVING WIDGET STATE and
PROPERTIESMANAGEMENT. Selecting any concern in the Concern Graph View displays all of the
participants for the concern (see Definition9). The concern selected in the Concern Graph View is
called theactive concern. The participants for the active concern are displayed in the Participants
View (area 2).

34

Figure 3.4: The FEAT Perspective. Area 1 holds the Concern Graph View. Area 2 holds the
Participants, Interactions, and Inconsistencies Views. Area 3 holds the Projection and Relations
Views. Area 4 holds the Java Editor.

Figure 3.5: The Concern Graph View

In the Participants View, participants for a concern are displayed as a set of trees, with partici-
pant classes at the root of the trees; participant members are displayed as children of their declaring
class. For example, Figure3.6shows the participants for the sub-concern SAVING WIDGET STATE.
The participants include elements in the classesAbstractOptionPane , LoadSaveOptionPane ,
OptionGroup , andOptionsDialog . The nodes for the first two classes are expanded, reveal-
ing their members who participate in the concern: methodssave() and save() , respectively.

35

Double-clicking on any participant shows its declaration in a Java editor (area 4). Selecting a par-
ticipant shows all of the relations between this participant and any other participant in the active
concern (area 3). This display of the relations between participants in of a concern corresponds to
the intra-concern analysis described in Section2.3.1.

Figure 3.6: The Participants View

The relations for a participant selected in the Participants View are displayed in the Relations
View (area 3). For example, Figure3.7shows the relations for participantOptionGroup.save() .
The icon to the left of a relation indicates whether a relation is part of a fragment explicitly added
by a user (as described below), or whether it was identified through intra-concern analysis. A
blue dot identifies a relation explicitly added by a user. A blue dot with a white T inscribed in
it identifies the transpose of a relation comprised in a fragment explicitly added to a concern.
A question mark identifies a relation that was not added to a concern graph by a user, but that
was discovered through intra-concern analysis. Relations identified through intra-concern analysis
are displayed but are not part of a concern. However, a user can add these relations to a con-
cern. In this case, the question mark becomes a blue dot, indicating an explicit relation. Finally,
clicking on any relation shows the source code corresponding to the relation. For example, click-
ing on the relationcalled by OptionGroup.Dialog.ok(boolean) will bring up the code of
OptionsDialog.ok(boolean) in the editor area and highlight the call toOptionGroup.save() .

Exploring the Code and Building a Concern Graph

To help a developer investigate the source code for a project, the FEAT plug-in supports a set
of queries on the classes, methods, and fields declared in the project associated with a concern
graph. The FEAT queries support the investigation of all of the relations specified in the mapping
function Java Standard. A query in FEAT corresponds to a fragment that has a universal range (see
Section2.2.2). For example, a query to determine all of the callers of a methodm() is modeled as
the fragment

m() CalledBy ALL .3

3In this chapter, we use the keyword “ALL” to represent the universal rangeE in a program model.

36

Figure 3.7: The Relations View

A user performs a FEAT query by right-clicking on a Java element in any FEAT view, and choosing a
relation in a pop-up menu. In the pop-up menu, queries are organized in two groups: fan-in queries
and fan-out queries. The criterion for distinguishing fan-in from fan-out queries is based on the
predicate “knows-about”. Fan-in queries return elements thatknow aboutthe queried element. Fan-
out queries return elements that the queried elementknows about. For example, fan-out queries for
a method include the relationCalls, while fan-in queries include its transpose, the relationCalledBy.
Figure3.8 shows a query about to be performed on elementLoadSaveOptionPane.save() in
the Participants View. The figure shows that a pop-up menu has been invoked on the element, and
the menu itemcalling has been selected from the menu groupFan-out . This query corresponds
to the fragment

LoadSaveOptionPane.save() Calls ALL .

Figure 3.8: A FEAT query

37

Internally, FEAT queries are built and managed as fragments: performing a query consists of
applying the projection operator defined in Section2.2.2on the database stored by the plug-in. The
results of a query correspond to the projection of the fragment that represents the query. Query re-
sults are displayed in the Projection View. The Projection View is the main view used to investigate
the code in FEAT. It is shown in the same area (area 3) as the Relations View in the FEAT Perspec-
tive: selecting a tab at the bottom of the area allows a user to switch between views. Figure3.9
shows the results of the query of Figure3.8 as presented in the Projection View. Query results are
displayed in a tree representing the projection of a fragment. The elements in the tree above the re-
lation node represent the domain of the projection. The elements below the relation node represent
the range of the projection. In our example thesave() method calls six methods in four different
classes. Double-clicking on any element in the Projection View displays its declaration in an editor.
Selecting an element displays the source code for only the relation. For example, selecting method
getSelectedItem() will display the line in the save() method wheregetSelectedItem()

is called. From within the Projection View, it is also possible to add elements and relations to a
concern graph. To add a single element to the active concern, a user can right-click on any ele-
ment in the view and selectAdd element to concern . This action will result in the addition
of a single element to the active concern; the element is expressed as a primitive fragment using
the identity relation. To add a query result and the corresponding relation to the active concern, a
user can select any range element (i.e., below the relation node in the tree), right-click and select
Add relation to concern . This action will add to the active concern a primitive fragment
consisting of the element queried (as the domain), the relation queried, and the element selected in
the Projection View (as the range). For example, in the case of Figure3.9, if a user right-clicks on
getSelectedItem() and selectsAdd relation to concern , the fragment

LoadSaveOptionPane. save() Calls JComboBox.getSelectedItem()

will be added to the active concern. Whenever a fragment is added to the active concern, the
Participants View is updated to show the new participants. In some case, the entire results of a
query will be relevant to a concern. In this case, it is possible to add the entire query result to the
active concern though a menu in the tool bar of the Projection View. In this case, the fragment that
is added to the active concern consists of the element queried (as the domain), the relation queried,
the universal range, and the projection corresponding to the query. Finally, the Projection View
preserves all of the queries performed in a history list. Users can recall the results of any previous
query by selecting from a list at the top of the view.

Comparing Concerns

When a concern graph is subdivided into different sub-concerns, it is possible to analyze two con-
cerns in the hierarchy to determine their interactions (see Section2.3.1). To determine the inter-
actions between two concerns, a developer selects the concerns in the Concern Graph View, right-
clicks, and selectsCompare from a pop-up menu. The results of the analysis appear in a view called
the Interactions View, which overlaps with the Participants View. For example, a comparison of the
concerns SAVING WIDGET STATE and PROPERTIESMANAGEMENT discussed above results in the
Interactions View as depicted in Figure3.10.

38

Figure 3.9: Query results in the Projection View

Figure 3.10: The Interactions and Relations Views

The Interactions View shows the participants of the two selected concerns side by side. Par-
ticipants common to both concerns are annotated with a red diamond. Participants in one concern
that are directly related to any participant in the other concern through a relation supported by
the model are annotated with a yellow diamond. For example, from Figure3.10, we can tell that
classLoadSaveOptionPane is common to both concerns because it is annotated with a red di-
amond. We can also determine that methodsave() of classAbstractOptionPane in SAVING

WIDGET STATE is related to a participant in PROPERTIES MANAGEMENT. In the Interactions View,

39

selecting a participant shows all of the relations between the selected participant and any partici-
pant in the other concern. This display contrasts with the selection of a participant in the Partici-
pants View, which shows the relations between the participants of a single concern. For example,
in Figure3.10, selectingAbstractOptionPane.save() reveals that the method calls method
LoadSaveOptionPane. save() in concernProperties management . Using the interaction
analysis feature of FEAT, a developer can quickly focus on the areas of interactions between two
concerns without having to investigate all of the concern code.

Managing Inconsistencies

The FEAT tool is tolerant of inconsistencies between a concern graph and the source code. When
a concern graph is loaded into FEAT, and any time the source code changes, FEAT performs
an inconsistency check for each fragment. Checking for inconsistencies consists of applying the
IsInconsistent function defined in Section2.3.2(Definition 13) to each fragment. Even in the case
where inconsistencies are detected, the FEAT tool functions as usual: participants in consistent con-
cerns are displayed and can be queried and analyzed. However, the participants and relations for
any inconsistent fragment are not displayed in the Participants View and the Relations View. To
indicate that inconsistencies were detected, any concern containing one or more inconsistent frag-
ment is annotated with a red icon in the Concern Graph View. Additionally, it is possible to view,
query, and repair inconsistent fragments in the Inconsistency View. To display the Inconsistency
View, a developer right-clicks on any inconsistent concern in the Concern Graph View and selects
Inconsistencies from a pop-up menu. Figure3.11shows the Inconsistency View listing three
different inconsistencies. Inconsistencies are identified by the name of the inconsistent fragment.
FEAT recognizes three different types of inconsistencies:

• Primitive Inconsistency The relation captured by a primitive fragment does not exist in the
source code. Specifically, a primitive inconsistency is detected when theIsInconsistent func-
tion applied to a primitive fragment returns true because any clause in Definition13 is true.
These types of inconsistencies are not automatically repairable.

• Inconsistent Domain InconsistencyThe domain of the fragment is inconsistent. Specif-
ically, an inconsistent domain inconsistency is detected when theIsInconsistent function
returns true because the domain set is inconsistent (See Definition13, Section2.3.2). These
types of inconsistencies are not automatically repairable.

• Projection Mismatch InconsistencyThe projection of the fragment does not match the cur-
rent source code. Specifically, a projection mismatch inconsistency is detected when the
IsInconsistent function returns true because the third clause in Definition13 is true but the
two other clauses are false. These types of inconsistencies are automatically repairable (see
Definition15, Section2.3.2).

In the Inconsistency View, the three different types of inconsistencies are distinguished by the
icon on the left of the inconsistent fragment’s name. Primitive inconsistencies are identified with
a red X (e.g., the third inconsistency in the list at the top of the view in Figure3.11). Inconsistent
domain inconsistencies are identified with a red X and two right arrows (e.g., second inconsistency).

40

Projection mismatch inconsistencies are identified with a red X superimposed on a right and a left
arrow (e.g., first inconsistency). Clicking on any fragment name in the inconsistency list displays
the inconsistent fragment in a tree structure in the lower part of the view. The inconsistent fragment
is presented in a style similar the one used in the Projection View. Any element in the inconsistent
fragment which exists in the source code can be displayed in an editor or queried as in the Partici-
pants View or the Projection View. This display allows users to investigate the relations between an
element in an inconsistent fragment and the rest of the code base. As a result of such queries, a user
may decide to add to the concern description based on information in the inconsistent fragment. El-
ements in the lower part of the Inconsistency View are annotated with an icon denoting whether the
element does not exist, whether the corresponding relation exists in the code but not in the concern
graph, or exists in the concern graph but not in the code. For example, Figure3.11 displays the
fragment

OptionGroup.save() CalledBy ALL

with the methodok(boolean) of classOptionsDialog annotated with a “+” icon. This icon
indicates that the call fromOptionsDialog.ok(boolean) is documented in the concern graph
but does not exist in the current version of the source code.

Figure 3.11: The Inconsistency View

The Inconsistency View also allows a user to make an inconsistent concern graph consistent
with the source code. Right-clicking on any fragment in the list of inconsistent fragments will
bring up a pop-up menu with the itemRepair . Repairing a repairable fragment will synchronize
the fragment with the source code according to the algorithm of Section2.3.2. For example, the
fragment selected in Figure3.11 is inconsistent due to a projection mismatch, and as such can
be automatically repaired. Repairing a non-repairable fragment will remove the fragment from
the concern graph. A button in the tool bar of the Inconsistency View allows a user to repair all
fragments at once. This way, a concern graph can be made consistent with the source code in a
single step.

41

3.2.3 Implementation

The architecture of the FEAT tool comprises three components: the model, the analyzer, and the
user interface. Figure3.12illustrates the dependencies between the three components.

User Interface

Analyzer Model

Figure 3.12: The architecture of the FEAT tool

Model

The model component supports the run-time representation of a concern graph, enabling support for
loading a concern graph from permanent storage and saving a concern to permanent storage, and for
tolerating inconsistencies between a concern graph and the source code. The model component is
independent from the user interface or the analyzer, allowing it to be used to present concern graphs
in different interfaces, and to allow third-party developers or researchers to use concerns graphs
independently of the FEAT tool. The model component stores a concern graph in a structure similar
to its theoretical structure. The model supports saving a concern graph to permanent storage by
providing functionalities to export a concern graph to an XML document format [21]. The model
also provides parsing functionality to load a concern graph from its XML representation. Finally,
the model component is made tolerant to inconsistencies through a mechanism of pollution markers
inspired by the work of Balzer [6]. With pollution markers, inconsistent fragments can be marked
in the model. Other components that use the model can then query a fragment object to determine
whether it is consistent or not, and take appropriate action.

Analyzer

The responsibility of the analyzer component is to produce a model for a program based on the
mapping function Java Standard, to support queries on this model, and to support mapping primitive
fragments to the corresponding source code. The analyzer component is designed to optimize the
speed of FEAT queries, at the cost of an initial model extraction time.

The analyzer implemented in version 2.3.0 of the FEAT tool produces a model of a program
by executing a single pass through the abstract syntax tree (AST) of every Java file in the project
associated with a concern graph. The AST for Java files is provided as part of the Eclipse Platform.
When scanning the AST of Java source files, the analyzer searches for instances of the relations
supported by the mapping function. When a relation between two elements is identified, the analyzer
stores both the relation and its transpose in an in-memory database.

To avoid performing a second analysis pass, certain relations are not stored in the model
database and are instead computed on-the-fly at query time. In particular, to elicit the complete

42

range ofCalls relations, the analyzer must determine all of the potential bindings for a static signa-
ture at virtual method call sites. The current algorithm used to determine potential run-time method
bindings is the standard class hierarchy analysis algorithm [32]. Simply put, class-hierarchy analy-
sis finds potential bindings for a method call by considering all of the methods overriding the static
method signature at a call site. This algorithm tends to be over-conservative. A more precise algo-
rithm, Rapid Type Analysis [5], could be used to determine potential method bindings. Rapid type
analysis can easily be implemented in FEAT at the cost of a small time and space penalty. Further
experience with the FEAT tool should determine whether these penalties are warranted.

The relations detected by the analyzer are stored in a database consisting of a hash table. The
keys in the hash table are global identifiers for Java elements in the model. The value associated with
a key in the hash table is a list of structures comprising a relation name, a range element, and the
source code location corresponding to the relation. This structure supports performing a projection
operation in a time that, in practice, is only output-sensitive. Since FEAT queries correspond to
fragment projections, the execution time for FEAT queries is negligible (less than one second).
Likewise, because source code locations corresponding to a relation are stored in the database,
viewing the source code for a relation does not incur any perceptible delay.

The static analysis required to extract the model of a program, and the size of the database
produced, both impose practical limits on the size of the programs analysable by FEAT. To allow
FEAT to work on large programs, it was necessary to introduce a mechanism for users to control
the scope of the analysis. We have addressed this issue by defining a concern graph over a set of
Java packages. When creating a new concern graph for a project, a user can select from a list of
all of the source packages for a project just those packages that should be included in the program
model database. Elements declared in packages left out of the analysis can still be viewed and used
in FEAT, but their source code is not analyzed. This flexibility allows users to remove basic libraries
and other elements that they know are not involved in the concerns they are analyzing, reducing the
storage and computation load on the tool.

Because the analyzer performs a single pass through the source code, the time required for
model extraction increases linearly with the size of the source code analyzed. Similarly, because
there is an approximately constant ratio of model relations per line of code, the space required to
store the model also increases linearly with the size of the source code analyzed. We illustrate
the time and space cost related to model extraction in the FEAT tool by presenting measurements
obtained by loading an increasing number of packages from the jEdit application. Figure3.13
presents the load times.4 In the figure, the horizontal axis shows the number of lines of code (LOC)
included for analysis.5 The vertical axis shows the corresponding elapsed time for an initial (i.e.,
un-cached) model extraction (in seconds). Although model extraction times are subject to many
imponderables, such as the effects of multi-threading or virtual memory, loading times follow a
marked linear progression, with an origin close to zero and slope of just under 1.1s/kLOC. After an
initial model extraction, times for new extractions can be expected to decrease due to the effect of
memory caching. For example, we took five samples of the model extraction time for the complete
code of jEdit after an initial load. The average time was 57.5s, with a 7% maximum variation.

4All times were measured using Eclipse 2.1 on a Windows XP 2002 PC with a 1.8GHz Intel Celeron
processor and 512MB of RAM.

5All LOC numbers correspond to non-comment, non-blank lines of Java source code.

43

Contrasted to the 70.8s measured for the initial extraction, the cached extraction presents a 19%
reduction in time.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0 10000 20000 30000 40000 50000 60000 70000

Lines of Source Code

T
im

e
 (

s
e
c
o

n
d

s
)

Figure 3.13: Model extraction time

Because it is notoriously difficult to measure the memory consumption of Java programs di-
rectly, we describe the size of the model in terms of number of relations. The number of relations
is an accurate indication of the size of the model because the size of any relation object is constant:
the size of the database is thus determined by the number of relations stored. Figure3.14shows the
number of relations stored in the model, as a function of lines of source code analyzed. Again, we
observe a linear progression, with the origin close to zero, and a slope of about 1.75 relations/LOC.

0

20000

40000

60000

80000

100000

120000

0 10000 20000 30000 40000 50000 60000 70000

Lines of Source Code

N
u

m
b

e
r
 o

f
R

e
la

ti
o

n
s

Figure 3.14: Model database size

Finally, to mitigate the cost of model extraction, the FEAT tool updates the model incremen-
tally after an initial extraction. In other words, after an initial extraction, every time a source file is
changed, FEAT analyzes the changes and updates only the affected relations in the model database.
This technique avoids costly periodic re-extractions of the model.

44

User Interface

The responsibility of the user interface component is to support the functionalities described in Sec-
tion 3.2.2. The FEAT user interface is implemented by contributing functionality to the Eclipse
platform through the Eclipse extension point mechanism and Application Programming Interface
(API) [93]. Two of the main design issues related to the user interface component are the visualiza-
tion of concerns, and the support for different fragment types.

There exists a duality in the concern graph representation. On one hand, concern graphs are
a graph structure of program elements and the relations between them. On the other hand, concern
graphs are a recursively-defined hierarchy of concerns and fragments. The graph representation
may be better for some tasks, such as analyzing the interactions between two concerns, while the
fragment representation is better suited to other tasks, such as moving fragments from one concern
to another. We have chosen to present the former (graph) representation to users, and hide the details
of the composition of fragments into concerns (except in the Inconsistency View). Hiding fragment
composition has the advantage of eliminating the need for users to reason about the complexity
of assembling fragments. With the current user interface, the concept of fragments is completely
hidden (except in the Inconsistency View). One of the consequences of this choice is that only
minimal support is available for tasks that directly involve fragments. For example, it is not possible
to move a fragment from one concern to another. We have thus traded flexibility for simplicity in the
interface. However, exposing the graph structure of concern graphs to users represents a challenge.
Displaying graphs visually has always been fraught with problems of scalability, readability, and
layout. For this reason, we have chosen to display concern graphs as a collection of participants and
relations. This representation has the additional advantage of being close to the views provided in
existing integrated development environments.

Finally, we felt that supporting all of the types of fragments described in Chapter2 would
overly complicate the FEAT tool and impose an unreasonable cognitive load on users. For this rea-
son, we have focused on supporting only the two most useful fragment types: primitive fragments,
and fragments with a primitive domain and a universal range. Fragments having another fragment
as domain were originally supported, but have been removed from the interface to simplify incon-
sistency management. Further research should help establish the cost-benefit tradeoff related to the
use of complex fragments structures in the definition of concern graphs.

45

Chapter 4

Validation

The thesis of this dissertation can be decomposed into three claims. A first claim is that a concern
graph can help developers perform software evolution tasks more systematically. We will refer to
this claim as theusefulnessclaim for concern graphs. A second claim is that a concern graph can be
produced cost-effectively during program investigation activities. This claim will be referred to as
the low-costclaim. Finally, the third claim is that a concern graph can be used to support software
evolution on different versions of a system. This will be referred to as therobustnessclaim.

To validate these claims, we have performed a series of five case studies of program evolution
using concern graphs. Each case study was designed to investigate specific research questions,
focusing on one of the claims above. We refer to each case study with the name of the software
system evolved as part of the study. In an initial study, we performed a change task on a small
system called AVID to evaluate how useful the concern graph idea was in practice. The AVID study
focused on evaluating the usefulness claim. In a second study, we asked a small group of developers
to use FEAT to investigate the code for a static analysis tool called Jex in the context of a change
task, and to build a concern representation for the code related to the change. The Jex study focused
on validating the low-cost claim, and evaluating whether developers not familiar with the concern
graph theory could create a concern graph effectively. To investigate issues of scalability related to
the technology for supporting concern graphs, and strengthen our low-cost claim, we performed a
third case study involving the analysis of a large network provisioning system developed by Redback
Networks Canada. The fourth case study involved developers performing a complete change task
on the jEdit application described in Section1.2. In this study, our main focus was the behavior of
developers using FEAT during a change task. Results from the jEdit study provide evidence that
using concern graphs helps developers perform a change task systematically. Finally, to validate the
claim that the concern graph structure is robust enough to capture a concern in different versions
of a system, we studied how a concern graph defined on one version of the ArgoUML application
could be used on a later version of the same system. The first three case studies were performed
using an earlier prototype of the FEAT tool [112], while the jEdit and ArgoUML case studies were
performed using FEAT version 2.3.0 (the version described in Chapter3). Table4.1 summarizes
the claim each study focused on, and Table4.2 summarizes the characteristics of each study. In
Table4.2, the first two columns list the name of the system evolved as part of each study and its
size in lines of code.1 The third column (“External Participants”) states whether the study involved

1In this dissertation, unless otherwise stated, all line of code (LOC) figures represent lines of true source

46

Table 4.1: Claims addressed by the different studies
Study/Thesis claim 1. Usefulness 2. Cost 3. Robustness

1. AVID ?

2. Jex ?

3. Redback ?

4. jEdit ?

5. ArgoUML ?

Table 4.2: Characteristics of the different studies
Study System size (LOC) External Participants Replication

1. AVID > 12 500 No No
2. Jex > 57 000 Yes Yes
3. Redback � 100 000 No No
4. jEdit > 64 500 Yes Yes
5. ArgoUML > 92 000 No No

participants not directly related to the development of the concern graph approach. Finally, the
fourth column (“Replication”) states whether more than one case of the evolution of the system was
investigated as part of the study.

In the rest of this chapter, we describe and justify our research methods (Section4.1), and then
describe each case study, with the questions it addresses and the results we have obtained. Finally,
in Section4.7, we synthesize the results and discuss the overall validity of the studies.

4.1 Methodology

We have chosen the case study as our validation technique because it is the research method best
suited to the explanation of a phenomenon that involves a large number of factors over which only
a limited amount of control is available [103, 154]. Program evolution is such a phenomenon, in-
volving developers with diverse backgrounds, large systems, and non-trivial change tasks. In our
case, the number and variety of factors affecting the progress and results of realistic evolution tasks
preclude a controlled approach. To name only a few examples, the success of a non-trivial evolution
task can be influenced by the skill and ability of a developer, the proficiency of a developer with
specific techniques such as debugging, the motivation of a developer to succeed in the task, the
time of day when the task is performed, the number of pauses taken, the presence or absence of
environmental distractions, etc. As a consequence, in our evaluation of the concern graph approach
to software evolution, we were more interested in obtaining detailed data that could explain qual-
itatively whyour claims were valid or invalid, as opposed to seeking the explanation for causality
through statistical inference.

The type of scientific generalization supported by case study research is calledanalytic gener-
alization. Analytic generalization generalizes a phenomenon “to theoretical propositions and not to
populations or universes” [154: p.10]. In other words, using the method of analytic generalization,
“a previously developed theory is used as a template with which to compare the empirical results of

code, excluding scripts, resource files, comments, and blank lines.

47

the case study.” [154: p.31]. The analysis of the case studies, as described in the following sections,
will thus follow a pattern supporting this analytic generalization. After a brief overview of the study,
we formally state the research question the study was intended to answer. For each research ques-
tion, we then present the theoretical proposition underlying the hypothesis [70]. We then describe
the study setting and its results. Then, in each case, we summarize the results in the form of the
answer we elicited for each research question. Finally, in each case, we discuss the most important
factors affecting the validity of the study. We discuss how the results generalize and the overall
validity of the studies in Section4.7.

4.2 AVID Study

In the first case study, the author of this dissertation took the role of a maintenance programmer to
perform a modification to AVID, a Java visualization software system developed at the University of
British Columbia [143]. AVID comprises 12 853 non-comment, non-blank lines of code organized
in 177 classes and 16 packages. The participant for this case study had no previous exposure to the
code of AVID.2

4.2.1 Theory

The goal of the AVID study was mostly exploratory, to assess the practical benefits of using concern
graphs. The research questions motivating the AVID case study were the following:

1. Can concern graphs adequately capture the code relevant to a change task?

2. How does a concern graph help in performing a software modification?

Our initial theory for these questions was that:

1. Concern graphs can adequately capture the code relevant to a change task because they cap-
ture structural information needed to make the change, and disregard details that are not
essential.

2. A concern graph supports a software modification task by providing an uncluttered view of
the program elements related to a change task and of the relations between them, so that a
developer can easily reason about the change.

The version of the FEAT tool used to perform this and the next two studies is a stand-alone Java
application that supports a different concern graph model and a smaller set of features [112]. For
the purpose of describing this study, it suffices to mention that the FEAT tool used supports creating
a single concern (as opposed to a hierarchy of concerns), supports mostly behavioral queries (see
Section3.1), and does not tolerate inconsistencies. The usage model for the tool used in the study
is thus slightly different than the one described in Section3.2.1in that users have to first create a
concern graph and then modify the code.

2The participant was involved in the AVID project as a user of the technology.

48

4.2.2 Study Design

The study consisted in performing a complete change task for AVID using the FEAT tool. The data
collected during the study consists of the modified version of the AVID code, the concern graph
produced during the study, and a log of the actions performed in the tool during the study.

The task To visualize the execution of Java programs, the AVID system requires, among other
inputs, a file containing summarized information about the events generated during the execution
of a Java program [144]. This summary file is generated by a summarizing program. The AVID
summarization program takes as input an event trace file and produces a summary file that contains
information such as the number of calls and the number of objects allocated or deallocated up to
a certain point in the trace file, as determined by some user-defined checkpoint frequency. The
summary files also contain information about the age of objects at allocation and deallocation time.

The object age information is voluminous, and experience with the AVID visualizer showed
that this information was not always used. Being able to generate and read summary files that did
not include this object age information was thus a desirable change for AVID, and we chose it for
our first case study.

Finding the concern code In performing this task, the subject used FEAT to discover the concern
code that was to be modified, and to save a representation of this code as a memory aid when later
performing the change.

The discovery process that was carried out by the subject can be divided into four slightly
overlapping phases. A preparatory phase consisted of understanding the application domain and of
seeding the concern. This phase did not involve concern graphs or FEAT. A second phase consisted
of discovering the part of the code where the writing to the summary files was triggered. A third
phase involved understanding and describing the reading and writing mechanism for summary files.
A fourth phase consisted of the discovery of a finer implementation detail based on the concern
graph that was created, while making the change.

To understand the application domain, the subject spoke briefly with an original developer of
the system. This developer explained, at an abstract level, the functioning of the visualizer and the
use of summary files. This discussion did not involve viewing source code or explicitly mentioning
actual data structures. The only exception is that the original developer mentioned the entry point
to the summarizing program, classPrimarySummarization . This class was used as a seed to the
concern and thus, when the subject started using FEAT, the concern graph consisted solely of this
class name.

In the second phase, the subject looked for the major program elements involved in reading and
writing to the summary files as a means of gaining an understanding of the format of the files. Using
FEAT, loaded with the single entry-point classPrimarySummarization , the subject expanded the
class and added themain method to the concern description. A fan-out query on themain method
revealed all of the elements used bymain . These elements consisted of objects being created,
and one call to methodsummarize of classEventSummarizer . This element was added to the
concern graph because it was the only non-library method call. The subject then analyzed the
summarize method more closely, using both the result of FEAT’s fan-out query and the source
code viewer. From this information, the subject determined that the only points that could involve

49

writing to the summary file were through calls toInfo.write , Summary.write , and twostore

methods. The subject added these elements to the concern graph. Figure4.1 shows the concern
graph at this point. To produce this concern graph, the subject needed only to find and select the
main , summarize , write , andstore methods. Furthermore, it was only necessary to view the
source code of methodsummarize .

In the next phase, the subject discovered the details of the reading and writing protocol for sum-
mary files. Specifically, the subject explored the outgoing edges in the program model of the meth-
ods discovered in the previous phase to determine what elements actually performed the reading and
writing operations, and then explored the incoming edges to analyze the context in which these op-
erations were performed. This phase was more iterative than the first, and included viewing source
code through the automatic highlighting feature of FEAT, and exploring dependencies through the
query capabilities of FEAT. Using this process, the subject discovered that the code pertaining to the
reading and writing of summary files was located in the methodsadd , read , andwrite of classes
Info , Summary, CategoryInfo , CategorySummary , andCategoryManager , and a handful of
helper methods in the same classes. Once the complete mechanism was discovered, it was possible
to determine, by looking at the corresponding source code, that only a subset of the methods iden-
tified deal with the reading and writing of object age information. Only these methods were added
to the concern graph.

The second and third phases required approximately 90 minutes to complete. The concern
graph produced included 3 fields and 18 methods scattered across 7 classes.

EventSummarizer

main(...) summarize(...)

store(Info)

store(Info)

store(summary)

store(summary)

...
write(...) write(...)

PrimarySummarization

Info Summary

declares

calls

Figure 4.1: Finding the important parts

Making the change To implement the change, the participant visited the source file corresponding
to each class in the concern graph once and implemented the changes needed to that class. Of the
18 methods present in the concern graph, 12 had to be modified to implement the required change.
Of the remaining six methods, four had object age-related code that did not need to be changed
due to specific implementation details. The two other methods were left in the concern graph as
structural “bridges” between different parts of the code. For example, methodsummarize (see
Figure4.1) was left in the concern graph as a pointer to theread andwrite methods, even if no
code insummarize actually had to be changed. These methods could have been omitted, as they
can be obtained easily with FEAT queries.

50

To test the change, the modified summarization program was used to generate new summary
files both with and without the object age information, and these files were used in visualizing event
traces. This allowed the subject to discover that one of the assumptions made about the behavior
of the concern was wrong. This assumption was that the first read operation on a summary file
would be done through the methodread of classInfo . Execution of the program revealed that the
first read operation was in fact performed through theread method of classSummary. To remedy
this situation, the subject used the concern graph in a final phase, to find the site of the first read
operation to the summary file. The subject iteratively performed fan-in queries, investigating the
resulting call sites with the code browser until the context of the calls was determined.

In subsequent testing, the subject successfully used AVID to visualize event traces using the
new format of summary files. Making the change and testing it required approximately 150 minutes.

4.2.3 Results

We draw five observations about concern graphs based on the use of FEAT for this change task. The
observations are presented from the point of view of the case study subject, an experienced software
developer.

Observation 1 The granularity of the concern graph was sufficient to describe a concern for the
purpose of the software change task.

The subject did not need to consult any other documentation prior to implementing the change.
The general behavior of the code learned as part of creating the concern graph was still fresh in
memory, and the behavior that was not understood at the time of performing the change could be
discovered in minimal time through queries. The concern graph also pointed to the target source
code with sufficient accuracy.

Observation 2 Most of the source code viewed while finding a concern was relevant to the concern.

An explanation for this observation is that the details of code not related to the concern under
investigation were usually discarded at the level of the concern graph model.

Observation 3 The number of false positives was low.

In the context of this case study, a false positive is a code element included in the concern
graph that did not implement the object age feature. In this case study, only two out of the 19
methods identified in the concern graph were not directly related to the concern. We posit that this
low false positive rate is a result of the queries returning elements that are structurally dependent,
as compared to text searching tools that can return unrelated items. In this study, the false positives
that did occur were methods implementing parts of the object age concern that were not directly
impacted by the change.

Observation 4 The number of false negatives was low.

The subject made a single pass through the source files to implement the change. Only one
method had to be added to the concern graph while performing the change. Our explanation for
this observation is that most of the concern code interacts structurally, so the cross-referencing
capabilities of FEAT allowed the subject to identify the extent of the concern.

51

Observation 5 The program model was not useful in helping to understand highly algorithmic
code.

The subject determined the reading and writing protocol for summary files by reading the
source code and the comments of a few specific files. The concern graph was not helpful in under-
standing this behavior because it did not capture information about the behavior of the concern.

The findings of this study can be summarized in two propositions corresponding to the two
research questions.

1. The concern graph provided an adequate representation of the code relevant to the change.
Elements not captured by the concern graph did not need to be rediscovered for the developer
to complete the task.

2. The concern graph provided good support for documenting the list of methods that needed
to be changed. It also provided a quick means to perform additional investigation. It did not
provide good support for investigating algorithmic code.

4.2.4 Validity

The internal validity3 of the AVID study is threatened by potential investigator bias, and by the fact
that only one evolution task was considered.

Because the subject in the AVID study was the inventor of the concern graph approach, the
results can be expected to reflect a better than average use of the tool. Furthermore, the subject had
a vested interest in the success of the study which might have influenced his behavior during the
study. To mitigate the potential investigator bias in the analysis of the results, the observations were
derived from an analysis of the raw data collected during the study, as opposed to the experience of
the subject during the task.

The second threat to the validity of the study is that because only one change task was con-
sidered, the results might be accidental due to the nature of the task. In this situation, a small, very
focused task would have had the potential of only involving source code that is easily represented
through concern graph. To mitigate this risk, we chose instead a task that involved many different
types of interactions, scattered in more than 18 methods.

4.3 Jex Study

We performed a second case study to investigate the low-cost claim. Specifically, we were interested
in evaluating whether developers unfamiliar with concern graphs and FEAT would be able to build
a concern graph for the code related to a change without difficulties or extensive effort.

3The test ofinternal validity for a study questions whether the results truly represent “a causal rela-
tionship, whereby certain conditions are shown to lead to other conditions, as distinguished from spurious
relationships.” [154: p.33]

52

4.3.1 Theory

The research question guiding the design of the Jex study can be stated as follows:

Can developers build concern graphs effectively while investigating source code in preparation for
a software evolution task?

The theory underlying this question is that concern graphs can be built effectively during pro-
gram investigation activities because they are built from the results of queries usually performed
when investigating source code.

4.3.2 Study Design

In this case study, a subject was asked to identify the code contributing to a specified concern in the
context of a program change task. We replicated the study three times with three different subjects.
In each case, the subject was not asked to perform the change. The target for this task was the Jex
system version 1.1 [110, 111]. Jex is a static analysis tool that produces a view of the exception
flow in a Java program. Jex is written in Java and consists of 57 152 non-comment, non-blank lines
of code organized in 542 classes and 18 packages.

The subjects were asked to identify the code in Jex that handles Java anonymous classes. The
context for identifying this code was to change Jex to support a version of the Java language that
did not include anonymous classes.

Using FEAT, a concern graph for this concern was produced by the developer of Jex (the author
of this dissertation). The elements in this concern graph span 8 classes in 3 different packages. A
subset of this concern graph, consisting of one class and one method, was provided as a seed (or
starting point) to the subjects of the case study.

The three subjects in this study had diverse backgrounds: one was a senior undergraduate
student who had worked in two different companies as part of a co-operative work program, one was
a graduate student with previous work experience as a software developer, and one was a developer
for a telecommunications company. All of the subjects had some experience with Java, although
only one was actively involved in development work with Java at the time of the case study. The
subjects had no previous exposure to either the source code of Jex or the FEAT tool.

Prior to performing the task, the subjects completed a 30-minute training session with the
FEAT tool, during which they had assistance from the developer of FEAT. The subjects were then
asked to produce a description of the anonymous class handling concern that was as complete and as
precise as possible. The subjects were instructed to perform the task using only FEAT. In particular,
code viewing was to be done only through FEAT’s code highlighting function.

The subjects were asked to report the time required to perform the task, their final concern
graph, a usage log automatically generated by FEAT, and their confidence in the quality of the result,
in terms of estimated percentage of the concern code they had missed. Two additional subjects were
involved in prototyping the study. Our experiences with these subjects caused us to adjust the
content of the training session to ensure the subjects understood how to use FEAT. The results of
the prototype subjects are not included in the results reported.

53

4.3.3 Results

We analyzed two types of data from the study: the completeness of the concern graph produced
(quantitative), and the usage patterns of the subjects (qualitative). We also took into account the
time taken by each subject to perform the study. We used the completeness data to verify that the
subjects had followed the instructions carefully, and investigated the concern prescribed. We used
the usage patterns and time taken to validate the low-cost claim.

For the analysis of the completeness, we used the concern graph produced by the author of Jex
as a benchmark. Class and method elements in the concern graphs produced by the version of FEAT
used in this study can be marked with a specialall-of marker if it is deemed by the FEAT user that
all of the code for the element is relevant to the concern. One of the 8 classes in the benchmark
concern graph was marked asall-of. Of the remaining 7 classes, the concern graph includes 1 field
and 15 methods: 6 methods are labeledall-of ; 12 code elements, such as the use of a field, are
specified as part of the concern in the remaining 9 methods. Figure4.2shows a view of this concern
graph. The first level of indentation represents classes. The second level of indentation represents
class members, and the third level of indentation represents the uses of class members in method
bodies.

class JexFile
all-of method isAnonymous

class Workspace
all-of method getExceptionFromAnonymousClasses

all-of class AnonymousJexFile
class JexLoader

all-of method getExceptionsFromAnonymousClasses
all-of method getTypes

class JexPath
method main

calls JexPath.getAnonymousJexFiles
all-of method getAnonymousJexFiles

class JexFileCollection
method dump

calls JexFile.isAnonymous
method writeJexFiles

checks AnonymousJexFile
class JexVisitor

method addExternalNonVirtualCallExceptions
calls JexFile.isAnonymous

method addVirtualCallExceptions
calls JexVisitor.addAnonymousVirtualCallExceptions

all-of method addAnonymousVirtualCallExceptions
class TypeDeclarationCollectorVisitor

field aNextAnonymous
method visitNewObjectExpression

writes TypeDeclarationCollectorVisitor.aNextAnonymous
method visitClassDeclaration

creates AnonymousJexFile
calls AnonymousJexFile.<init>
reads TypeDeclarationCollectorVisitor.aNextAnonymous
writes TypeDeclarationCollectorVisitor.aNextAnonymous

method <init>
writes TypeDeclarationCollectorVisitor.aNextAnonymous

method visitTypeDeclarationStatement
reads TypeDeclarationCollectorVisitor.aNextAnonymous

Figure 4.2: The anonymous class handling concern in Jex

54

Table 4.3: Concern completeness results
Subject 1 2 3

Classes found (8) 7 6 8
Field found (1) 1 0 0
Methods found (15) 13 7 11
Code elements found (12)11 3 7
False positives 2 0 0

Table4.3shows how many of these elements were identified by the study subjects. Subject 1
found almost all of the concern code in the benchmark, corroborating Observation4 from the AVID
study. The elements missed by this subject were the result of minor inconsistencies in building the
concern graph. For example, the participant included the call to methodJexFile.isAnonymous

in methodJexVisitor.addExternalNonVirtualCallExceptions , but failed to include the
declaration of methodisAnonymous itself in the concern graph. This situation could be avoided
automatically if FEAT included the targets of edges in the concern graph.4 Subjects 2 and 3 missed
a higher number of elements. The majority of their false negatives resulted from a failure to see
that one field,aNextAnonymous of classTypeDeclarationCollectorVisitor , was involved
in implementing the concern. This field was found by the expert and Subject 1. The expert found
the field because, in the source code, the field was referenced close to the call to the creation of an
AnonymousJexFile object in methodvisitClassDeclaration . Reference to this field was
also visible in the results of a fan-out query. Once fieldaNextAnonymous is discovered, a fan-in
query on the field returns five out of the seven elements of classTypeDeclarationCollector-

Visitor related to the concern.

The number of false positives in the concern graphs produced by the subjects was low. Of
the three subjects, only one produced a concern graph with false positives: this graph had two
false positives which were clients of the functionality described by the concern rather than elements
of the concern. This data corroborates Observation3 from study one. In general, we found the
completeness data indicative that the subjects had focused on the right functionality (as opposed to
navigating arbitrary structures during the experiment). This increases the validity of the results.

The subjects each produced a concern graph in less than 50 minutes. We find the quantitative
results of this case study encouraging because the subjects, who all had minimal training with the
concept of concern graphs and the FEAT tool, were able to narrow down, in a short amount of time,
an unfamiliar code base of 57 kLOC to a concern graph that captured many of the pertinent parts of
the concern.

To validate the low-cost claim, we also analyzed the usage logs collected from the use of FEAT
by the subjects. These logs show that approximately 80% of the source code viewed while finding a
concern was relevant to the concern (Observation2). This measure is approximate because viewing
an element opens the entire source file. As a result, it is possible to view different elements in
the same file. Nevertheless, we interpret this measure as indicative that the subject did not rely on
intense code-reading strategies to understand the source code, and instead could rely on the queries
provided by FEAT.

4Version 2.3.0 of FEAT now does this automatically.

55

We also found, however, that, as in the first case study, the subjects in this study were unable to
use the concern graph to capture system behavior. Moreover, they were unable to use the approach to
represent subtle aspects of the structure (Observation5). For example, even though both subjects 2
and 3 viewed code related to methodJexLoader.getTypes , neither of these subjects incorporated
this method in their concern graph. ThegetTypes method belonged in the concern graph because
it was a private method performing specific services for loading anonymous Jex files. To discover
this information, subjects had to observe that the caller of the method was part of the concern, and
that there was no other caller of the method.

To summarize the results, we found that the three developers involved in the study managed
to create a concern graph capturing most of the code relevant to the change task using the structural
queries supported by the FEAT tool. We find this result in support of our theory.

4.3.4 Validity

For the Jex study, the principal threat to the overall validity is a threat to its construct validity.5 To
ensure that the data correctly reflects the low cost of building concern graphs, we triangulated [20]
three different data sources: the time taken by each subject, the final concern graph produced, and
the log of the actions performed by each subject. The concern graph produced by each subject
helped us establish that the subject’s actions during the study corresponded to the task. The time
taken and the analysis of the code investigated by the subjects helped us determine how much
time was spent investigating irrelevant code. Redundancy in the interpretation of each data source
contributes to increase our confidence in the construct validity of the study.

4.4 Redback Study

To evaluate whether the technology supporting concern graphs scales, we applied FEAT to NSC
release 2.1, a large network provisioning code base developed by Redback Networks Canada, Inc.

4.4.1 Theory

The research question of interest for the Redback study was simply whether the concern graph
approach scales. Our claim, associated with the general low-cost claim, is that the concern graph
approach does scale. We theorize that the approach scales because it is based on a program model
that captures the essential elements and relations of a program, as opposed to all of the details of the
source code.

4.4.2 Study Design

This study consisted in producing a program model of a large industrial code base with the FEAT
tool, to use FEAT to capture existing scattered concerns in the code base, and observing and docu-
menting any issues associated with the scalability of the approach.

5The test ofconstruct validityquestions whether the operational measures used correctly reflect the con-
cept studied.

56

We applied the FEAT tool to the code of the Redback Canada NSC code base. The NSC code
base comprises 233 packages and 1489 classes. It depends on approximately 9 MB of third-party
libraries.

4.4.3 Results

The approach taken in the FEAT tool is to load the entire program model into memory. This ap-
proach allows users to quickly perform dependency analyses on any parts of a program, and to
dynamically reconfigure the environment used to evaluate the queries.

In the case of the NSC code base, it was not possible to load all of the application classes and
their dependent classes into the memory available on the analysis machine.6 The very large size of
the NSC code base made it necessary to find a way to selectively restrict the in-memory model of
the program. We accomplished this restriction by modifying FEAT to fully load only a user-defined
set of classes. Other classes were loaded as stubs that included some information about the class and
its members but that did not include the entire bytecode necessary to derive behavioral relations. A
consequence of this tradeoff is that any class loaded as a stub could not be queried for dependencies
to a program element, except if these dependencies could be detected without the bytecode (e.g.,
field types, method parameter types). In practice, this approach does not influence the results of the
queries if the classes loaded as stubs do not transitively depend on the application classes of interest,
which is generally the case with library code and low-level application code. Loading some classes
as stubs does not influence the completeness of the class-hierarchy analysis that is performed to
determine the potential targets to virtual calls because this analysis requires only method signatures.

To verify that FEAT was operating correctly given these optimizations, we used it to identify
the code corresponding to a port to a new error handling framework that had been added in a previ-
ous version of NSC. By differencing the code in the versions recorded before and after the change,
we were able to determine that the code we identified using FEAT corresponded to the change.

To summarize the results, for the concern graph approach to scale to very large programs, it is
necessary to restrict the program model. As a result of this study, we have included a mechanism to
restrict a program model loaded in FEAT to classes declared in a set of packages specified by a user
of the tool.

4.4.4 Validity

The research question for the Redback study was technical. There are no significant threat to the
validity of the results.

4.5 jEdit Study

To strengthen the validation of the usefulness claim established in the AVID case study, we per-
formed a replicated case study of a complete evolution task in jEdit. The change task we used for
this case study is the task we have been using as a running example through this dissertation (see
Section1.2).

6The machine used had 256MB of memory.

57

4.5.1 Theory

The jEdit case study focused of validating the claim that concern graphs can help developers perform
software evolution tasks more systematically. As such, our investigation is aimed at answering the
following research questions.

1. Howdo developers use concerns graphs during program evolution?

2. Whyis the behavior of developers using concern graphs more (or less) systematic?

The theory underlying these research questions relies on two main hypotheses, which we designate
as theprecise investigationandprecise information capturehypotheses.

1. Precise investigation:By investigating source code following structural relations, and focus-
ing on one concern, developers spend less effort investigating irrelevant information.

2. Precise captureWhen investigating source code, developers use concern graphs as an ab-
straction to preserve essential knowledge about the different elements in the source code in-
volved in a change, and of the relations between the different elements. Such activities lead to
more effective program modifications because the information captured is directly linked to
source code, so that code relevant to a change does not have to be re-discovered by navigating
through non-relevant source code.

4.5.2 Study Design

The basic design for the jEdit study was to monitor the activities of different subjects performing
a complete program evolution task with or without the FEAT tool. Specifically, we replicated the
investigation with two subjects using FEAT and two subjects not using FEAT (the control group).
We chose the jEdit system for this study because it is large enough to preclude a systematic under-
standing of the entire code base by the subjects during the time alloted, and because a large system
allows us to study a change task that is representative of change tasks in industrial settings. In the
rest of this section, we describe the task the subjects had to perform, the process of a replication of
the program evolution task, and how the subjects were selected for the study.

The Task The target system for the task was the jEdit text editor (version 4.6-pre6).7 jEdit is
written in Java and the version we used consists of 64 994 non-comment, non-blank lines of source
code, distributed over 301 classes in 20 packages. Among other features, jEdit saves open file
buffers automatically. Our case focuses on this autosave feature. An overview of this task was
presented in Section1.2. We provide the complete details of the experimental setup here.

In version 4.6-pre6, any changed and unsaved (or dirty) file buffer is saved in a special backup
file at regular intervals (e.g., every 30 seconds). This frequency can be set by the user through an
Options page accessed through a menu command in the application’s menu bar. If jEdit crashes
with unsaved buffers, the next time it is executed, it will attempt to recover the unsaved files from
the autosave backups. A user can disable the autosave feature by specifying the autosave frequency
as zero. This option is undocumented, and can only be discovered by inspecting the source code.

7http://www.jedit.org.

58

The task consisted of the following modification request.

Modify the application so that the users can explicitly disable the autosave feature. The modi-
fied version should meet the following requirements.

1. jEdit shall have a check box labeled ”Enable Autosave” above the autosave frequency field
in the Loading and Saving pane of the global options. This check box shall control whether
the autosave feature is enabled or not.

2. The state of the autosave feature shall persist between different executions of the tool.

3. When the autosave feature is disabled, all autosave backup files for existing buffers shall be
immediately deleted from disk.

4. When the autosave feature is enabled, all dirty buffers shall be saved within the specified
autosave frequency.

5. When the autosave feature is disabled, the tool shall not attempt to recover from an autosave
backup, if for some reason an autosave backup is present. In this case the autosave backup
should be left as is.

Understanding the complete set of functionality related to the change task involves reasoning
about the use of approximately five fields and 27 methods scattered in 10 classes. The change, as
initially performed by the author of this dissertation in preparation for the study, amounted to about
65 lines scattered in six classes.

Study Phases The study was divided into four or five phases, depending on whether a subject used
FEAT (FEAT group) or not (control group). To minimize potential investigator bias, each phase was
described entirely through written instructions. In any phase, the subject could ask questions, but
we established guidelines restricting answers from the investigator to clarifications of the written
material.

Eclipse Training Phase To investigate the code and to perform the change, subjects were to use
the Eclipse Platform.8 Eclipse is an open-source integrated development environment for Java. It
is a state-of-the-art environment, supporting sophisticated search and cross-reference features, an
integrated debugger, a syntax-highlighting editor, etc. Because subjects did not have to be familiar
with the Eclipse platform as a development tool, we first had the subjects complete a tutorial on
how to use the principal features of Eclipse required for the study: code browsing and editing, and
performing searches and cross-references. This phase was limited to 30 minutes. Subjects already
familiar with Eclipse were asked to read through the tutorial, but could end the training period at
their discretion. Before continuing on to the next phase, the subjects had to pass a simple proficiency
test, in which the investigator asked them to perform various tasks covered in the tutorial.

8http://www.eclipse.org.

59

FEAT Training Phase A subject assigned to the FEAT group was required to complete a training
tutorial on the FEAT tool. The training tutorial instructed the subject on how to use the tool effec-
tively by focusing on one concern at a time during program investigation. The training tutorial also
covered most of the features of the tool.

After completing the tutorial, the subject was asked to experiment freely with the tool. The
complete training phase for the FEAT tool was limited to one and a half hour. Before continuing
on to the next phase, the subject had to pass a proficiency test, in which the investigator asked the
subject to perform various tasks covered in the tutorial.

Program Investigation Phase After all training, a subject was asked to read some preparatory
material about the change to perform. This material included excerpts from the jEdit user manual
describing file buffers and the autosave feature, instructions on how to launch jEdit and test the au-
tosave feature, the change requirements listed in section4.5.2, and a set of eight test cases covering
the basic requirements. The written material for the phase also included two pointers to the code,
intended to simulate expert knowledge available about the change task. These pointers consisted
of the classesAutosave andLoadSaveOptionPane , the classes dealing with the autosave timer
and the option pane where the autosave save frequency was set, respectively. A subject assigned to
the FEAT group was given these same pointers in the form of two pre-loaded concerns in the FEAT
tool, each concern containing one class.

A subject was then given one hour to investigate the code pertaining to the change in prepara-
tion to the actual task. A subject was to investigate the code using the search and cross-references
features of Eclipse (for the control group), or the queries of the FEAT tool (for the FEAT group).
A subject was allowed to take notes in a text file. A subject was also allowed to execute the jEdit
program, but not to change any code, even temporarily, nor to use the debugger. We set these re-
strictions to reduce the influence of debugging skills in Eclipse on the results. We also wanted to
avoid use of print statements as a form of program understanding.

During the program investigation phase, we recorded all of the activities of the subjects using
the Camtesia screen recording program9 operating at 5 frames/seconds and a resolution of 1280 x
1024 pixels.

Program Change Phase In this phase, a subject was instructed to implement the requirements as
well as possible. A subject was given two hours to implement the change. Use of the debugger was
again disallowed. This phase was also recorded using the Camtesia screen capture program. At the
end of the phase (or the two-hour period), an investigator ran through the test cases and recorded the
number of test cases that succeeded. The test cases used by the investigator were exactly the same
as the one provided to the subject.

Interview Phase After the study, subjects were interviewed for 10 to 20 minutes about their expe-
rience. Questions asked by the investigator addressed the strategy they used to plan and execute the
change, detailed technical questions about how some functionality was discovered and understood,
and more general questions about the use of notes, and about the major problems they faced. Ad-
ditionally, subjects in the FEAT group were asked how different features of the FEAT tool helped

9http://www.techsmith.com.

60

or hindered them in completing their task. The interviews were recorded using the Camtesia screen
capture software with an audio input stream, so that the comments of the subjects could be synchro-
nized to code that the subjects identified on the screen.

Subject Selection Subjects for this study were recruited through a mailing list for the Depart-
ment of Computer Science at the University of British Columbia, and through personal contacts.
Subjects were required to have Java programming experience, and experience with the maintenance
of medium-to-large systems. Subjects were paid for their time at an hourly rate of 20 CND$. As
part of the study data, each subject was asked to state whether he/she had previous experience with
Eclipse, and to estimate his/hers programming experience, in terms of number of full-time months
of programming experience (in any programming language), and number of months of Java pro-
gramming experience (with proportional equivalence factors for part-time). The study presented in
this section is a refinement over a larger previous study [115], which indicated problems with the
usability of the FEAT tool. The problems identified have been corrected prior to undertaking the
investigations reported here. Chapter6 discusses the evolution of the user interface to the FEAT
tool in more detail.

4.5.3 Results

The data collected as part of the jEdit study includes the experience of the subjects involved in the
study, the time taken to perform the task, the final version of jEdit after the evolution task, screen
capture movies of the change investigation and change execution phase for each subject, and the
interviews. After collection, each source of data was processed for analysis. To reflect the inaccu-
racy of the self-reported experience metric for each subject, the number of months of programming
experience reported was converted to two broad categories: high, or low, with different intervals for
general experience and Java programming experience. The measure of the time taken to execute
the change was discarded as invalid for the purpose of our analysis because the subjects were not
asked explicitly to optimize the time taken to perform the task. For this reason, we do not report the
time measures here as it would mislead the interpretation of the results. The code produced by the
subjects as part of the task was inspected for correctness and general quality. The solution for each
subject was deemed of high quality if it respected the existing design and implementation decisions
implicit in the code of jEdit. The screen capture movies were transcribed into a series of actions
performed by the subjects. Transcripts are discussed in more detail below. Finally, each interview
was transcribed and analyzed for consistency with the actual actions of each subject. This analysis
revealed serious inconsistencies between what the subjects thought they did (as reported in the in-
terview), and what they actually did (as evidenced by the screen capture movies). For this reason,
we have also discarded the interviews because we judged them to be an unreliable source of data.

To analyze each case, we have thus focused on the resulting source code and the screen capture
movies (and corresponding transcripts) as our main source of data. To ensure that we were compar-
ing subjects of relatively equal ability, we have used the modified version of the jEdit source code
to validate that each subject had succeeded in the task. Once this assertion was verified, we used
the screen capture movies and transcripts to investigate how the subjects behaved around two types
of activities: information discovery, and information use. Information discovery relates to how
developers find important information about the implementation of a concern in source code, and

61

how they capture this information. Information use relates to how developers retrieve information
previously discovered, and use it to carry out a program evolution task. According to our theory of
precise investigation, investigating the code based on the Java Standard program model (supported
by FEAT) in the context of a concern should help developers focus on the code relevant to a concern
and avoid the perusal of irrelevant information. According to the precise capture theory, concern
graphs should help developers capture information closely related and relevant to the change task,
and access this information without having to peruse non-relevant information. To elicit data sup-
porting or invalidating our two theories, our approach was to select a piece of information about the
implementation of jEdit that was critical to the implementation of different requirements (indepen-
dently of the strategy chosen), and to analyze how the subjects discovered and used the information.
This analysis revealed that subjects using FEAT used a more streamlined approach to discovering
and capturing information about the implementation of a concern, thus supporting both the precise
capture and precise discovery theories, and validating the usefulness claim. In the rest of this sec-
tion, we present the detailed analysis of the behavior of the four subjects which form the basis of the
validation of the usefulness claim. We first describe and justify the benchmark information we chose
to study, then describe the characteristics of the four subjects and the quality of their modification.
Finally, we present the qualitative analysis of the subjects’ behavior during the study.

Benchmark As the target of our detailed qualitative analysis of subject behavior, we have chosen
the investigation and implementation of requirement 5 in the modification request presented to the
subjects (see Section4.5.2). The correct implementation of requirement 5 by a subject requires, at
the very least, the discovery and understanding of a call between methodsload(View,boolean)

and recoverAutosave(View) of classBuffer . Method load(View,boolean) loads a file
buffer in memory. If an autosave file for the buffer is detected, it calls methodrecoverAuto-

save(View) to perform the recovery. The implementation of the requirement involves testing
whether the autosave property is enabled, and by-passing the call torecoverAutosave(View) if
autosave is disabled.

In the context of our analysis, this simple implementation concern presents several desirable
characteristics:

• The call torecoverAutosave(View) is not located near any code dealing with other issues
of the autosave concern. As such, the likelihood of the call being discovered by chance is
small; it requires a conscious effort.

• As opposed to other requirements, the call torecoverAutosave(View) is not directly
related to any member of the two classes given as a seed to the subjects. As such, the infor-
mation cannot be discovered through a simple query on the initial clues.

• In contrast to the other requirements, requirement 5 involves finding a single and precise point
in the program. There exists no ambiguity about whether or not the developers have found
the right information.

For these reasons, the behavior of subjects investigating and implementing requirement 5 is
likely to be representative of the behavior of the subjects in a real setting.

62

Subjects In the rest of this section, the FEAT subjects are referred to as F1 and F2, and the control
subjects as C1 and C2.

The four subjects are all experienced programmers. Table4.4 provides a relative evaluation
of each subject’s characteristics (provided by the subjects using a strict guideline). Data in the
Eclipse column indicates the level of proficiency with the Eclipse development environment. A
high value indicates that the subject had used Eclipse for real development tasks, whereas a value
of low indicates that the subject either has either never used Eclipse, or has only tried it. The
experience column indicates the overall programming experience of each subject. A value of low
indicates between three and five years of full-time programming experience (or equivalent); a value
of high indicates more than five year of experience. The Java column indicates the experience of
each subject with the Java language. A value of low indicates less than one year, while a value of
high indicates between two and three years of experience. When recruiting subjects for the FEAT
group, we looked specifically for subjects with a low level of Java programming experience, so that
any relatively better performance may not be correlated with experience with coding in Java.

Table 4.4: Subject Characteristics
Subject Eclipse Experience Java

C1 Low High High
C2 Low Low High
F1 High High Low
F2 High Low Low

Solution Quality The modification implemented by all four subjects analyzed passed all of the
test cases provided to the subjects. Additional inspection of the source code produced by each
subject ensured that the solutions were correct and respected the existing design of jEdit. The
solutions differed only in minor and subjective implementation decisions. It is important to note that
developer behavior, not implementation quality, is the dependent variable in our analysis; quality
is dependent on too many factors to be evaluated directly. As such, we consider that a relatively
homogeneous quality of solutions between our subjects, instead of confusing the results, adds to the
validity of the study by ensuring the adequacy of skills of the subjects in the study.

Behavior For each subject, we describe how the call between methodsBuffer.load(View,

boolean) andBuffer.recoverAutosave() was discovered and used. All of the descriptions
are based on the screen capture movies collected during the study. The transcripts of the movies
relevant to this analysis are presented in AppendixC. In the descriptions below, the numbers in
parentheses refer to the time of the action in the transcript. The letter I indicates a time in the
investigation phase, whereas E indicates a times in the execution phase.

Subject C1 Subject C1 traversed the relevant methods three times before recording the informa-
tion as relevant. In a first pass (I-0:39:59), the subject viewed methodrecoverAutosave while
browsing the general structure of theBuffer class. This discovery was accidental; the subject did
not explicitly record the information, and immediately moved on to the investigation of other meth-
ods. In a second pass, the subject viewed both methods of interest while scanning all the accessors

63

of theBuffer.autosave field (I-0:45:59). Again, the methods were traversed while the subject
was investigating a different concern, and the subject moved on without explicitly recording the in-
formation. In a third pass, the subject was explicitly investigating the code relevant to requirement
5. This fact was validated by a comment to this effect written by the subject in a textual notes files at
I-0:53:08. At this juncture, the subject decided to scan thejEdit class to find information relevant
to requirement 5. Then, the subject saw the methodrecoverAutosave in a view showing the
results of a previous query. At this point this is completely accidental; the method would not have
been shown if a different search had been performed last. Nevertheless, the subject seemed to rec-
ognize the method as relevant and attempts to record the information in the notes files. Recording
this information took two attempts because the subject did not remember the name of the method
properly. This difficulty in recording the information illustrates the need for a representation of
concerns code that is directly linked to the code elements.

During the execution phase, the subject viewed the notes (E-0:56:30), presumably to view
what should be changed to implement requirement 5. The subject then recalled theBuffer class
in the editor. Not finding therecoverAutosave method, the subject then browsed theBuffer

class in the Package Explorer, selecting therecoverAutosave method (after making a mistake by
selecting the wrong method).

These observations show that the investigation is not precise because the subject found the
recoverAutosave accidentally three times before recording it in a free-form text file. Information
capture was also not precise as the subject made typographical errors while recording the name of
the method, requiring multiple window switches. We also observe that information capture was
not precise because the subject needed to browse theBuffer class to find therecoverAutosave

method, in this case also making a mistake by selecting the wrong element.

Subject C2 Subject C2’s discovery of the benchmark information was also characterized by many
serendipitous encounters prior to the explicit investigation of the information. Specifically, the sub-
ject first viewedrecoverAutosave while scanning the methods of classBuffer (I-0:19:08). The
methodload(View) was found through a lexical search on the keyword “delete”, in an investi-
gation unrelated with requirement 5 (I-0:24:47). MethodrecoverAutosave was accessed again
while scanning the methods ofBuffer at I-0:42:12, and for no obvious reason since this action is
followed by a separate thread of investigation injEdit . At I-0:43:53, after many traversals of the
two benchmark methods, the link betweenrecoverAutosave and load was finally discovered
explicitly through a structural query. At this point, the modified the notes to capture the information
“Buffer.load”. After more browsing, the subject again modified the notes to include the information
“Buffer.recoverAutosave”. After a series of unrelated actions, all the callers of methodload were
systematically investigated.

During the execution phase, the subject viewed the notes (presumably to retrieve the name of
the methods related to the implementation of requirement 5), and then browsed theBuffer class to
access theload andrecoverAutosave methods. After a few spurious file switches, the subject re-
turned toBuffer.java and implemented requirement 5 in methodrecoverAutosave . The sub-
ject then performed a cross-reference query from the editor to identify the caller ofrecoverAutosave

(methodload), and moved on.

Subject C2’s discovery and capture of the benchmark information was far from streamlined

64

and precise. The benchmark methods were examined multiple times before the link between them,
and their relevance to requirement 5, was identified and recorded explicitly. In particular, method
load and methodrecoverAutosave were recorded in the subject’s notes in two separate events,
separated by code browsing. The use of the information was more direct than for C1, with the
subject accessing theload method immediately after consulting the notes. However, because the
information was not linked directly to the source code, accessing theload method required brows-
ing irrelevant information in the Package Explorer.

Subject F1 Subject F1 discovered methodload while systematically investigating all of the
methods called byopenFile , the method in charge of opening a file in the jEdit editor (I-0:41:38).
The subject then obtained all of the methods called byload through a FEAT query. The results of
the query included the call to methodrecoverAutosave . Upon discovery of this call, the subject
immediately created a new concern named BUFFER RECOVERY, and added the method call between
load andrecoverAutosave to the concern. The subject then investigated the callers and callees
of recoverAutosave , and then moved on to some other investigation.

Shortly after (I-0:50:20), the subject accessed BUFFER RECOVERY, viewed the information in
the concern, and proceeded to investigate all of the callers ofrecoverAutosave andload , before
investigating a different part of the code.

After the investigation phase, the information contained in the subject’s BUFFER RECOVERY

concern consisted of the two benchmark methods and of the call between them. In the execu-
tion phase, the subject used this information in three cases. In the first case (E-0:22:50), method
load was viewed but no action is taken, and the subject moved on to other parts of the code. In
the second case (E-0:25:09), the subject selected the concern, viewed, alternatively, methodsload

and recoverAutosave (presumably to decide where to implement the modification), and then
performed the modification inrecoverAutosave . The modification performed at this point con-
tained a bug; a not operator was missing in a conditional statement.

After some testing revealed the bug, the subject came back to fix the code (E-1:51:08) by
accessing the concern and viewingrecoverAutosave .

The data from subject F1 supports the theory of precise discovery. Using FEAT, the subject
discovered a benchmark method while systematically traversing a section of the control flow rele-
vant to loading file buffers. At this point the method was immediately identified as relevant, and
added to the concern. The case of subject F1 also shows how concern graph supported the precise
capture of the code relevant to the concern. Subject F1 needed to access the benchmark methods
twice, once to implement the change, and a second time to fix a bug. In each case the location in the
code was accessed directly through the concern description, avoiding the browsing and traversal of
irrelevant code.

Subject F2 Subject F2 discovered methodrecoverAutosave while systematically investigating
all of the accessors of fieldBuffer.autosaveFile (I-0:23:56). When therecoverAutosave

method was found, the subject queried FEAT for all of its callers. This revealed methodload , which
the subject investigated. The call between the two benchmark methods was then immediately added
to the concern graph, in a concern named RECOVER FROM BACKUP. The information was recalled
at one point in the investigation phase (I-0:50:38).

65

In the execution phase, the subject selected RECOVER FROM BACKUPand accessed and in-
vestigated the two benchmark methods. The two benchmark methods were the only methods con-
sidered during this episode. After investigating the information in RECOVER FROM BACKUP, the
subject performed the change by modifying theload method, and then moved on to a different part
of the task.

The data from subject F2 also supports the theory of precise discovery, because the subject
found the recovery method while systematically investigating the accessors of a field related to the
autosave functionality. Precise capture was also attained, as the subject captured only the relation
betweenload andrecoverAutosave in a concern named RECOVER FROM BACKUP, and used
only this information when making the change.

Interpretation We now return to the two research questions listed in Section4.5.1. The first
research question for the jEdit study was to determine how developers use concerns graphs dur-
ing program evolution. The data from our case study shows that subjects F1 and F2 used concern
graphs (as embodied in the FEAT tool) as planned. First, they used queries over the program model
provided by FEAT to systematically investigate one concern at the time. Second, they recorded pre-
cisely the information relevant to the implementation of the autosave recovery in a distinct concern,
and used only that information when actually implementing the change.

The second research goal was to determine whether the behavior of developers using concern
graphs was more (or less) systematic. Evaluating this research question requires contrasting the
behavior of the subjects using FEAT to the one of the control subjects. First, our analysis shows
that the investigation performed by the users of FEAT was more precise. Both FEAT subjects
found one of the benchmark methods while investigating structural relations to elements relevant to
the implementation of the autosave feature; in contrast, both of the control subjects found one of
the benchmark methods serendipitously, while browsing the members of theBuffer class. This
observation supports the theory of precise investigation. Second, the information discovered as part
of the investigation was recorded more effectively by the FEAT subjects. The screen capture movies
show the control subjects recording information about the task by writing the name of elements in
a textual file, a process requiring multiple view switches, and, in the case of C1, the correction of
an error. During the execution phase, all four subjects found it useful to access the information
they had recorded about the interactions between the benchmark methods to find the location in the
code where to implement the change. Again, the movies for the FEAT subjects show a streamlined
process when accessing the captured information, with the subjects selecting the relevant concern
in the Concern Graph view, and accessing one of the benchmark methods. On the other hand,
subjects in the control group needed to view their notes, then browse many unrelated elements in
the Package Explorer to find the benchmark methods. In one case, the subject ended up selecting
the wrong element. This observation supports the theory of precise capture.

4.5.4 Validity

To limit the threats to the construct validity of the study, our analysis relies on the basic transcripts,
and sometimes directly on the actual screen capture movies. This way, minimal divergence is intro-
duced between measures of the subject’s behavior and their actual behavior.

66

The internal validity of our study is threatened by the possibility that the success level and
the behavior of a subject is determined by a different, competing factor, such as prior knowledge,
proficiency with the development environment, or investigator bias during the study. To reduce this
possibility we took steps to ensure that no subject had prior knowledge of jEdit, we asked subjects
not to communicate the details of the study to others, we provided basic training with Eclipse to
each subject, we precluded the use of powerful features of Eclipse (such as the debugger), and we
scripted the entire study, limiting the role of the investigator to answering questions. There is always
the possibility of investigator bias in the answers to the subjects’ questions. To limit this effect we
established guidelines at the start of the study for the investigator to use in answering questions: the
investigator was to answer questions only about the features of the tools covered in the tutorial, and
was not to provide any comment about the task.

Finally, the internal validity of the results of the study are also threatened by our selection of
a specific requirement for detailed analysis. To mitigate the influence of this decision on the result,
we picked the requirement of which we considered the analysis to be the least likely to be influenced
by the experimental procedures (see the Benchmark paragraph of Section4.5.3for details).

4.6 ArgoUML Study

To validate the robustness claim for concern graphs, we performed a study of the evolution of a
large system on which concern graphs were defined. As the target application for this study, we
chose ArgoUML, a tool for producing diagrams in the Unified Modeling Language [104, 107, 108].
ArgoUML is developed in Java and consists of between 92 and 100kLOC, depending on the version
considered. The code base, revision history, and bug database of ArgoUML are publicly available.

4.6.1 Theory

The questions we investigated in the ArgoUML study iswhether a concern graph can represent the
implementation of a concern in two different versions of a system.

Our theory underlying this research question is that a concern graph can represent concerns in
different version of a system because:

1. The fragment structure representing the implementation of concerns in source code captures
an abstraction of the interaction between program elements, as opposed to syntactic details
of the source code. As such, the concern graph structure is tolerant to minor changes in the
source code.

2. The concern graph structure supports the detection of inconsistencies with a code base. In-
consistent fragments can be repaired to reflect the new version of the code base, or used as a
starting point to investigate the discrepancies between a concern graph and the source code.

4.6.2 Study Design

The study consisted in the author of this dissertation creating a concern graph capturing the code
relevant to the correction of a bug identified for version 0.11.4 of the system, and then loading the
concern graph on version 0.13.4 of the system. The data collected during the study consists of the
concern graph corresponding to the bug report chosen as a case.

67

The case The case we focus on in this study is the evolution of the code base to address bug 1209
in the ArgoUML bug database. This bug was identified is version 0.11.3 but was not addressed until
version 0.13.1. The bug, as stated in the bug report, is as follows:

Why can you only add comments/notes on class/state/activity diagrams? According to
the uml spec you must be able to add them to all model elements so you must be able
to add comments to all diagrams too.

This bug report refers to the possibility of attaching a notes (or comments) box to different
objects in UML diagrams. In version 0.11.4 of ArgoUML, it is only possible to attach notes to
objects in class, state, or activity diagrams. For other diagrams, such as interaction diagrams, it is
not possible to add notes objects. Fixing this bug thus requires modifying the code of ArgoUML
to support adding notes to all diagram types. Figure4.3shows the window of version 0.11.4 of the
ArgoUML tool. The figure shows a simple class diagram, with one of the classes annotated with a
notes object. The rightmost icon in the application’s tool bar is used to add notes to objects in the
diagram. For any diagram type except class, state, or activity diagrams, this button is not visible,
and the function is unavailable to users.

Figure 4.3: The ArgoUML application

68

Table 4.5: Concern graph for the ArgoUML study
Concern Classes Description

ADDING NOTES 26 The root concern (concern graph) for the task.
CREATE NOTE IN MODEL 5 The code to add a note object to the internal UML

model.
NOTE CREATION 9 The widget code supporting the creation of a

new note object.
ADD ACTION TO TOOLBAR 5 Sub-concern of NOTE CREATION. Code to add the

notes button to the toolbar.
DIAGRAM HIERARCHY 9 Classes implementing the different UML diagrams.
CREATE NOTE IN UI 9 Code to display the notes object on the diagram.

4.6.3 Results

Without first looking at the code of version 0.13.4, the subject (the author of this dissertation)
created a concern graph capturing the code which seemed relevant to the evolution task in a concern
graph. The resulting concern graph, named ADDING NOTES, comprised five sub-concerns and
41 fragments, totaling three fields, 33 methods, and 26 classes (including eight library classes),
scattered in 16 different packages. Table4.5summarizes the five sub-concerns. The table displays,
for each concern, the name of the concern, the number of classes involved in its implementation,
and a short description of the concern. The ADDING NOTES concern graph was created by the
subject of the study by performing queries in the FEAT tool.

After creating the concern graph on version 0.11.4, the concern graph was loaded on version
0.13.4. Version 0.13.4 implements a great number of changes, including the fix to bug 1209. It is
approximately 8kLOC larger than version 0.11.4. To measure how much of the code of ArgoUML
relevant to our concern had actually changed between versions 0.11.4 and version 0.13.4, we ap-
plied the code comparison feature of Eclipse on the two versions. The code comparison feature of
Eclipse compares two files using an algorithm similar to the UNIXdiff utility [59], returning the
differences between unmatched subsequences. Table4.6 reports the differences between versions
0.11.4 and 0.13.4 for all 18 source (i.e., non-library) classes involved in the concern. For each class
(first column), the table lists the number of unmatched sequences between the two version of the
source code for the class (second column), the total number of lines in unmatched sequence for
version 0.13.4) (third column), the total size of the file in version 0.13.4 (fourth column), and the
ratio of the third to the fourth columns (in percentage).

These figures illustrate the amount of change between the two versions. All the classes consid-
ered as part of the concern except one (FigEdgeNote) changed. Furthermore, most of the changes
involved multiple modifications, with half of the classes presenting modifications spanning more
than 50% of the lines of code in the class. Given the purely lexical comparison performed by
the compare feature of Eclipse, these figures should be understood as representing a pessimistic
quantification of the amount of change between the two versions. Nevertheless, the analysis of the
differences shows that almost all of the classes in the concern graph were touched. As such, this
case represents a good test for the robustness of concern graphs.

Upon loading ADDING NOTESon version 0.13.4, seven fragments were detected as inconsis-
tent (out of 41). Six of the inconsistencies were in ADD ACTION TO TOOLBAR and one was in

69

Table 4.6: Differences between classes of versions 0.11.4 and 0.13.4 of ArgoUML
Class Changes Change Size Total Size % Change

AbstractUMLFactory 5 19 77 25
CoreFactory 85 1570 1820 86
ArgoDiagram 12 48 166 29
ProjectBrowser 105 593 789 75
UMLActivityDiagram 15 50 219 23
UML CollaborationDiagram 27 188 259 73
UMLDeploymentDiagram 30 162 214 76
UMLSequenceDiagram 40 156 224 70
UMLStateDiagram 37 179 261 69
FigClass 153 956 1149 83
FigComment 60 214 488 44
FigEdgeNote 0 0 105 0
FigInterface 112 646 789 82
UMLClassDiagram 32 131 197 67
UMLDiagram 13 166 283 59
FigUseCase 163 284 1394 20
UMLUseCaseDiagram 40 127 327 39
ActionAddNote 6 10 235 2

NOTE CREATION. All of the other concerns remained consistent in the new version of ArgoUML.
We now discuss each inconsistency, how we repaired it, and the information we could determine
from the inconsistent fragment.

The first inconsistent fragment we considered is the primitive fragment:

UMLActivityDiagram.initToolBar() calling ToolBar.add(Action)

Selecting this inconsistency in the Inconsistency View revealed that methodinitToolBar() of
classUMLActivityDiagram did not exist. We then queried FEAT for all the callers ofToolBar.-

add(Action) , to see whether the method had been renamed. Instead, the query revealed that
ToolBar.add(Action) was called by methodinitToolBar() of classUMLDiagram . In other
words, the caller was replaced by a method of the same name in a different class. We then queried
FEAT for the subclasses ofUMLDiagram , which revealed, among others, the class declaring the ini-
tial caller ofToolBar.add(Action) , classUMLActivityDiagram . Hence, with two queries us-
ing the inconsistency as a starting point, we established that, in version 0.13.4, methodinitToolBar()

had been moved from classUMLActivityDiagram to its superclass, classUMLDiagram . To repair
this inconsistency, we replaced the inconsistent fragment by the call toToolBar.add(Action)

from UMLDiagram.initToolBar() .
The next five inconsistencies we considered were the fragments:

UMLClassDiagram.initToolBar() calling ToolBar.add(Action)

UMLStateDiagram.initToolBar() calling ToolBar.add(Action)

UMLActivityDiagram.initToolBar() accessing Diagram. toolBar)

Diagram. toolBar accessed by UMLClassDiagram.initToolBar()

Diagram. toolBar accessed by UMLStateDiagram.initToolBar()

70

These five inconsistencies were also caused by the move of methodinitToolBar() to the
superclass. The five inconsistencies were found and repaired in a way identical to the first one.

The last inconsistency was a fragment with a universal range:

ActionAddNote.SINGLETON accessed by ALL

Displaying this inconsistent fragment in the inconsistency view revealed that the inconsistency
was caused by two separate changes. Figure4.4 shows the fragment above as it appears in the
fragment viewer of the FEAT Inconsistency View.

Figure 4.4: Representation of the inconsistent fragmentActionAddNote.SINGLETON

accessed by ALL in the fragment viewer of the FEAT Inconsistency View

1. In three classes (UMLActivityDiagram , UMLClassDiagram , andUMLStateDiagram),
the concern graph recorded that theSINGLETONfield was accessed by methodinitToolBar()

of each respective class, which did not exist (represented by the red “X” icon). Also, for each
of these cases, the concern graph did not include an actual access to the field by method
initToolBar(JToolBar) (represented by a minus icon). Clearly, this inconsistency was
caused by the modification of theinitToolBar() method to include a parameter in its
signature.

71

2. In three other classes (UMLDeploymentDiagram , UMLSequenceDiagram , andUMLUse-

CaseDiagram), the concern graph was missing an access to fieldSINGLETONin method
initToolBar(JToolBar) (represented by a minus icon). Clearly, this inconsistency re-
sulted from fixing the bug to support the creation of notes objects in all of the diagrams
supported by the tool.

To fix this last inconsistency, we used the automatic repair feature of FEAT, which synchro-
nizes the concern graph with the code according to the algorithm of Section2.3.2.

To complete this case study, we show an example of a fragment which remained consistent
in the face of extensive change to a method. In the concern graph, sub-concern CREATE NOTE IN

MODEL contained the fragment:

AbstractUmlModelFactory.initialize(Object) calling

MBase.addMElementListener(MElementListener)

The source code for methodAbstractUmlModelFactory.initialize(Object) in ver-
sion 0.11.4 is shown in Figure4.5. In this version of the method, the source code mapping to the
fragment is the statement on line 6.

The source code for the same method method in version 0.13.4 is shown in Figure4.6. In this
version of the method, the source code mapping to the fragment corresponds to the statements on
lines 12 and 13. As this example shows, capturing the essence of a concern in terms of structural
dependencies allows us to preserve the intent of a concern in the face of changing source code. In
this example the intent is the call toaddMElementListener . This intent is captured in the concern
graph and can be mapped to the corresponding source in two different versions, even though the
corresponding code was modified from a single method call to two calls that take two different
objects as parameters.

Returning to our research question for this case study, the results of loading a concern graph
created in version 0.11.4 of ArgoUML into a different version, 0.13.4, showed that the concern
graph was robust in the face of change. Specifically, although almost all of the classes involved in the
concern changed extensively, most concerns in the concern graph remained completely consistent.
Inconsistencies stemming from a refactoring of a method, and from the modification of the bug,
were corrected easily. Additionally, this case study has shown that the FEAT queries on inconsistent
fragments were useful in identifying a refactoring in the code.

4.6.4 Validity

The main threats to the validity of the ArgoUML study are investigator bias in choosing the concern
to create, and the creation of the concern graph. To mitigate these factors, we used a modification of
ArgoUML related to an actual bug as a case, as opposed to investigating an arbitrary concern in the
code base. Second, the concern to investigate was selected before any investigation of the source
code was performed. It was thus not possible for the investigator to select a concern that would have
a good chance of evolving well. Additionally, the source code for the concern in version 0.13.4 was
not examined until the concern graph on version 0.11.4 was completed. As such, it was impossible
for the investigator to know in advance how stable the concern graph would be. Construct validity
is not an issue in this study since no surrogate measure is used.

72

1: protected void initialize(Object o)
2: {
3: logger.debug("initialize(" + o + ")");
4: if (o instanceof MBase)
5: {
6: ((MBase)o).addMElementListener(UmlModelListener.getInstance());
7: if (((MBase)o).getUUID() == null)
8: {
9: ((MBase)o).setUUID(UUIDManager.SINGLETON.getNewUUID());
10: }
11: }
12: }

Figure 4.5: Method AbstractUmlModelFactory.initialize(Object) in ArgoUML ver-
sion 0.11.4

1: protected void initialize(Object o)
2: {
3: logger.debug("initialize(" + o + ")");
4: if (o instanceof MBase)
5: {
6: if (((MBase)o).getUUID() == null)
7: {
8: ((MBase)o).setUUID(UUIDManager.SINGLETON.getNewUUID());
9: }
10: // next two objects are the ONLY two objects that need to listen
11: // to all modelevents.
12: ((MBase)o).addMElementListener(UmlModelEventPump.getPump());
13: ((MBase)o).addMElementListener(UmlModelListener.getInstance());
14: Set couples = UmlModelEventPump.getPump().
15: getInterestedListeners(o.getClass());
16: Iterator it = couples.iterator();
17: while (it.hasNext())
18: {
19: UmlModelEventPump.ListenerEventName couple =
20: (UmlModelEventPump.ListenerEventName)it.next();
21: UmlModelEventPump.getPump().
22: removeModelEventListener(couple.getListener(),
23: (MBase)o, couple.getEventName());
24: UmlModelEventPump.getPump().
25: addModelEventListener(couple.getListener(),
26: (MBase)o, couple.getEventName());
27: }
28: }
29: }

Figure 4.6: Method AbstractUmlModelFactory.initialize(Object) in ArgoUML ver-
sion 0.13.4

4.7 Summary

In this chapter, we have described five case studies conducted to evaluate the three important claims
of our research hypothesis: that concern graphs can help developers performing change tasks, that
concern graphs are inexpensive to create, and that concern graphs are robust enough to describe a
concern in more than one version of a system. The studies we performed to validate these claims
were all based on the evolution of existing systems that range in size from 12.5 to over 100kLOC.

73

Table 4.7: Overlap between studies and claims
Study/Thesis claim 1. Usefulness 2. Cost 3. Robustness

1. AVID ? −
2. Jex − ?

3. Redback − ?

4. jEdit ? −
5. ArgoUML − − ?

Each of the case studies focused on validating a specific claim. As part of the AVID and jEdit
studies, we investigated the behavior of developers performing a complete change task with (and
without) the support of concern graphs, and showed that concern graphs helped in program mod-
ification tasks by supporting a more precise investigation of the code, and by supporting a precise
capture of the information related to the change. As part of the Jex study, by investigating how
developers with a minimal training with FEAT produced a concern graph describing the code rele-
vant to a change task, we showed that concern graphs could be created without difficulties during
program investigation activities. As part of the Redback study, we determined that the concern
graph approach could scale given reasonable trade-offs in the construction of the underlying pro-
gram model. Finally, through the investigation of the evolution of the ArgoUML system, we showed
how a concern graph was robust enough to describe concern code in two versions of a system, even
though the later version had been subjected to extensive modifications.

Taken separately, each study presents an incomplete picture of the use of concern graphs. In
each case, we have made concessions to the necessities of practical empirical investigation involving
a prototypical tool. In choosing to validate our approach using multiple case studies, our goal was
not only to give structure to the validation, but also to gain experience with the use of concern
graphs in different circumstances. Although each study focused primarily on a single claim, the
data collected often corroborates and strenghtens claims that were the focus of another study. For
example, although the primary focus of tthe jEdit study was the usefulness claim, the data collected
showed that subjects using FEAT did not expend any significant effort building a concern graph.
This observation contributes to the validation of the low-cost claim. Thus, although the discussion in
this chapter was organized along the lines of specific questions, the validation of the concern graph
approach should be construed as repeated experiences with the approach in different circumstances,
and with different developers performing different tasks on different systems. The overlap in data
validating the different claims, the lack of obvious contradictions between studies, and the variety of
systems and tasks studied contributes to the generalizability of our results in similar circumstances.
Table4.7 recapitulates the focus of each study (represented with the symbol?), and shows claims
for which there exist some secondary validation not explicitly addressed by the study (represented
with the symbol−).

Finally, conducting the case studies also allowed us to make many observations and to raise
many questions that did not fall within the strict framework of the validation. Important issues ob-
served during the studies or explicitly raised by the study subjects were recorded, and are discussed
in Chapter6.

74

Chapter 5

Automating Concern Graph Creation

Using the tool support for concerns graphs described in Chapter3, developers must make conscious
and planned decisions about what to include and reject from a concern graph. Although we have
shown, in Chapter4, that this activity requires only a minimal level of effort from developers, it
can present difficulties in the case of inexperienced or improperly trained developers, or in the case
of developers facing intense time pressures. To reduce the cost of producing concern graphs, we
have developed a technique to automatically infer basic concern graphs from program investigation
activities [113].

The concern inferencing technique we developed extracts a user-specified number of elements
from all of the elements considered during a program investigation. It then groups those elements
into clusters representing potential concerns. To document concerns stemming from a program
investigation task, a developer presented with the results of our technique has only to invalidate
useless clusters, and to name and save useful ones.

The algorithm is based on the parts of the source code a developer investigated during a pro-
gram investigation session, and on how the developer moved between different pieces of source
code during the session. The algorithm requires as input a program investigation transcript obtained
by recording, in sequence, every change in the source code visible to a developer, and the cause for
the change (e.g., selecting an element in a code browser, viewing the result of a search, etc.). The
inference algorithm takes into account a variety of factors, namely, the order of program elements
in the sequence, the way elements were accessed, and whether there exists in the code structural
relationships between the elements examined. For a specified number of program elements which
can be set arbitrarily, the algorithm produces a set of clusters that constitute candidate concerns.

We applied our algorithm to data obtained from two different evolution tasks. Each task was
replicated with different developers. We found, not surprisingly, that results varied between de-
velopers and tasks. However, in all cases, we were able to obtain concerns describing interactions
relevant to the change task out of hundreds of elements examined during the investigation.

The algorithm presented here serves as a basic proof of concept of the feasibility of automating
the building of concern graph descriptions. The algorithm was developed heuristically by experi-
menting with the use of a structure, called a navigation graph [115], that describes the paths taken
by developers as they investigate the source code of a program. We expect that additional work on
the development of algorithms to automate concern graph construction could produce even more
precise results. In Section6.7.1, we discuss in more details our plans for future research on this
subject.

75

In the rest of this chapter, we describe the format of the investigation transcripts we use as
the input to our algorithm (Section5.1), we describe our inference algorithm (Section5.2), and we
report on the concerns obtained by running our algorithm on data obtained from two evolution tasks,
and discuss the influence of various factors on the results (Section5.3).

5.1 Investigation Transcripts

The inference of concerns from program investigation activities requires a transcript of the opera-
tions performed by a developer. Informally, a transcript records all of the source code visible to a
developer during a program investigation session, and the sequence in which different areas of the
code are viewed. In discussing the areas of source code under consideration by a developer, our
unit of granularity is method declarations and, in some cases, field declarations. Other elements
normally present in source code, such as class declarations and comments, are not considered. We
chose this approach because the concern graphs inferred by our algorithm are expressed only in
terms of class members.

For our purpose, we formally define aprogram investigation transcriptas an ordered set of
investigation eventsE = {e1, ..., en}. An event corresponds to a change in the set of method dec-
larations visible to a developer. We define a method declaration as visible if it is completely or
partially visible in theactiveeditor window of a software development environment. If multiple
editor windows are visible, then only the one with the focus of the windowing system is consid-
ered visible. Because, in many cases, all field declarations can appear at once to a developer, we
did not consider it useful to include field declarations as a part of the transcript, except in special
circumstances described below.

An evente consists of a tuple(D, c,X). The setD lists identifiers for all of the method
declarations (and certain field declarations) visible immediately after the event. The elementc is a
category value describing what caused the event. It can take the following values:

• B: the content of the active editor changed as the result of selecting an element in a code
browser.

• C: the content of the active editor changed as the result of following a cross-reference between
two elements.

• R: an editor window was recalled from an existing buffer of visible windows, such as a history
list or tabbed pane.

• L : the content of the active window changed as the result of scrolling up and down in a file.

• K : the content of the active window changed as the result of a keyword search.

The last tuple element,X, is an ordered set of elements representing extra information about
the event. For browser events (B), X contains a single identifier representing the declaration that
was accessed through the browser. For example, if a developer selects method M2 from a browser
window and reveals co-located methods M1 and M3 in addition to M2, then the event would be
transcribed as({M1,M2,M3}, B, {M2}). For a cross-reference event (C), X = {x1, x2} con-
tains the identifiers of both the domain (x1) and the range (x2) of the cross-reference. For a keyword

76

event (K), X contains an identifier representing the declaration in which the keyword was found.
For all other events,X = ∅. For browser, cross-reference, and keyword events, if the setX contains
a field declaration, then this declaration is included in the setD. Otherwise, fields declarations are
ignored.

During the investigation of a program, a new evente is created every time the setD of visible
elements changes. Figure5.1 shows an example of a segment of investigation transcript. The first
line shows an event corresponding to method B137 being revealed as the result of a keyword search.
The next event corresponds to methods F29, F30, and F31 being revealed as a result of accessing
method F30 through a cross-reference from B137 (F29 and F31 are also visible because they are co-
located with F30). Method B137 is then recalled from a previous view. Then field B24 is displayed
through a browser access (with co-located method B167). Finally, the file is scrolled to reveal B168
and hide B24.

B137 K B137
F29,F30,F31 C B137,F30
B137 R
B24,B167 B B24
B167,B168 L

Figure 5.1: Example investigation transcript

5.2 Inference Algorithm

Given a program investigation transcript, our aim is to automatically extract potential concern
graphs. The concern graphs produced by our algorithm consist in a single concern containing a list
of program elements specified as primitive fragments using the identity relation (see Section2.2.2).
In other words, the concern graphs produced by our inference algorithms are lists of program ele-
ments. For simplicity, in the rest of this chapter, when it is clear from the context whether we are
referring to a user-level concern or a concern graph, we shall use the term concern interchangeably.
We propose an algorithm that can generate concern (graphs) based on a calculation of how related
different elements were during a program investigation session. Our concern inference algorithm
is divided in three phases. A first phase assigns, to each element in the setD of every event, a
probability that this element was actually examined by the developer. A second phase calculates a
metric of correlation for every pair of elements in the transcript. The third phase generates a set of
concerns based on the correlation metric calculated in the second phase.

5.2.1 Calculating Probabilities

As we mentioned in Section5.1, to each eventei corresponds a setDi of method (or field) decla-
rations visible to the developer. However, at any point of the investigation, the developer was not
necessarily examining each one of the declarations in the corresponding setDi. To account for
the fact that, at each event, the developer is probably focusing on only one or two of the visible
declarations, we assign a probability to every elementdi,j of the setDi of every event.

77

1: for all ei = {Di, ci, Xi} ∈ E do
2: for all di,j ∈ Di do
3: wi,j ← 1
4: if (ci = B∨ ci = K)∧ di,j = xi,1 then
5: wi,j ← wi,j + α
6: else ifci = C ∧ di,j = xi,2 then
7: wi,j ← wi,j + α
8: end if
9: if ci+1 = C ∧ di,j = xi+1,1 then

10: wi,j ← wi,j + α
11: end if
12: end for
13: end for

Figure 5.2: Calculating probabilities

We determine the probability of an element being examined by first assigning a weightwi,j to
each element. The weight for an element is based on the category of event (c) and the additional
informationX. Certain conditions, as expressed in the algorithm of Figure5.2, increase the weight
of an element by a confidence parameterα.

Informally, the weight of an element in an event is increased if the element is the same as the
element in the extra information set (X) in a browser or keyword event (lines 4–5), or if the element
is the same as the range element of a cross-reference event (lines 6–7). Additionally, the weight of
an element is increased if it is the domain of a following cross-reference event (lines 9–10).

Once all the weights are calculated, we can determine corresponding probabilities.

p(di,j) =
wi,j∑n

k=1 wi,k

For example, usingα = 5, the probabilities for the second event in figure5.1 are: p(F29) =
1
8 = 0.125, p(F30) = 6

8 = 0.75, p(F31) = 1
8 = 0.125.

5.2.2 Calculating the Correlation Metric

Our algorithm infers concerns by analyzing the correlation between different pairs of elements
potentially examined by a developer. The intuition behind this idea is that if a developer focuses on
a pair of elements, then there is a possibility that the relations between the two elements in the pair
bears an important significance to the task. Thus, the underlying principle of our concern inference
algorithm is to determine how strongly different pairs of elements are related in the context of the
program investigation. To do so, the algorithm takes the set of all elements present in the transcript,
analyses every possible combination of two elements, and assigns a correlation metric to each pair.
The correlation metric is based on an analysis of how close two elements are in the investigation
sequence, the category of event for each element, and whether the elements are directly related in the
program (for example, through a method call). The analysis also takes into account the probabilities
calculated for each element.

78

The correlation algorithm is configured through nine parameters,β0, β1, β2, βB, βC , βR, βL,
βK , βS , and one function on the program investigated,related(x, y). The first three parameters
weight the importance of two elements being displayed consecutively (β0), or being separated by
only one (β1), or two (β2) elements. The next five parameters are factors weighting the importance
of different event categories on the investigation. For example, an element revealed as the result of
scrolling (L) might not be as significant as an element revealed through a cross-reference (C). The
parameterization allows flexibility in determining this importance. The last parameter,βS , factors
in the importance that two elements beactually related in the program. This is determined by the
functionrelated(x, y), which returns true if there is a direct structural link betweenx andy in the
program. For two elements (field or method)x andy, relatedreturns true if

• x callsy (or vice-versa),

• x accesses (field)y, or

• x implements or overridesy (or vice-versa).

The algorithm we use to generate the correlation metricmi,j between two elements is presented
in Figure5.3.

This algorithm first determines the list of all elements revealed during the program investiga-
tion (line 1). For every unordered pair of elements (lines 2–3), it proceeds through all the events
(line 4). First, an initial value of the correlation metric is determined: If one element of the pair is
present in an event and the other element of the pair is present in the following event, then the cor-
relation metric is assigned the valueβ0 multiplied by the probability of each element (lines 6–10).
Otherwise, the metric is zero. Second, the metric is adjusted to take into account the category of
the next event (lines 11–12). Finally, the metric is adjusted to take into account whether the two
elements in the pair are structurally related (lines 22–24). These three steps are then repeated for
a comparison of events separated by one event (using the parameterβ1), and then by two events
(usingβ2).

5.2.3 Generating Concerns

Once all the pairs have an associated correlation metric, we can generate concerns. The concern
generation phase of the algorithm is parameterized in terms of the approximate number of elements
desired in all of the concerns reported by the algorithm (η). To generate concerns for a number
of elementsη, we list pairs of elements generated in the previous phase in decreasing value ofm

until the number of different elements in all of the pairs is equal toη (or η + 1). Finally, we group
the elements into clusters by taking the transitive closure of every relation represented by a pair in
the set of selected pairs. For example, let us assume that for a certain transcript, parameters, and
related function, η = 5 yields the following pairs: [A,B][B,C][D,E]. In this case, the algorithm
would produce two concerns: [A,B,C], and [D,E]. Once a list of concerns graphs is produced,
a developer can choose which ones represent the implementation of actual and useful concerns
considered during the program investigation, and name and save the useful concern graphs for later
use.

79

1: Let D∗ = {d1, ..., dn} =
⋃m

i=1 Di

2: for i = 1 to n do
3: for j = i + 1 to n do
4: for all ek = (ck, Dk, Xk) ∈ E do
5: mi,j ← 0
6: if di ∈ Dk ∧ di,j ∈ Dk+1 then
7: mi,j = p(ek, di) · p(ek+1, di,j) · β0

8: else ifdi ∈ Dk+1 ∧ di,j ∈ Dk then
9: mi,j = p(ek+1, di) · p(ek, di,j) · β0

10: end if
11: if ck+1 = C then
12: mi,j = mi,j · βC

13: else ifck+1 = R then
14: mi,j = mi,j · βR

15: else ifck+1 = L then
16: mi,j = mi,j · βL

17: else ifck+1 = K then
18: mi,j = mi,j · βK

19: else ifck+1 = S then
20: mi,j = mi,j · βS

21: end if
22: if related(di, di,j) then
23: mi,j = mij · βS

24: end if
25: {Repeat withk andk + 2, usingβ1.}
26: {Repeat withk andk + 3, usingβ2.}
27: end for
28: end for
29: end for

Figure 5.3: Calculating correlation metrics

5.3 Empirical Evaluation

We have investigated the usefulness and accuracy of our algorithm using data from two replicated
studies of program evolution. In both studies, developers were asked to investigate a program in
the context of an evolution task using the Eclipse platform, an integrated development environment
for Java [93]. For each study, we have analyzed a transcript of the program investigation and have
produced a list of concerns with different configurations of the algorithm parameters. This sec-
tion describes the state of our implementation of the support for concern inference, describes the
different parameter configurations we have tried, briefly describes the studies from which we have
collected the data, and discusses the results of our investigation.

5.3.1 Implementation Status

To obtain the results described in this chapter, we generated the program investigation transcripts
manually, based on a movie of the the screen recorded during the studies using screen capturing
software at full resolution. Although this approach is suitable for the evaluation of the algorithm,

80

Table 5.1: Configuration parameter values
C. β0 β1 β2 βB βC βR βL βK βS

1 3 2 1 1.3 1.5 1.1 0.1 1.4 1.5
2 3 0 0 1.3 1.5 1.1 0.1 1.4 1.5
3 3 2 1 1.3 1.5 1.1 0.1 1.4 1.0
4 3 2 1 1.5 2.0 0.5 0.0 1.5 2.0
5 3 2 1 1.3 1.3 1.0 0.3 1.3 1.2

use of our approach will require this step to be automated. It should be possible to automate the
production of investigation transcripts with appropriate instrumentation of the Eclipse platform. We
implemented the concern inference algorithm in Java. To provide therelated function, we created
databases of relations for each case using the bytecode analyses of the FEAT tool (version 2.1.8).

5.3.2 Configurations

Based on a combination of intuition and experimentation, we have designed five parameter config-
urations for the concern inference algorithm intended to emphasize different styles of investigation.
In general, we found that the algorithm was fairly stable. All parameters require a minimum vari-
ation in the order of10−1 (and often in the order of100) to affect a change to the result. The
configurations we considered are the following (see Table5.1 for the corresponding parameter val-
ues):

1. BasicA configuration based on our intuition of what should be clues to important elements
in the program navigation. Essentially, linear progression based on closeness in the event
sequence, more weight on structural, browser, and keyword events, and less on recall and
local.

2. Neighbors A configuration only taking into account events directly succeeding each other.
That is, with parametersβ1 = 0, andβ2 = 0.

3. No Structure A configuration only taking into account actions of the developer, ignoring
underlying structure (i.e.,βS = 1).

4. Structure A configuration putting emphasis on transitions motivated by structural hints.

5. GuessesA configuration putting relatively more weight on guessing and browsing.

5.3.3 Studies

The first set of data is taken from the jEdit case study described in Section4.5. As a brief overview,
subjects taking part in the study were asked to enhance a feature of jEdit pertaining to the automatic
backup of unsaved buffers. Before making the change, the subjects were asked to investigate the
code of jEdit for one hour and to take notes as necessary. During this time they were not allowed
to modify the code or run the debugger. The subjects were also provided with clues consisting of
two classes relevant to the change. After the program investigation phase, the subjects were asked to

81

implement the change. From this study we use data from three of the subjects: C1 and C2 (described
in Section4.5), and an additional subject from an additional replication [115], referred to as C3. All
of these subjects were part of the control group of the study, and performed the change task without
the help of the FEAT tool. By studying how each subject performed the change, we could determine
four important pieces of information about the source code that needed to be considered during the
task:

• Recovery: A method call performed to recover from an auto-save backup file.

• Timer interval: A method call to change the interval of the auto-save timer.

• Auto-saving: A method call to save a file buffer in response to an auto-save timer event.

• Buffer management:The accesses to a field representing the auto-save backup file.

To evaluate the results of our algorithm on a different task, we performed another program
investigation study. In this second study, we asked two developers to investigate how they would
improve a weakness in the implementation of jHotDraw1, a Java drawing application consisting
of approximately 14 600 non-comment, non-blank lines of code distributed in 11 packages. The
change posited in this study regarded an incompatibility between commands issued through a menu
in the graphical user interface and the actual commands supported by a figure on the drawing canvas.
In this study, the subjects were asked to investigate the code of jHotDraw for 45 minutes to plan
how they would execute the change. As opposed to the jEdit study, the subjects were not given
any initial hint, and were allowed to modify the program to insert print statements. They were not
allowed to use the debugger, and were not required to perform the change.

By studying the code of jHotDraw, examining the code investigated by the subjects, and inter-
viewing the subjects, we determined two important pieces of information about the source code that
were relevant to the change:

• Command menus:A set of methods and classes to build the menus and associate command
to each menu item.

• Figure listeners: The event-handling system required to detect when the selection of a figure
has changed.

In both studies, we recorded all of the activities of the subjects using the Camtesia screen
recording program2 operating at 5 frames/seconds and a resolution of 1280 x 1024 pixels. The
resulting movies contained enough information to allows us to produce transcripts as described in
Section5.1.

5.3.4 Results

Table5.2 describes the size of the transcripts produced by 60 minutes of investigation (subjects
C1, C2, and C3) and 45 minutes of investigation (subjects J1 and J2). The second column lists the
number of investigation events, and the third column lists the number of different program elements
visible to a developer during the investigation.

1Version 5.3, http://www.jhotdraw.org.
2http://www.techsmith.com.

82

Table 5.2: Characteristics of transcripts
Subject Nb. Events Nb. Elements

C1 123 71
C2 175 102
C3 204 105
J1 260 200
J2 142 152

Table 5.3: Results for Subject C1
Id Concern 1 2 3 4 5
1 A,B X X X X
2 A,B,C X

3 D,E X X X
4 D,E,M X
5 D,E,M,P,Q,R X

6 F,G X
7 F,G,H X X
8 F,G,H,K X
9 F,G,H,K,L X

10 I,J X X X X

11 K,L X

12 M,N X X X

13 K,O X

Usingα = 5 as our confidence parameter, we applied each of the configurations described in
Table5.1 to each transcript, requesting in each case the concerns for 12 elements (i.e.,η = 12).
For each subject, we present the results in a table. The first column of the table represents an
identifier for each concern. The second column presents the different concerns as sets of elements.3

The remaining columns list the five configurations: an X indicates that the concern denoted by
the row was produced for that configuration. For each subject, alternative descriptions of a single
user-level concern are grouped together and separated by double lines. To simplify the presentation
of the results, we have converted our element codes into sequential letters (for each study, a code
represents the same element between subjects). For each subject, we discuss the results based on
three evaluation criteria: variability in the number of concerns, variability in the number of elements
identified, and relevance of the concerns. We give a general comparison of the data between subjects
in Section5.3.5.

For subject C1 (Table5.3) applying the five configurations produced 13 different concerns
involving 18 different elements. Within the 13 concerns generated, three of the important pieces
of information described in section5.3.3were identified:recovery (D,E, in concerns 3,4,5),timer
interval (G,H, in concerns 7,8,9), andauto-saving (I,J, in concern 10). Other elements are, to
varying degrees, less relevant and would probably not be worth saving as a concern graph. The
important relations were identified by most of the configurations. The most successful configuration

3Because the algorithm selects pairs of elements, as opposed to single elements, some parameter config-
urations resulted in 13 elements being identified.

83

Table 5.4: Results for Subject C2
Id Concern 1 2 3 4 5
1 D,E,M,N,P,R,S,T X X
2 D,E,M,N,P,R,S,T,V X
3 D,E,M,N,R,S,T X
4 D,E,M,P,R,S,T,V X

5 G,H X X X X X

6 F,U X X X X

7 K,W,X X

Table 5.5: Results for Subject C3
Id Concern 1 2 3 4 5
1 I,J,Q,Y X X
2 I,J,K,M,W,X,Y,CC X
3 I,J,M,Q,Y,BB X
4 I,J,M,Y,CC X

5 K,X X X
6 K,W,X X

7 F,AA X X
8 F,Z,AA X
9 F,Z,AA,DD X

10 G,H X X X X X

11 M,BB X X

in this case was 1 (basic), closely followed by 3 (no structure). This means the subject naturally
navigated along the structure, so that existing relations did not need to be factored in.

For subject C2 (Table5.4) the five configurations produced more homogeneous results than
C1: 7 different concerns involving 16 different elements. Moreover, concerns 1 to 4 are essentially
the same concern, with a variation of one or two elements. This concern represents the interaction
buffer management. Variations on this concern capture how an auto-save backup file is deleted
and the various situations in which it is deleted. It is a useful concern, which integrates the inter-
actionrecovery (D,E). Of the four concerns (1-4), concern 1 is the most accurate. It is present in
configurations 1 (basic) and 3 (no structure). Other concerns generated for this subject include the
important interactiontimer interval (G,H, concern 5, present in all five configurations). Concern 6
is spurious, and concern 7 represents the three methods of the class provided as a starting point for
the task. In the case of subject C2, the most useful configurations are 1 (basic) and 3 (no structure),
as in the case of C1.

For subject C3 (Table5.5) the five configurations produced 11 different concerns involving 15
different elements. Concerns 1 to 4 capture the interactionauto-saving(I,J). Concerns 5 and 6 list
some of the methods of a class used as a hint. Concern 10, identified in all configurations, is exactly
the interactiontimer interval (G,H). All the other concerns are not useful. Given this assessment,
configurations 1 (basic), and 2 (neighbors) yield the results that would be most likely to be useful,
although the distinction is not as sharp as in the case of C1 and C2.

In the case of the jHotDraw study, for subject J1 (Table5.6) the five configurations produced

84

Table 5.6: Results for Subject J1
Id Concern 1 2 3 4 5
1 A,B,C X X X X X

2 D,E X X
3 D,E,F,G X
4 D,E,F,G,O X
5 D,E,F,G,P,Q X
6 F,G X
7 F,G,M X

8 H,I X X
9 H,I,J X

10 J,K X X
11 J,K,L X X

12 M,N X X

Table 5.7: Results for Subject J2
Id Concern 1 2 3 4 5
1 R,S,T,U,V,W,X,Y,Z X
2 R,S,T,U,V,W,Z,FF,HH X
3 R,S,T,U,W,X,Y,Z,DD,EE,FF,GG X
4 R,S,T,U,W,X,Z,FF,II X
5 R,T,U,V,W,Y,Z,FF,HH X

6 AA,BB,CC X X X

12 different concerns involving 17 different elements. Concern 1 is a subset of the interactions
relevant to the conceptcommand menuidentified in Section5.3.3. Concerns 2 to 7 include different
elements related to the construction of the application’s menu bar, with the most accurate being
concern 5. The other concerns cannot be considered helpful information. In this case, configuration
5 (guesses) yields the most useful concerns.

Finally, for subject J2 (Table5.7) the concern inference algorithm produced six different con-
cerns involving 13 different elements. Concerns 1 to 5 are essentially small variations on one major
set of elements, which mostly represents interactions implementing the concernfigure listeners.
Concerns 1 and 4 are equally accurate, with six relevant elements out of nine. These correspond to
configurations 1 (basic) and 4 (structure). Concern 6 can be considered spurious.

5.3.5 Observations

Besides helping us assess the feasibility of inferring concerns automatically from program investi-
gation activities, this study allowed us to make several observations. We discuss these observations
and how we plan to move forward on this research.

Successful configurations

In most cases (C1, C2, C3, and J2), configuration 1 (basic) yielded the most useful results. This fol-
lows our intuition that transitions between elements in the source code based on browser selection,
cross-references, and keyword searches are more important than transitions uncovering elements

85

by scrolling or recalling previous views. In two cases (C1 and C2), configuration 3 (no structure)
also yielded good results. Configuration 3 adds no additional weight to a sequence of investigation
involving two elements directly related in the code. One possible explanation for the fact that this
configuration was successful for C1 and C2 is that both of these subjects were very organized in
their program investigation, investigating elements that were related in the first place [115]. In the
case of J1, configuration 5 (guesses) was the most successful. This agrees with the behavior of J1,
who mostly read source code by browsing up and down the declaration of classes matching general
regular expressions. The case of J1 was the least successful application of our algorithm.

Effects of scrolling

Given the nature of the transcripts we use, scrolling a file while investigating code has a drastic
effect on the number of events generated. When scrolling, the set of elements visible in an editor
window can change as often as multiple times per second. If an element is visible in many of such
events, there is a risk that this element will be selected as relevant on the basis that it is involved in
many transitions. Our algorithm deals with this situations in two ways. First, an element revealed
through browsing does not have a high associated probability (see Section5.2.1). Second, the effect
of browsing can be mitigated through a low value ofβL. For example, withβL = 0.1 andβB = 1.0,
an element would have to be present in 10 local events before becoming more important than an
element revealed a single time through a browser access.

Transcript boundaries

The setting of the jHotDraw study had a few differences with the jEdit study. An important one is
that subjects in the jHotDraw study were not given any hints about where to start investigating the
code. This resulted in a much broader search for both subjects. This observation is reinforced by
the fact that no elements identified in the concerns for J1 overlapped with the ones identified for
J2. In contrast, the concerns generated for subjects C1, C2, and C3 were much more focused, and
useful, than the ones generated for J1 and J2. These observations seem to indicate that not all of the
span of a program investigation session should be used to infer concerns. This raises the important
question of when should a program investigation transcript begin and end. Ideally, a developer
should be able to deactivate transcript recording when performing broad searches, or while “being
stuck”, and reactivate the recording when performing more productive investigation. The resulting,
more focused, transcripts should yield more accurate concerns.

False positives

As expected, every application of the algorithm resulted in some false positives (or spurious con-
cerns) being generated. This is expected given the nature of the data analyzed. However, anecdo-
tally, we have found that forη = 12, the number of concerns is low; examining and rejecting false
positives in this case is not effort-consuming. Although we do not know if this result will generalize,
we do not expect the effort to be significant enough to detract users from using the technique given
the potential benefits.

86

5.4 Summary

In this chapter, we have described a technique to infer concerns based on the program investigation
activities of developers. Our technique integrates elements of static analysis, but its originality lies
in its focus on analyzing the source code a developer examines when investigating a program. Our
technique can be parameterized to account for different styles of program investigation.

The evaluation of the technique was based on data obtained from five subjects performing two
different tasks. We showed that, in every case, at least one relevant concern was identified. Since the
amount of information to be generated by our concern inference algorithm is parameterizable, the
number of false positives (or spurious concerns) can be adjusted. In our case, we used the algorithm
to infer concerns involving 12 program elements. This number resulted in a very manageable level
of information. We also observed that the success of the concern inference algorithm seems to be
tied to the organization of the program investigation activities: Broad and disorganized searches pro-
duced vague and incomplete concerns, while more focused program investigation typically yielded
a high proportion of useful and precise concerns. This situation can be addressed by not recording
the program investigation activities during broad investigation.

Using our technique, which can be fully automated, it is possible to easily and rapidly generate
descriptions for different concerns developers investigate in source code. These concern graphs
can then be used as supporting documentation during program evolution tasks, as a basis to plan
refactorings [43, 95], and potentially to help port a system to an aspect-oriented language [69].

87

Chapter 6

Discussion

In this chapter, we describe the main issues that arose during the development and investigation of
the concern graph approach, we summarize our views on the potential impact of concern graphs on
the process of software maintenance, and we present a plan for future research involving concern
graphs.

6.1 The Development and Evaluation of the FEAT Tool

The technology supporting concerns graphs was developed in multiple phases over approximately
two years. The first prototype of FEAT was developed as a stand-alone Java application [112]. It was
released for public download with a University of British Columbia End-User License Agreement
as version 1.9.1 in December 2001. This first prototype differed primarily from the tool described
in Chapter3 in five ways.

• The graphical user interface consisted in only two types of windows: an abstract view of the
code, comprising participants and relations in a concern graph, and a code viewer capable of
highlighting the code corresponding to a relation. Executing a query produced a new window
containing the results of the query.

• It was not possible to create more than one concern.

• It was not possible to add multiple elements or relations at once in a concern.

• The program analyses supported by the tool relied on bytecode analysis, which required load-
ing each Java class file in a program into main memory.

• The tool did not tolerate inconsistencies between a concern graph and the source code.

We used this version to carry out the first three case studies described in Chapter4. Informal
evaluation of the tool was also performed by users in the Software Practices Laboratory at the
University of British Columbia, by students enrolled in a graduate-level software engineering course
in the Department of Computer Science at the University of British Columbia, by researchers at
IBM’s T.J Watson Research Center, and by inventors of different concern-finding tools [82]. These
early experiences produced a wealth of feedback supporting the improvement of the approach. In
particular, the initial evaluation of FEAT showed that:

88

• Support for defining more than one concern was desirable;

• Support for specifying the entire results of a query as part of a concern was desirable;

• The creation of new windows to display results was confusing to users.

These and many other observations motivated a complete review of not only the tool, but also
the concern graph model. Following the experiences with the first FEAT prototype, we evolved the
concern graph model described in [112] into the model described in Chapter2. This new model
addresses the most important issues noted in the initial investigation phase. Specifically, it allows
the definition of multiple concerns in one view, it allows the addition of nested query results to a
concern graph as a single unit, and it tolerates inconsistencies between a concern graph and a model.
To leverage from the many benefits of integrating the tool in a state-of-the-art software development
environment, support for the new model was completely re-implemented as a plug-in for the Eclipse
platform. The first version of this plug-in (2.1.4) was released for public download in December
2002. This early version supported most of the features described in Chapter3, except that it did not
tolerate inconsistencies between a concern graph and the source code. It also still relied on bytecode
analysis to produce the program model.

To test whether the FEAT Eclipse plug-in provided the necessary support for concern graphs,
we conducted a preliminary study of program evolution with eight programmers, four of which were
required to use the FEAT tool, and four of which were required to perform the evolution task using
only the features of the Eclipse platform. This study is described in detail in a separate report [115].
The preliminary jEdit study uncovered two important issues with the new implementation of the
FEAT tool. First, the more sophisticated graphical user interface required additional training for de-
velopers to benefit from the tool. The issue of training in FEAT is discussed in detail in Section6.2.
Second, the tight integration of FEAT in the development life-cycle, including support for alterna-
tively building a concern graph and modifying the code, was essential. We thus further improved
the FEAT tool and its documentation to address these problems. This development resulted version
2.2.1, released in April 2003. The version of FEAT described in Chapter3 only implements minor
improvements to version 2.2.1. With all of the critical issues addressed, we replicated the original
study with two additional developers using FEAT. This last evaluation is described in Section4.5.
Because the issues with the original study were limited to the use of the FEAT tool, we did not
replicate the study with additional control participants. Instead, we used the two most successful
control participants in the original study to contrast with the FEAT participants in the final phase of
the study.

6.2 Training and the Use of FEAT

Our experience evaluating the FEAT tool with many different users has helped us identify the im-
portant factors that influence its effectiveness. Chief among these factors is the level of proficiency
achieved by users of the tool. Achieving a good level of proficiency requires proper training. We
have observed that the effectiveness of the training provided to FEAT users is influenced by three
overlapping factors: prior exposure to the concept of separation of concerns, experience with pro-
gram analysis and cross-reference queries, and experience with the use of software development
environments. To address these issues, we have ensured that our training material covered these

89

three areas. In particular, the step-by-step tutorial provided to the subjects in the jEdit study com-
prised:

1. An introductory section motivating, with examples, the need for proper modularization and
the concepts of separation of concerns;

2. A section describing how to perform queries and a list of the semantics of all the queries
supported by FEAT;

3. Instructions on how to use the basic features of Eclipse, such as performing searches and
using a code browser.

After experimenting with a FEAT training session of 60 minutes, we determined that this
amount of time was insufficient, and increased the training time to 90 minutes for the two final
replications of the jEdit study. After this amount of training, both of the FEAT subjects involved
in the jEdit study were able to use the tool properly. A time of 90 minutes thus constitutes a good
indication of the minimum effort required to use the FEAT tool effectively.

6.3 Capturing System Behavior with Concern Graphs

When analyzing the results of the AVID and jEdit studies, we observed that the code relevant to a
concern sometimes included complex program behavior. For example, to modify the AVID system,
the developer needed to consider a constraint on the order of calls to a method. As an other example,
when modifying the jEdit system, the developers needed to understand code managing the state of
a buffer. The subject in the AVID study (Section4.2), and most of the subjects who took part in
replications of the jEdit study (Section4.5), failed to properly understand some complex behavior of
the system. The program model extracted by FEAT does not support the investigation and capture
of this kind of behavioral information. This observation raises two important questions. First, can
concern graphs provide any help for complex cases? Second, should more support be provided?
In answer to the first question, the case studies have shown that concern graphs are helpful to de-
velopers because they provide a means to store a list of program elements that can act as anchors
and provide context when investigating complex code. In other words, although concern graphs
cannot explicitly capture complex interactions, they can point to the places where such interactions
occur, and, through concern names, provide some information about the context in which they oc-
cur. Evidence of this type of support is found in both the AVID and jEdit studies. For example, in
the jEdit study, both subjects, having realized that some part of a concern was not well understood,
used the concern graph to return precisely to the point where further investigation was required.
Concern graphs thus provide some minimal support for understanding complex code. There remain
the question of whether additional support should be available. At first glance, we can identify
three potential ways to provide additional support for fine-grained program investigation and cap-
ture: changes to the model to add ordering information, use of a finer-grained model, and support
for attaching free-form comments to elements in a concern graph. All these options have important
associated costs. First, changes to the model to accommodate ordering, or a finer-grained model,
both imply a larger database to store the model, slower analyses, and additional user-interface sup-
port to deal with the increased flexibility. Free-form comments suffer from the problem of decay,

90

as they are difficult to maintain consistent with the source code. Additional research is required
to determine whether any of these approaches present a more favorable trade-off between cost and
usefulness than the current version of the concern graph approach.

6.4 The Importance of a Good Seed

Throughout this dissertation, in the description of the concern graph approach, we have assumed that
a developer knows a relevant program location from where investigation can start. Based on such a
starting point, or seed, a developer can investigate related elements in the source code and build a
concern graph. Because concern graphs are designed to support a very focused investigation of the
source code, the approach is not intended to assist with the broad type of investigation related to the
identification of a seed. As described in Section3.2.1, the identification of a seed is a separate phase
of a program maintenance task, performed outside of the FEAT tool. There exists a variety of ways
a developer can obtain a seed for the investigation of the code pertaining to a maintenance task. One
can rely on other developers. This is the approach was have used in the AVID study (Section4.2),
and have simulated in the jEdit study (Section4.5). Other possibilities include broad lexical searches
for relevant keywords in all the source files, and specialized feature detection techniques (described
in section7.1.3).

During the evaluation of our technique for automatically inferring concern code from program
investigation activities (Chapter5), we observed that developers unfamiliar with a code base per-
formed much more focused and effective program investigation if a good seed had been provided.
This observation has two important consequences for potential adopters of the concern graph ap-
proach. First, one should only attempt to build a concern graph once a relevant seed has been
identified; failing to do so may result in effort wasted documenting irrelevant information. Second,
and more importantly, a database of concern graphs can provide an alternative source of poten-
tial seeds for other program evolution tasks. By perusing the concerns other developers have built
for tasks similar to a task at hand, a developer can potentially discover a good seed. Section6.6
discusses in more detail the improvements concern graphs can provide to the maintenance process.

6.5 Concern Interaction Analysis

One of the characteristics of the general concern graph model is the support for analyzing the inter-
actions between two concerns. Given two concern definitions, concern interaction analysis produces
a list of common participants between the concerns, and a list of relations between the participants
of one concern and the participant of the other concern (see Section2.3.1). We implemented sup-
port for concern interaction analysis in the FEAT tool in the form of the compare feature (see
Section3.2.2). In devising and implementing support for concern interaction analysis, our goal
was to increase the usefulness of concern graphs by providing a means for developers to analyze
whether and how two concerns interact without having to peruse the entire concern descriptions
and perform the analysis mentally. We evaluated the contribution of the concern interaction anal-
ysis to the usefulness of the concern graph approach as part of the jEdit study. In this study, the
training documentation for users of FEAT included detailed information about how to use concern

91

interaction analysis, examples for subjects to practice using the feature, and instructions detailing
the situations when concern interaction analysis could be useful. In spite of these provisions, none
of the six subjects who performed the evolution task on jEdit with FEAT used concern interaction
analysis in more than a cursory and exploratory way. Based on interview data, we established that
the subjects had not used interaction analysis because it had not been deemed useful. Specifically,
having just built a concern graph, the information captured by the concern graph was still fresh in
the subjects’ memory, and the concern interaction analysis was not seen as providing significant
help for the task. The usefulness of the concern interaction analysis thus remains an open question.
Our hypothesis is that, although it does not seem to be useful for developers initially investigating
a concern, it might help other developers accessing the concern at a later stage. Further research
should help us evaluate the usefulness of concern interaction analysis in different contexts.

6.6 The Influence of Concern Graphs on the Evolution Process

Having described how concern graphs can help developers perform software evolution tasks, we
can now comment on the influence of the use of concern graphs on the software evolution process.
As mentioned in the introduction, the process of modifying a software system can be separated
into three phases: understanding the existing software, modifying the existing software, and re-
validating the modified software. Using concern graphs to help in the evolution of a system does not
change this fundamental decomposition, nor does it add additional steps to the process. However,
more emphasis in put on the first phase, in the hope of achieving considerable benefits in the second.

Traditionally, during software evolution activities, more emphasis is put on the coding phase,
to the detriment of program investigation. Nevertheless, it is our belief that a complete and thorough
investigation of the implementation concerns involved in a change task significantly and positively
influences the quality of a change. Indeed, the risks of performing software modification without
fully understanding the implications of the change are well known [101]. Why, then, do developers
immediately engage in source code modifications following a simple and desultory investigation?
A potential justification for this practice it the perception, both by individuals and organizations,
that some of the time spent investigating source code is wasted, while time spent coding translates
into direct progress. Of course, nothing is further from the truth, as sloppy or incorrect program
changes can often lead to disastrous consequences. Nevertheless, as long as the value of detailed
analysis is not clearly and unequivocally demonstrated, the temptation will always exist to begin
a software change with a limited understanding of the code. Our goal, with concern graphs, is to
reduce the cost of program investigation by supporting a more systematic and focused process, and
at the same time provide more value out of program investigation by supporting the creation of
concern descriptions that can be used to support the software modification phase. It is our hope that,
by providing a means of lessening the cost and augmenting the value of the initial analysis phase of
program evolution, more developers will realize the importance of this activity.

Finally, by describing code relevant to a change, concern graphs have the potential to provide
support in the third phase of software evolution: revalidation of the modified software. The inves-
tigation of this possibility is outside the scope of this dissertation. However, our work on concern
graphs has already attracted the attention of researchers working on software testing [129].

92

6.7 Future Work

In the previous sections we have discussed different issues our past research on concern graphs has
raised, and possible ways additional investigation can help us further our understanding of the im-
pact of the concern graph approach, and of the way we can improve its effectiveness. Additionally,
the work described in this dissertation has stimulated original research directions. In this section,
we briefly discuss four new areas for future research involving concern graphs: automation of con-
cern graph construction, research on concern databases, experimentation with pattern-based code
investigation, and concern graph-based code refactoring.

6.7.1 Automatic Concern Graph Construction

From the onset, the idea of automatically creating concern graphs has shown promise. In Chapter5,
we presented a preliminary investigation of a technique for automatically creating concerns from
program investigation activities. This technique can be customized for different styles of program
investigation using a series of parameters. We envision the complete integration of the technique
into a development environment that would allow users to choose between different parameter con-
figurations before generating concerns. This will require research into the optimization of certain
configurations for certain investigation styles. Alternatively, it might be possible to add a phase
to the technique to automatically detect the best configuration based on general characteristics of
the program investigation as can be determined by a cursory examination of the transcript. Finally,
we plan to integrate the resulting concerns into the FEAT tool. This tight integration with FEAT
will allow users to immediately see the structural relations between the different elements in the
concerns produced by the algorithm and to modify and complete the representations identified by
the algorithm. The complete and integrated approach should render the documentation of concerns
seamless in the program evolution work flow.

We are also investigating an approach for automatic concern graph creation based on an anal-
ysis of the differences between two versions of the code base. Using this technique, a developer
can take a snapshot of the program model of a project at the beginning of a change task, perform
modifications to the source code, and then produce a concern graph representing the elements and
relations present in the last version of the code that were not present in the first version. This tech-
nique has been implemented and integrated in the FEAT tool by a co-op student in the Software
Practices Laboratory at the University of British Columbia. Compared to the technique described
above, which requires monitoring program investigation activities, the code differencing technique
can be applied to produce concerns using any version of the code available in a system’s revision
history. The concerns produced by this lasts technique, however, are typically less complete and
descriptive than the ones created based on human input. An additional possibility for further re-
search in this area is to experiment with a combination of the two approaches to automatic concern
construction.

6.7.2 Concern Databases

One of the underlying goals of the concern graph representation is to allow organizations to accumu-
late, through repeated evolution tasks, a collections of concern descriptions for a system. Effective
use of such databases will require tools and techniques to help developers find concern graphs of
potential interest. We have collected a series of concern graphs during the development of the FEAT

93

tool. Once a sufficient number is available, it will be possible to begin the proper investigation of the
problems surrounding the querying of concern databases. This investigation should, in turn, allow
us to evaluate how useful developers find concern graphs created by other developers for a different
task.

6.7.3 Pattern-based Code Investigation

A concern graph represents a network of interactions between concrete elements defined in a pro-
gram. By treating one or more of the participants in a concern graph as a variable, we obtain a
template of interactions. For example, let us assume that a concern graphc captures the interactions
m1() calls m2() andm2() accesses f1 . The concern graphc thus captures two interactions
between three program elements: two methods and one field. If we consider methodm2 to be a
variablex instead of a concrete program element, we obtain the template concernc(x), wherex can
take the value of any method in the program that is both called bym1and that accessesf1 . Such
templates can then be used to perform multi-predicate searches in a code base, to provide additional
help during program investigation. We are planning to investigate possible mechanisms for speci-
fying templates based on concern graphs, to investigate how to use these templates as the basis for
searches, and to evaluate the usefulness of the results produced in the context of prgram evolution
tasks.

6.7.4 Concern Graph-based Code Refactoring

In certain cases, scattered concerns can prove to be a constant burden on developers during repeated
program evolution tasks. In such cases, it might be warranted to refactor the code base to explicitly
modularize the offending concerns. Refactoring usually involves the modification of source code
through a series of stereotypical changes that can be semi-automated [43]. For example, one typical
refactoring consists in moving a method definition to its super-class. The Eclipse platform pro-
vides automated support for simple refactorings. One interesting use of concern graph is to specify
source code that should be the target of such refactoring, and to provide support for automating
the refactoring process. To account for scattered concerns, source code can be refactored either by
modifying the system in its native programming language, but also by porting the system to a lan-
guage supporting an advance separation of concerns mechanism (see Section1.1). In both cases, a
concern graph can form a basis for the semi-automatic refactoring process. We are currently investi-
gating how concern graphs can provide support for refactoring concerns into aspects in the AspectJ
language [68].

94

Chapter 7

Related Work

In this chapter, we discuss work related to the concern graph approach. We categorize related work
into three groups: approaches proposed to help developers find source code relevant to a concern
or change task (Section7.1), approaches aimed at documenting and analyzing concerns in source
code (Section7.2), and approaches aimed at detecting and managing inconsistencies in software
engineering artifacts (Section7.3).

7.1 Concern Code Location

Many program understanding and reverse engineering tools and techniques have been proposed to
help a developer discover the code related to a program evolution task. The different code location
techniques described in the literature rely on a variety of information, such as the static structure
of programs, program execution traces, and software documentation. In this section, we present an
overview of the main types of code location techniques: use of cross-referencing tools, program
slicing, feature location approaches, and code clustering techniques. Although all these techniques
can help with the concern location problem, none of them supports the documentation of concerns.

7.1.1 Cross-referencing Tools

Cross-referencing tools, such as code browsers and program databases, allow developers to perform
queries that elicit the relations between different program elements that may potentially be scattered
in source code. The main purpose of cross-referencing tools is to provide developers with informa-
tion that cannot be obtained easily through source code inspection. For example, one typical query
supported by cross-referencing tools is the determination of the callers of a function or method.

Cross-referencing support has been an important part of some programming language environ-
ments. As early as 1981, the Interlisp programming environment included Masterscope [136], an
interactive program supporting cross-referencing queries that provided developers with information
such as the callers of a function or the accessors of variables. Similar functionality was integrated
in environments for other languages, such as Smalltalk [47], and Trellis/Owl [94]. These languages
and environments benefited from an early and integrated support for cross-reference queries partly
because a program database formed an intrinsic component of their architecture.

Support for cross-referencing in more mainstream languages usually takes the form of separate,
stand-alone tools. The C Information Abstractor (CIA) [25] is a program database supporting cross-

95

reference queries for C programs [66]. The information used by CIA is collected through an analysis
of the original source files. Tools have also been developed for C++ [132] programs, which present
additional challenges to developers trying to understand scattered concerns, such as inheritance and
dynamic binding. For example, the XREF/XREFDB system of Lejter et al. [72] allows developers
to perform queries on a database of relations for a C++ program through the interface of the Emacs
text editor [130].

Tools have also been developed to view structural program information collected in program
databases. Ciao [24] is a graph-based navigator created to help developers view the relations pro-
duced by CIA. Rigi [81, 131] shows the relationships between different program elements in a graph
representation.

Finally, recent environments have been developed for the Java language that support cross-
reference querying. For example, the Eclipse platform [93] discussed earlier in this dissertation
supports cross-reference queries. The JQuery tool of Janzen and De Volder [63], developed as an
Eclipse plug-in, allows a developer to form specialized browsers to navigate code, and to perform
queries in these browsers while retaining navigation context.

Although cross-referencing tools allow developers to find information that is potentially useful
in identifying the source code relevant to a change, the context for collecting the information is
limited. Specifically, the tools mentioned above do not support accumulating arbitrary results of
queries in a network of program elements. In the cases where some context-sensitivity is provided,
such as the browsers of JQuery, it is only in the form of a sequential history of queries; choosing
a non-contiguous subset is not possible. As a result, when using these tools, a developer must
manually build a list of program elements pertaining to a concern and manage the context in which
these elements are used and queried. In brief, although cross-reference tools can help address the
concern location problem, their support for program evolution tasks involving scattered concerns is
limited by their lack of support for concern documentation.

7.1.2 Program Slicing

Program slicing denotes a type of analysis intended to identify the parts of a program that may affect
the values computed at some point of interest [138]. Slicing was originally defined by Mark Weiser
as a static analysis technique [146], but dynamic variants have since been developed. Slicing can
be formulated as a graph reachability problem [98] on a program representation called the Program
Dependence Graph (PDG) [40]. A PDG is a graph representing a combination of control- and
data-flow dependences between statements in a program. Slicing can be used for many software
engineering tasks such as parallelization, debugging [78, 145], or reverse engineering [10]. For
maintenance activities, slicing can be used to help determine the impact of changes [45]. Visual
techniques have also been developed to help in this process [44, 60].

Many variants of slicing have been proposed to deal with technical issues such as the slicing
of programs with procedures [58], or of object-oriented programs [75, 139]. In particular, Jackson
and Rollins have proposedchopping[62], a generalization of slicing based on a different program
dependence graph supporting both a modular treatment of procedures, and a fine-grained slicing
taking into account the influence of individual variables (as opposed to statements). Chopping has
been shown to produce more accurate results than traditional slicing based on the PDG.

Although they are conceptually appealing techniques, static slicing and its variants suffer from

96

many practical limitations. First, computing slices can be expensive [146]; pragmatic considerations
may require lower-precision data-flow analyses [76, 140], resulting in coarser, more conservative
results. Furthermore, trade-offs related to the analysis of programs with pointers lead to additional
conservativeness [56]. Finally, because a statement is often transitively dependent on many other
statements, slices are often very large [62, 146]. This problem is only exacerbated by more conser-
vative analyses.

Dynamic slicing [1, 52] is another variant of slicing that takes into account program execution
trace information. Specifically, dynamic analysis only considers program dependences that occur
in a specific execution of the program. As such, the input to dynamic slicing tools must include a
representation of the execution of a program based on a specific input.

For the purpose of helping developers find code relevant to a concern, one major limitation of
slicing is that only one type of concern can be identified: code related through a control- and data-
flow criterion. As such, slicing cannot be used to automatically infer the code relevant to a concern.
For example, code relevant to a concern but unrelated in the program, such as code exchanging
data through a file, may not be identified by slicing. Finding this code requires human intervention.
Another drawback of slicing is that it does not discriminate between interesting and boilerplate
code. For this reason also, slicing cannot be used to automatically infer concerns, since a slice is
bounded by a graph reachability criterion, as opposed to a human-centric evaluation of relevance.
In brief, the results produced by slicing will not always correspond to the code relevant to concerns
a developer has when changing a program. Even if slicing can be used to help a developer reason
about the impact of a statement on the behavior of a program, at some point, the developer will need
to investigate source code manually (or semi-automatically), to focus on specific areas of interest.
Concern graphs have been designed to support this latter activity.

7.1.3 Feature Location Techniques

Different techniques have been proposed to help developers identify parts of the source code that
implement user-level features.

The Software Reconnaissance technique developed by Wilde et al. identifies features in source
code based on a analysis of the execution of a program [150, 149]. Software Reconnaissance deter-
mines the code implementing a feature by comparing a trace of the execution of a program in which
a certain feature was activated to one where the feature was not activated. Given a featuref and test
cases that exercise and do not exercisef , the analysis produces four sets ofcomponents:

• Common components: the set of components exercised in all test cases;

• Components potentially involved with f: the set of components that are executed in at least
one test case that exhibitsf ;

• Components indispensably involved in f: the set of components exercised in all of the test
cases exhibitingf ;

• Components uniquely involved in f: the set of components that are exercised in some test case
exhibitingf and excluding any component exercised in any test case that do not exhibitf .

97

The technique does not explicitly define the notion of component, and as such different defi-
nitions can be used (e.g., functions, statements). However, based on their experience, the inventors
of the technique have found that the most useful definition of component is that of the control-flow
arc [150]. Experience with the technique on industrial systems ranging between 10 and 28 kLOC of
C and C++ code showed that, although the technique could not always find all or even some of the
source code implementing a feature, the set of components uniquely involved inf usually provided
a good starting point for developers to investigate the source code [148]. A tool, TraceGraph, was
developed to support the visualization of the difference between execution traces, to help identify
and locate the code implementing specific features [77].

Wong et al. proposed an approach that is also based on the analysis of the difference between
program execution traces [151]. The approach of Wong et al. provides results similar to the Software
Reconnaissance technique, but, in addition, presents results at different levels of granularity (e.g.,
files, lines of code, blocks).

A third approach to feature location based on dynamic analysis was developed by Eisenbarth
et al. [38, 39]. Eisenbarth et al. produce the mapping between components and test cases using
mathematical concept analysis (a partial ordering and clustering technique [126]). In addition to
producing a basic mapping between components and test cases, the approach of Eisenbarth et al.
involves the refinement of the feature-to-code mapping through inspection by a developer of a static
dependency graph of the program analyzed. This step helps achieve a more precise and complete
description of the code implementing a feature, at the cost of additional effort for developers using
the technique.

Software Reconnaissance and the respective approaches proposed by Wong, Eisenbarth, and
their colleagues, like any dynamic analysis approach, depend on the availability and quality of test
cases for an executable system. In contrast, the construction of concern graphs is based on source
code, and can be applied to incomplete or incorrect code. As these approaches based on dynamic
analysis have achieved some success in identifying good starting points for program investigation,
they can be considered complementary to the use of concern graphs to support program evolution
tasks.

A semi-automatic technique for feature location based on static analysis has been proposed
by Chen and Rajlich [23]. Using this technique, a developer navigates a system dependency graph
computed through a static analysis of the source code of a program. The graph produced is a model
of a program not unlike the model we use for concern graphs. It details relations between globally-
defined elements (e.g., functions and global variables in a C program). The technique involves a
systematic, computer-assisted search through the dependency graph to find elements related to a
feature. This approach is limited in that it does not allow users to find concern elements that are
related through a non-concern element, since the technique dictates that the search must stop on a
path once a unrelated element is reached. In a recent study [147], Wilde et al. have compared the
dependency graph method of Chen and Rajlich to the Software Reconnaissance method on legacy
Fortran code. The results showed that, although both methods were successful in identifying code
relevant to a feature, Software Reconnaissance was better suited to large and infrequently changed
programs, and the dependency graph method was better suited to programs that require a deep
investigation by developers.

Finally, Antoniol et al. have proposed an approach to determine a set of components poten-

98

tially affected by a maintenance tasks using a probabilistic analysis of the text of the maintenance
request [4]. This approach, however, produces results only at the granularity of high-level compo-
nent (classes), and could not be used to produce concern graphs.

There are two important distinctions between the work discussed above and the concern graph
approach. The first lies in the nature of the concerns analyzed. All the approaches above focus
on identifying the code relevant to features that can be expressed at the user level. These form a
proper subset of the concerns a developer might wish or need to investigate. Often, developers must
investigate code overlapping different features to understand enough of the system to respect the
existing design. Because it is independent of the execution of specific features, the concern graph
approach is flexible enough to capture any subset of a program as a concern. A second important
difference is that the approaches discussed in this section focus primarily on finding the source code
implementing a feature, whereas the primary goal of a concern graph is to document this information
in a robust fashion.

7.1.4 Clustering Techniques

Some design recovery techniques have been proposed to identify code that would constitute a candi-
date for refactoring into a module or object. These approaches are typically based on the analysis of
relations between different program elements, such as “x usesy”, and determine cohesive program
subsets using various clustering algorithms. For example, de Oca and Carver propose an approach
to identify data cohesive subsystems in COBOL programs using data mining techniques [31]. van
Deursen and Kuipers report on the use of both cluster and concept analysis to identify potential
objects in non-object-oriented code [142]. Siff and Reps [123], and Tonella [141] both propose
approaches to module identification in legacy systems based on concept analysis. In practice, the
results of applying these techniques correspond to scattered concerns. However, the resulting con-
cerns are not task-specific: developers cannot infer concerns related to a specific feature or im-
plementation concept. In contrast, our approach to finding source code relevant to concerns, both
with and without automation, factors in the focus of the developers during program investigation,
allowing the capture of concerns that are of immediate interest to program developers.

7.2 Concern Documentation

Scattered concerns are a fundamental issue in software development, and many approaches have
been proposed that involve the explicit description and documentation of concerns to aid in various
software engineering tasks. Mechanisms for describing concerns have been proposed for tasks at
different stages of the software development process (e.g., requirement specification [105], and
design [30]). Descriptions of concerns also span the full spectrum of levels of abstraction, with
some approaches supporting the definition of concern corresponding to features at the architectural
level, and the generation of code to implement these concerns [9] in the context of software product
lines [49]. Not all of these approach address the problem of finding and documenting concerns
in source code. In this section, we discuss the approaches specifically addressing the problem of
describing concerns at the implementation level.

99

7.2.1 Textual Documentation

Early empirical evidence that scattered concerns pose problems to programmers was collected by
Soloway, Letovsky, et al. during different studies of professional programmers [74, 127]. In one
study, conducted at NASA’s Jet Propulsion Laboratory, Soloway et al. observed that the program-
mers who did not implement a correct modification to a small system “failed to understand the
casual interactions inherent in one of the key delocalized plans.” [127: p. 1262]. To address the dif-
ficulty of performing maintenance on code involving delocalized plans (or, in other words, scattered
concerns), the researchers propose that programmers produce explicit documentation detailing de-
localized plans in programs. Their initial approach is a form of paper documentation where source
code is presented in parallel with pointers linking the code to other relevant sections of a program,
and detailing the rationale for different design and implementation decisions. The authors also
mention the possibility of computer-assisted documentation, but do not elaborate. Although the
idea of Soloway et al. is based on sound empirical observations, their proposed solution has several
limitations. First and foremost, no evaluation of its cost-effectiveness is performed, and we can
surmise that the real cost of pre-emptively documenting scattered concerns is high. Furthermore,
this cost may not always be warranted as some scattered concerns may never be revisited. Finally,
textual documentation in plain language suffers from the problem of decay: in order to remain con-
sistent, it must be updated in parallel with the code. This introduces the possibility of misleading
discrepancies between the code and the documentation creeping in as a program goes through many
modifications. Compounding this problem are the facts that human-produced documentation can be
wrong, and that there is no way to automatically detect inconsistencies between plain-language doc-
umentation and source code. For these reasons, the documentation technique proposed by Soloway
et al. is not practical. The concern graph approach proposed in this dissertation shares the goal of
documenting scattered concerns, but addresses most of the limitations of a manual approach. In
particular, using concern graphs, concern documentation, can be produced at a minimal cost, and
inconsistencies between the documentation and source code can be automatically detected and re-
paired. The trade-off for these advantages is a lack of support for documenting design rationale in
concern graphs that is possible in free-form documentation.

7.2.2 Conceptual Modules

A different approach to documenting scattered concerns is the idea of conceptual modules [7]. The
intent of the conceptual modules approach is to allow a developer to query a program both in terms
of the existing and of a desired structure. In practice, a conceptual module captures segments of
a program as a list of lines of source code. The approach is supported by a tool that can produce
information such as input, output, and local variables for a conceptual module, the definitions and
uses of variables in a conceptual module, calls made to and by code in the module, and relationship
information between conceptual modules. The goals of the concern graph and conceptual module
approaches are different; the goal of conceptual modules is to allows precise queries on source code,
whereas the goal of concern graphs is to capture knowledge about the implementation of a concern
in source code. This divergence in point of view translates into a practical differences: conceptual
modules do not abstract the essential structure of a concern. As a consequence, conceptual modules
can only exist on one version of a system, and cannot be used to described knowledge about the
implementation of a concern through a program’s life-cycle.

100

7.2.3 Concern Visualization Tools

Concerns can also be described in terms of subsets of the program text matching different queries.
The Aspect Browser is a tool developed to help developers find concerns using lexical searches
of the program text [50]. Concerns found in this fashion can be stored and viewed at different
times to support program evolution tasks. Aspect Browser uses the Seesoft [37] concept and a map
metaphor to graphically represent the location of code implementing concerns in the context of the
entire code base. The Aspect Mining Tool (AMT) [54] is conceptually similar to Aspect Browser,
but supports additional queries based on types. The Aspect Browser and AMT can be used both
for finding and documenting concerns. However, because they only support the specification of
concerns based on lexical matches to regular expressions and use of types, their expressive power is
limited. Additionally, these tools do not support the detection and repair of inconsistencies between
a concern and a code base. Finally, the text-oriented approach also limits the tools’ ability to capture
relationships between scattered program elements explicitly.

7.2.4 Virtual Files

Descriptions of scattered concerns can also be captured asvirtual files. In software development
environments, the idea of virtual files is to present various segments of source code and other system
documentation relevant to a task as a single unit. For example, the Desert Environment [106]
explicitly supports the concept of virtual files. In Desert, a developer can load a virtual file consisting
of fragments of other source files, and edit the virtual file. The system provides the logic for saving
the fragments after they are edited. The system also provides support to build fragment files from
a list of fragment names. The Stellation system [28, 29] is a fine-grained software configuration
management system that supports method-level storage management. Using a concept similar to
Desert, Stellation is intended to supports the concept of virtual source files using a typed aggregation
mechanism that supports the collection of different program elements and other artifacts (such as test
cases) in a single unit for the purpose of configuration management. Besides explicit specification,
the proposal for Stellation includes the possibility of specifying aggregates in terms of query results.

Virtual files can provide a means of documenting scattered code that implements a concern.
However, these mechanisms do not address the concern location problem, and virtual files must be
composed by a developer who already knows about the location of the code implementing a concern.
The mechanisms proposed for Desert and Stellation also do not include support for tolerating and
managing inconsistencies between a virtual file and the source code. In particular, the proposal for
Stellation does not detail how externalized virtual files relying on queries can be re-generated in the
presence of inconsistencies.

7.2.5 Advanced Separation of Concerns Mechanisms

Finally, concerns can be captured explicitly by changing the source code to factor the code rele-
vant to a concern into a special module. This functionality is supported by advanced separation
of concerns mechanisms. Section1.1 presents an overview of such mechanisms, and of the issues
they address. Changing the source to explicitly modularize scattered concerns is a very different
approach than the use of concern graphs. First, the cost and associated risks of re-modularizing a
program in an separate language are much higher, and as such the change might not be warranted

101

in all cases. Second, advanced separations of concerns mechanism are not flexible enough to sup-
port the encapsulation of all the potential concerns emerging during program evolution. In contrast,
concern graphs provide an inexpensive way to describe concerns in programs without requiring any
change to the code.

7.3 Inconsistency Management

There exists a large body of work in computer science addressing the problem of managing the
consistency between different pieces of information. In this section, we provide an overview of
the significant work in the area of software engineering, and discuss the relevance of our work on
concern graphs.

One expression of the need for inconsistency management came with the apparition of soft-
ware development environments (e.g., Centaur [19], Arcadia [65, 135]). Such tools require the
management of consistency between different artifacts related to a program (e.g., textual views of
the source code, abstract syntax trees, and control-flow graphs). To help address this problem,
frameworks have been proposed that explicitly account for consistency management [53, 86, 133].

An important development in the research on consistency management was the realization
that enforcing total consistency might not always be possible or even desirable [41]. This idea
was originally proposed by Balzer [6] based on research on data management. Balzer proposes to
temporarily tolerate certain inconsistencies, by marking inconsistent data using “pollution markers”.
We have retained this approach to implement inconsistency management for concern graphs.

Research on inconsistency management has also been done to support requirement specifica-
tions [55, 92]. In the area of design, Finkelstein et al. studied the issues related to inconsistency
handling in situations where potentially overlapping elements of design (design fragments) can be
specified by different developers having different perspectives [42]. However, work on inconsis-
tency checking with viewpoints has remained of a mostly theoretical nature [90].

Lastly, with the advent of development systems distributed over the Internet, new problems
have appeared related to the management of the consistency of distributed, heterogeneous data.
Systems have been proposed to address this new problem. For example, xlinkit, a lightweight
framework for consistency checking [87, 88, 89, 90], supports the incremental detection and repair
of inconsistencies in a web of heterogeneous, distributed software engineering documents.

Most of the published research on consistency management has focused on developing frame-
works supporting a holistic and unified view of inconsistency management. This strategy has the
advantage of providing sound solutions that apply in a variety of situations involving a variety of
data. For example, the rules supported by the xlinkit environment mentioned above support checks
to the documents both within and across development stages. An important tradeoff of this general
approach is that additional effort must be spent implementing the framework for a desired situa-
tion: consistency rules have to be written and tested, and developers have to be trained to use them.
Additionally, by supporting a solution to a general problem, frameworks cannot leverage from the
semantics of specific inconsistencies to provide additional help to developers.

In our effort to minimize the cost of using concern graphs, we have instead developed a spe-
cialized approach to consistency management. The mechanism we developed for concern graphs
has a simple model that can detect a single type of inconsistency: mismatches between a fragment

102

projection and a model of the source code. Our mechanism also involves a small and fixed number
of consistency rules that do not need to be updated by users of concern graphs. Indeed, by defining
our notion of inconsistency at the level of the general program model for concern graphs, we en-
sure that management of inconsistencies is independent of any concrete program model instantiated.
Finally, and perhaps most importantly, having a dedicated inconsistency management mechanism
allowed us to provide tool support for managing specific consistency rules. As we found (see Sec-
tion 4.6), dedicated tool support for inconsistency management is a powerful feature that supports
not only detecting and repairing inconsistencies, but also reasoning about their cause with the help
of visualization and queries. In brief, the contribution of our approach in the area of inconsistency
management is the demonstration that a specialized mechanism can provide support for reasoning
about inconsistencies that goes beyond simple detection and repair. For example, as we have shown
in Section4.6, the support we have implemented for detecting and visually representing inconsistent
fragments in FEAT allowed us to determine the indirect cause of an inconsistency, and to manually
repair the inconsistency to account for this cause.

103

Chapter 8

Conclusions

Evolving programs can be a difficult task, especially when it requires a developer to locate and
understand scattered concerns—considerations a developer might have about the implementation of
a program which are not implemented in a single location in the code.

The motivation for the work described in this dissertation is to help developers locate and un-
derstand scattered concerns, and to document the code relevant to these concerns so that knowledge
about their implementation needs not be repeatedly re-acquired. To achieve this goal, we propose,
during program investigation activities, to produce descriptions of the code implementing a concern.
Capturing concern representations can thus support both the investigation at hand, and later tasks
involving the same concerns.

As such, the thesis of this dissertation has been that a description of concerns, representing
program structures and linked to source, that can be produced cost-effectively during program in-
vestigation activities, can help developers perform software evolution tasks more systematically,
and on different versions of a system.

To investigate the claims expressed in this thesis statement, we developed the concept of con-
cern graphs, a model for describing concerns in source code based on relations between elements
defined in a program. The concern graph model is general, and can be instantiated to capture differ-
ent types of relations between different types of elements in different programming languages. The
model also defines precisely the notion of inconsistency between a concern graph and the corre-
sponding source code. To experiment with concern graphs, we have developed a tool, called FEAT,
that allows developers to iteratively build concern descriptions as the source is investigated, to view
the code related to a concern, and to perform analyses on the concern representation. We have also
developed an algorithm to automatically generate concern graphs based on a transcript of program
investigation activities. Using FEAT, we have evaluated the cost and usefulness of concern graphs
in a series of case studies involving the evolution of five different systems of different size and style.
The results show that concern graphs are inexpensive to create during program investigation, can
help developers perform program evolution tasks more systematically, and are robust enough to be
used with different versions of a system.

In addition to demonstrating the validity of the thesis statement, the research described in this
dissertation makes six contributions to the field of software engineering.

First, we provide a general model for describing concerns in source code. As a consequence
of the generality of the model, the analyses and tool support required to support concern graphs in
different languages can, to a large extent, be reused.

104

Second, we provide a specific instantiation of the model for the Java language, and a discussion
of the issues of usability and scalability related to the use of this specific model. Other researchers
can rely on this knowledge to extend or adapt our model to suit different purposes.

Third, we provide a usable tool capable of supporting the concern graph approach for Java pro-
grams. Researchers and developers can download our tool freely to conduct research on separations
of concerns and modularity, and to integrate the use of concern graphs in industrial settings.

Fourth, we describe an algorithm that can automatically infer concerns from a transcript of
the program investigation of a developer. This algorithm serves as a proof of concept that such a
technique is possible, and that it can produce documentation for scattered concerns at a minimal
cost.

Fifth, we provide an in-depth description of the design of five empirical studies of program
evolution, of the issues and problems we have encountered, and of the steps we have taken to
address them. This knowledge can be useful to researchers wishing to develop similar studies of
programmers performing software evolution tasks.

Finally, we demonstrate a specialized mechanism for the management of inconsistencies be-
tween a description of source code and an actual code base that can provide support for reasoning
about the indirect cause of an inconsistency, in addition to the simple detection and repair of incon-
sistencies.

In conclusion, although our approach is still at an early stage, the idea of using concern graphs
to support program evolution tasks shows promise, and we envision its eventual deployment in an
industrial setting.

105

Bibliography

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. InProceedings of the
ACM SIGPLAN 1990 Conference on Programming Language Design and Implementation,
pages 246–256. ACM Press, New York, NY, USA, June 1990.97

[2] Alfred V. Aho. Pattern matching in strings. In Ronald V. Book, editor,Formal Language
Theory: Perspectives and Open Problems, pages 325–347. Academic Press, New York, NY,
USA, 1980. 10

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles, Techniques, and
Tools, chapter 6: Type Checking. Addison-Wesley Publishing Company, Reading, MA, USA,
1986. 18

[4] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering code to documentation
links in OO systems. InProceedings of the 6th Working Conference on Reverse Engineering,
pages 136–144. IEEE Computer Society Press, Los Alamitos, CA, USA, October 1999.99

[5] David F. Bacon. Fast and effective optimization of statically typed object-oriented languages.
Ph.D. Thesis CSD-98-1017, University of California, Berkeley, CA, USA, October 1998.43,
122

[6] Robert Balzer. Tolerating inconsistency. InProceedings of the 13th International Conference
on Software Engineering, pages 158–165. IEEE Computer Society Press, Los Alamitos, CA,
USA, May 1991. 42, 102

[7] Elisa L.A. Baniassad and Gail C. Murphy. Conceptual module querying for software reengi-
neering. InProceedings of the 20th International Conference on Software Engineering, pages
64–73. IEEE Computer Society, Los Alamitos, CA, USA, April 1998.10, 11, 100

[8] Elisa L.A. Baniassad, Gail C. Murphy, Christa Schwanninger, and Michael Kircher. Manag-
ing crosscutting concerns during software evolution tasks: An inquisitive study. InProceed-
ings of the 1st Conference on Aspect-Oriented Software Development, pages 120–126. ACM
Press, New York, NY, USA, April 2002.9, 10, 32

[9] Don Batory, Roberto E. Lopez-Herrejon, and Jean-Philippe Martin. Generating product-
lines of product-families. InProceedings of the 17th International Conference on Automated
Software Engineering, pages 81–92. IEEE Computer Society Press, Los Alamitos, CA, USA,
September 2002.99

106

[10] Jon Beck and David Eichmann. Program and interface slicing for reverse engineering. In
Proceedings of the 15th International Conference on Software Engineering, pages 509–518.
IEEE Computer Society Press, Los Alamitos, CA, USA, May 1993.96

[11] Kent Beck. Embracing change with extreme programming.IEEE Computer, 32(10):70–77,
October 1999.5

[12] Laszio A. Belady and M. M. Lehman. A model of large program development.IBM Systems
Journal, 15(3):225–252, 1976.1

[13] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Program understanding and
the concept assignment problem.Communications of the ACM, 37(5):72–82, May 1994.1

[14] Barry W. Boehm. Software engineering.IEEE Transactions on Computers, 12(25):1226–
1242, December 1976.1

[15] B.W. Boehm, J.R. Brown, and M. Lipow. Quantitative evaluation of software quality. In
Proceedings of the 2nd International Conference on Software Engineering, pages 592–605.
IEEE Computer Society Press, Los Alamitos, CA, USA, October 1976.1

[16] Shawn A. Bohner. Software change impact analysis for design evolution. InProceedings
of the 8th International Conference on Software Maintenance and Re-engineering, pages
292–301. IEEE Computer Society Press, Los Alamitos, CA, USA, 1991.1

[17] Shawn A. Bohner and Robert S. Arnold.An Introduction to Software Change Impact Analy-
sis, pages 1–26. IEEE Computer Society Press, Los Alamitos, CA, USA, 1996.1

[18] Shawn A. Bohner and Robert S. Arnold, editors.Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.5

[19] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. Cen-
taur: the system. InProceedings of the 3rd ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, pages 14–24. ACM Press,
New York, NY, USA, November 1988.102

[20] Lars Bratthall and Magne Jørgensen. Can you trust a single data source exploratory software
engineering case study?Empirical Software Engineering, 7(1):9–26, March 2002.56

[21] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, and Eve Maler, editors.Extensible Markup
Language (XML) 1.0. W3C, 2nd edition, 2000.42

[22] Per Cederqvist.Version Management with CVS. Signum Support AB, Link̈oping, Sweden,
November 1993.10

[23] Kunrong Chen and V́aclav Rajlich. Case study of feature location using dependence graph. In
Proceedings of the 8th International Workshop on Program Comprehension, pages 241–247.
IEEE Computer Society Press, Los Alamitos, CA, USA, 2000.98

107

[24] Yih-Farn Chen, Glenn S. Fowler, Eleftherios Koutsofios, and Ryan S. Wallach. CIAO: A
graphical navigator for software and document repositories. InProceedings of the Interna-
tional Conference on Software Maintenance, pages 66–75. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1995.96

[25] Yih-Farn Chen, Michael Y. Nishimoto, and C.V. Ramamoorthy. The C information abstrac-
tion system.IEEE Transactions on Software Engineering, 16(3):325–334, March 1990.10,
30, 95

[26] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery: A
taxonomy.IEEE Software, 7(1):13–17, January 1990.10

[27] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient and precise mod-
eling of exceptions for the analysis of Java programs. InProceedings of the ACM SIGPLAN-
SIGSOFT workshop on Program Analysis for Software Tools and Engineering, pages 21–31.
ACM Press, New York, NY, USA, September 1999.18, 31

[28] Mark Chu-Caroll, James Wright, and David Shields. Supporting aggregation in fine grained
software configuration management. InProceedings of the ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, pages 99–108. ACM Press, New
York, NY, USA, November 2002.101

[29] Mark C. Chu-Carroll and Sara Spenkle. Coven: Brewing better collaboration through soft-
ware configuration management. InProceedings of the ACM SIGSOFT 8th International
Symposium on the Foundations of Software Engineering, pages 88–97. ACM Press, New
York, NY, USA, November 2000.101

[30] Siobh́an Clarke, William Harrison, Harold Ossher, and Peri Tarr. Subject-oriented design:
Towards improved alignment of requirements, design and code. InProceedings of the Con-
ference on Object-oriented Programming, Systems, Languages, and Applications, pages 325–
339. ACM Press, New York, NY, USA, November 1999.99

[31] Carlos Montes de Oca and Doris L. Carver. Identification of data cohesive subsystems us-
ing data mining techniques. InProceedings of the International Conference on Software
Maintenance, pages 16–23. IEEE Society Press, Los Alamitos, CA, USA, November 1998.
99

[32] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. InProceedings of the European Conference on Object-
oriented Programming, volume 952 ofLecture Notes in Computer Science, pages 77–101.
Springer-Verlag, Heidelberg, Germany, August 1995.43, 122

[33] Edsger W. Dijkstra. The structure of the ”THE”-multiprogramming system.Communications
of the ACM, 11(5):341–346, May 1972.3

[34] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ,
USA, 1976. 3

108

[35] Jay Earley. An efficient context-free parsing algorithm.Communications of the ACM,
13(2):94–102, February 1970.18

[36] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron, and Audis Mockus. Does
code decay? assessing the evidence from change management data.IEEE Transactions on
Software Engineering, 27(1):1–12, 2001.5

[37] Stephen G. Eick, Joseph L. Steffen, and Eric E. Summer, Jr. Seesoft—A tool for visualizing
line oriented software statistics.IEEE Transactions on Software Engineering, 18(11):957–
968, November 1992.3, 101

[38] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Derivation of feature component
maps by means of concept analysis. InProceedings of the 5th European Conference on
Software Maintenance and Reengineering, pages 176–179. IEEE Computer Society Press,
Los Alamitos, CA, USA, March 2001.98

[39] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in source code.
IEEE Transactions on Software Engineering, 29(3):210–224, March 2003.98

[40] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization.ACM Transactions on Programming Languages and Systems,
9(3):319–349, July 1987.15, 29, 96

[41] Anthony Finkelstein. A foolish consistency: Technical challenges in consistency manage-
ment. InProceedings of the 11th International Conference on Database and Expert Sys-
tems Applications, volume 1873 ofLecture Notes in Computer Science, pages 1–5. Springer-
Verlag, Heidelberg, Germany, September 2000.102

[42] Anthony C. W. Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer, and Bashar Nu-
seibeh. Inconsistency handling in multiperspective specifications.IEEE Transactions on
Software Engineering, 20(8):569–578, August 1994.102

[43] Martin Fowler. Refactoring—Improving the Design of Existing Code. Object Technologies
Series. Addison-Wesley, Boston, MA, USA, 2000. With contributions by Kent Beck, John
Brant, William Opdyke, and Don Roberts.5, 87, 94

[44] Keith B. Gallagher. Visual impact analysis. InProceedings of the International Conference
on Software Maintenance, pages 52–58. IEEE Computer Society Press, Los Alamitos, CA,
USA, November 1996.96

[45] Keith Brian Gallagher and James R. Lyle. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8):751–761, August 1991.10, 96

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns—
Elements of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley Longman, Inc., Reading, MA, USA, 1995.4, 5

[47] Adele Goldberg.Smalltalk-80: The Interactive Programming Environment. Addison-Wesley
Publishing Company, Reading, MA, USA, 1984.10, 95

109

[48] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Specification.
Addison-Wesley Longman, Inc., Reading, MA, USA, 2nd edition, 2000.3, 121

[49] Martin L. Griss. Implementing product-line features with component reuse. InProceedings
of the 6th International Conference on Software Reuse, volume 1844 ofLecture Notes in
Computer Science, pages 137–152. Springer-Verlag, Heidelberg, Germany, June 2000.99

[50] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting the map metaphor in a
tool for software evolution. InProceedings of the 23rd International Conference on Software
Engineering, pages 265–274. IEEE Computer Society Press, Los Alamitos, CA, USA, May
2001. 11, 101

[51] Object Management Group.OMG Unified Modeling Language Specification, 2000. Version
1.3. 30

[52] Tibor Gyimóthy, Árpád Besźedes, and Istán Forǵacs. An efficient relevant slicing method
for debugging. InProceedings of the 7th European Software Engineering Conference and
7th ACM SIGSOFT International Symposium on the Foundations of Software Engineering,
volume 1687 ofLecture Notes in Computer Science, pages 303–321. Springer-Verlag, Hei-
delberg, Germany, September 1999.97

[53] Torben Mejlvang Hagensen and Bent Bruun Kristensen. Consistency in software system
development: Framework, model, techniques & tools. InProceedings of the 5th ACM SIG-
SOFT Symposium on Software Development Environments, pages 58–67. ACM Press, New
York, NY, USA, December 1992.102

[54] Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposition in legacy
code. Position paper for the ICSE 2001 Workshop on Advanced Separation of Concerns in
Software Engineering, May 2001.101

[55] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated consistency
checking of requirement specifications.ACM Transactions on Software Engineering and
Methodology, 5(3):231–261, July 1996.102

[56] Michael Hind and Anthony Pioli. Which pointer analysis should i use? InProceedings of
the International Symposium on Software Testing and Analysis, pages 113–123. ACM Press,
New York, NY, USA, August 2000.97

[57] Susan Horwitz and Thomas Reps. The use of program dependence graphs in software en-
gineering. InProceedings of the 14th International Conference on Software Engineering,
pages 392–411. ACM Press, New York, NY, USA, May 1992.15

[58] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence
graphs.ACM Transactions on Programming Languages and Systems, 12(1):26–60, January
1990. 96

[59] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest common
subsequences.Communications of the ACM, 20(5):350–353, May 1977.69

110

[60] Matthew Hutchins and Keith Gallagher. Improving visual impact analysis. InProceedings
of the International Conference on Software Maintenance, pages 294–303. IEEE Computer
Society Press, Los Alamitos, CA, USA, November 1998.96

[61] D.C. Ince. An Introduction to Discrete Mathematics, Formal System Specification, and Z.
Oxford Applied Mathematics and Computing Science Series. Clarendon Press, Oxford, 2nd
edition, 1992. 119

[62] Daniel Jackson and Eugene J. Rollins. A new model of program dependence for reverse
engineering. InProceedings of the 2rd ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 2–10. ACM Press, New York, NY, USA, December 1994.29,
96, 97

[63] Doug Janzen and Kris De Volder. Navigating and querying code without getting lost. In
Proceedings of the Conference on Aspect-Oriented Software Development. ACM Press, New
York, NY, USA, March 2003.96

[64] Magne Jørgensen, Dag I.K. Sjøberg, and Geir Kirkebøen. The prediction ability of expe-
rienced software maintainers. InProceedings of the 4th European Conference on Software
Maintenance and Reengineering, pages 93–99. IEEE Computer Society Press, Los Alamitos,
CA, USA, February 2000.1

[65] R. Kadia. Issues encountered in building a flexible software development environment. In
Proceedings of the 5th ACM SIGSOFT Symposium of Software Development Environments,
pages 169–180. ACM Press, New York, NY, USA, December 1992.102

[66] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall,
Englewood Cliffs, NJ, 2nd edition, 1988.3, 96

[67] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. Getting started with AspectJ.Communications of the ACM, 44(10):51–57, October
2001. 4

[68] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. InProceedings of the 15th European Conference on
Object-oriented Programming, volume 2072 ofLecture Notes in Computer Science, pages
327–353. Springer-Verlag, Heidelberg, Germany, June 2001.4, 94

[69] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. InProceedings of the 11th
European Conference on Object-oriented Programming, volume 1241 ofLecture Notes in
Computer Science, pages 220–242. Springer-Verlag, Heidelberg, Germany, June 1997.1, 3,
87

[70] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones,
David C. Hoaglin, Khaled El Emam, and Jarett Rosenberg. Preliminary guidelines for
empirical research in software engineering.IEEE Transactions on Software Engineering,
28(8):721–734, August 2002.48

111

[71] M.M. Lehman and L.A. Belady.Program Evolution: Processes of Software Change, vol-
ume 27 ofAPIC Studies in Data Processing. Academic Press, Inc., London, UK, 1985.
5

[72] Moises Lejter, Scott Meyers, and Steven P. Reiss. Support for maintaining object-oriented
programs.IEEE Transactions on Software Engineering, 18(12):1045–1052, December 1992.
96

[73] Stanley Letovsky and Elliot Soloway. Strategies for documenting delocalized plans. In
Proceedings of the Conference on Software Maintenance, pages 144–151. IEEE Computer
Society Press, Los Alamitos, CA, USA, November 1985.2

[74] Stanley Letovsky and Elliot Soloway. Delocalized plans and program comprehension.IEEE
Software, 3(3):41–49, May 1986.1, 100

[75] Donglin Liang and Mary Jean Harrold. Slicing objects using system dependence graphs.
In Proceedings of the International Conference on Software Maintenance, pages 358–367.
IEEE Computer Society Press, Los Alamitos, CA, USA, November 1998.96

[76] Donglin Liang and Mary Jean Harrold. Efficient points-to analysis for whole-program anal-
ysis. InProceedings of the 7th European Software Engineering Conference and 7th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, volume 1687 ofLecture
Notes in Computer Science, pages 199–215. Springer-Verlag, Heidelberg, Germany, Septem-
ber 1999. 97

[77] Kazimiras Lukoit, Norman Wilde, Scott Stowell, and Tim Hennessey. TraceGraph: Imme-
diate visual location of software features. InProceedings of the International Conference
on Software Maintenance, pages 33–39. IEEE Computer Society Press, Los Alamitos, CA,
USA, October 2000.98

[78] James R. Lyle and Mark Weiser. Automatic program bug location by program slicing. In
Proceedings of the 2nd International Conference on Computers and Applications, pages 877–
882. IEEE Computer Society Press, Los Alamitos, CA, USA, 1987.96

[79] James Martin and Carma McClure.Software Maintenance: The Problem and Its Solutions.
Prentice-Hall, 1983.1

[80] Robert Moreton. A process model for software maintenance.Journal of Information Tech-
nology, 5:100–104, 1990.1

[81] Hausi A. Müller and Karl Klashinsky. Rigi—A system for programming-in-the-large. In
Proceedings of the 10th International Conference on Software Engineering, pages 80–86.
IEEE Computer Society Press, Los Alamitos, CA, USA, April 1988.10, 96

[82] Gail C. Murphy, William G. Griswold, Martin P. Robillard, Jan Hannemann, and Wesley
Leong. Design recommendations for concern elaboration tools. In Tzilla Elrad, Siobhán
Clarke, Mehmet Aksit, and Robert Filman, editors,Aspect-oriented Software Development.
Addison-Wesley Longman, Inc., Reading, MA, USA, 2004. To appear.88

112

[83] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard. Separating features
in source code: An exploratory study. InProceedings of the 23rn International Conference
on Software Engineering, pages 275–284. IEEE Computer Society Press, Los Alamitos, CA,
USA, May 2001. 5

[84] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan. An empirical study
of static call graph extractors.ACM Transactions on Software Engineering and Methodology,
7(2):158–191, April 1998.18

[85] Gail C. Murphy, Robert J. Walker, Elisa L.A. Baniassad, Martin P. Robillard, Albert Lai, and
Mik A. Kersten. Does aspect-oriented programming work?Communications of the ACM,
44(10):75–77, October 2001.5

[86] K. Narayanaswamy and Neil Goldman. ”lazy” consistency: a basis for cooperative software
development. InProceedings of the 1992 ACM Conference on Computer-supported cooper-
ative work, pages 257–264. ACM Press, New York, NY, USA, November 1992.102

[87] Christian Nentwich, Licia Capra, Wolfgang Emmerich, and Anthony Finkelstein. xlinkit:
a consistency checking and smart link generation service.ACM Transactions on Internet
Technology, 2(2):151–185, May 2002.102

[88] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Static consistency
checking for distributed specifications. InProceedings of the 16th International Confer-
ence on Automated Software Engineering, pages 115–124. IEEE Computer Society Press,
Los Alamitos, CA, USA, November 2001.102

[89] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Consistency manage-
ment with repair actions. InProceedings of the 25th International Conference on Software
Engineering, pages 455–464. IEEE Computer Society Press, Los Alamitos, CA, USA, May
2003. 102

[90] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst Ellmer. Flexi-
ble consistency checking.ACM Transactions on Software Engineering and Methodology,
12(1):28–63, January 2003.102

[91] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of Program Analysis.
Springer, 1999.18

[92] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging inconsistency in
software development.IEEE Computer, 33(4):24–29, April 2000.102

[93] Object Technology International, Inc. Eclipse platform technical overview. White Paper, July
2001. 10, 32, 45, 80, 96

[94] Patrick D. O’Brien, Daniel C. Halbert, and Michael F. Kilian. The Trellis programming
environment. InProceedings of the Conference on Object-oriented Programming, Systems,
and Applications, pages 91–102. ACM Press, New York, NY, USA, October 1987.10, 95

113

[95] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois, Urbana-Champaign, IL, USA, 1992.87

[96] Harold Ossher and Peri Tarr. Hyper/J: Multi-dimensional separation of concerns for Java. In
Proceedings of the 22nd International Conference on Software Engineering, pages 734–737.
ACM Press, New York, NY, USA, May 2000.4

[97] Harold Ossher and Peri Tarr.Multi-Dimensional Separation of Concerns and the Hyperspace
approach, volume 648 ofThe Kluwer International Series in Engineering and Computer
Science, chapter 10. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.4

[98] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a software
development environment. InProceedings of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, pages 177–194. ACM
Press, New York, NY, USA, April 1984.96

[99] David L. Parnas. On the criteria to be used in decomposing systems into modules.Commu-
nications of the ACM, 15(12):1053–1058, December 1972.3, 4

[100] David L. Parnas. Designing software for ease of extension and contraction.IEEE Transac-
tions on Software Engineering, 5(2):128–138, March 1979.5

[101] David L. Parnas. Sofware aging. InProceedings of the 16th International Conference on
Software Engineering, pages 279–287. IEEE Computer Society Press, Los Alamitos, CA,
USA, May 1994. 2, 5, 92

[102] Doron A. Peled.Software Reliability Methods. Springer-Verlag, Heidelberg, Germany, 2001.
17

[103] Shari Lawrence Pfleeger. Design and analysis in software engineering—part 1: The language
of case studies and formal experiments.Software Engineering Notes, 19(4):16–20, October
1994. 47

[104] Alejandro Ramirez, Philippe Vanpeperstraete, Andreas Rueckert, Kunle Odutola, and Jeremy
Bennett.ArgoUML User Manual: A tutorial and reference description of ArgoUML, version
0.10, May 2002. 67

[105] Awais Rashid, Ana Moreira, and João Aráujo. Modularisation and composition of aspec-
tual requirements. InProceedings of the 2nd International Conference on Aspect-oriented
Software Development, pages 11–20. ACM Press, New York, NY, USA, March 2003.99

[106] Steven P. Reiss. Simplifying data integration: The design of the Desert software development
environment. InProceedings of the 18th International Conference on Software Engineering,
pages 398–407. IEEE Computer Society Press, Los Alamitos, CA, USA, March 1996.101

[107] Jason E. Robbins, David M. Hilbert, and David F. Redmiles. Extending design environments
to software architecture design. InProceedings of the 11th Knowledge-Based Software Engi-
neering Conference, pages 63–72. IEEE Computer Society Press, Los Alamitos, CA, USA,
September 1996.67

114

[108] Jason E. Robbins, David M. Hilbert, and David F. Redmiles. Argo: a design environment
for evolving software architectures. InProceedings of the 19th International Conference on
Software Engineering, pages 600–601. ACM Press, New York, NY, USA, May 1997.67

[109] Martin P. Robillard. FEAT: An Eclipse plug-in for locating, describing, and analyzing con-
cerns in source code. http://www.cs.ubc.ca/labs/spl/projects/feat, 2003.33

[110] Martin P. Robillard. The Jex home page. http://www.cs.ubc.ca/spider/mrobilla/jex, 2003.53

[111] Martin P. Robillard and Gail C. Murphy. Analyzing exception flow in Java programs. In
Proceedings of the 7th European Software Engineering Conference and 7th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, volume 1687 ofLecture Notes in
Computer Science, pages 322–337. Springer-Verlag, Heidelberg, Germany, September 1999.
18, 31, 53

[112] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding and describing concerns
using structural program dependencies. InProceedings of the 24th International Conference
on Software Engineering. ACM Press, New York, NY, USA, May 2002.46, 48, 88, 89

[113] Martin P. Robillard and Gail C. Murphy. Automatically inferring concern code from pro-
gram investigation activities. InProceedings of the 18th International Conference on Auto-
mated Software Engineering. IEEE Computer Society Press, Los Alamitos, CA, USA, Octo-
ber 2003. To appear.75

[114] Martin P. Robillard and Gail C. Murphy. Static analysis to support the evolution of excep-
tion structure in object-oriented systems.ACM Transactions on Software Engineering and
Methodology, 2003. To appear.18, 31

[115] Martin P. Robillard and Gail C. Murphy. A study of program evolution involving scattered
concerns. Technical Report TR-2003-06, Department of Computer Science, University of
British Columbia, Vancouver, BC, Canada, March 2003.61, 75, 82, 86, 89

[116] Marc J. Rochkind. The source code control system.IEEE Transactions on Software Engi-
neering, 1(4):365–370, December 1975.10

[117] H. Dieter Rombach and Bradford T. Ulery. Improving software maintenance through mea-
surement.Proceedings of the IEEE, 4(77):581–595, April 1980.1

[118] Barbara G. Ryder. Dimensions of precision in reference analysis of object-oriented program-
ming language. InProceedings of the 12th International Conference on Compiler Construc-
tion, volume 2622 ofLecture Notes in Computer Science, pages 126–137. Springer-Verlag,
Heidelberg, Germany, April 2003.30

[119] M. Sanella. The Interlisp-D Reference Manual. Xerox Corporation, Palo Alto, CA, USA,
1983. 10

[120] Carl F. Schaefer and Gary N. Bundy. Static analysis of exception handling in Ada.Software—
Practice and Experience, 23(10):1157–1174, October 1993.18

115

[121] Gunther Schmidt and Thomas Ströhlein. Relations and Graphs—Discrete Mathematics
for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, Heidelberg, Germany, 1993.119

[122] Robert Sedgewick.Algorithms in C. Addison-Wesley Publishing Company, Reading, MA,
USA, 1990. 3

[123] Michael Siff and Thomas Reps. Identifying modules via concept analysis.IEEE Transactions
on Software Engineering, 25(6), November/December 1999.99

[124] Janice Singer. Practices of software maintenance. InProceedings of the International Confer-
ence on Software Maintenance, pages 139–145. IEEE Computer Society Press, Los Alamitos,
CA, USA, November 1998.1

[125] Saurabh Sinha and Mary Jean Harrold. Analysis of programs with exception-handling con-
structs. InProceedings of the International Conference on Software Maintenance, pages
348–357. IEEE Computer Society Press, Los Alamitos, CA, November 1998.18, 31

[126] Gregor Snelting. Concept analysis—a new framework for program understanding. InPro-
ceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 1–10. ACM Press, New York, NY, USA, June 1998.98

[127] Elliot Soloway, Jeannine Pinto, Stan Letovsky, David Littman, and Robin Lampert. De-
signing documentation to compensate for delocalized plans.Communications of the ACM,
31(11):1259–1267, November 1988.2, 100

[128] Ian Sommerville.Software Engineering. Addison-Wesley, 6th edition, 2001.1

[129] Amie L. Souter, David Shepherd, and Lori L. Pollock. Testing with respect to concerns.
In Proceedings of the International Conference on Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA, USA, September 2003. To appear.92

[130] Richard M. Stallman. EMACS the extensible, customizable self-documenting display editor.
In Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation, pages 147–
156. ACM Press, New York, NY, USA, June 1981.96

[131] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller. Rigi: A visualization envi-
ronment for reverse engineering. InProceedings of the 19th International Conference on
Software Engineering, pages 606–607. ACM Press, New York, NY, USA, May 1997.96

[132] Bjarne Stroustrup.The C++ Programming Language. Addison Wesley Longman, Inc.,
Reading, MA, 2nd edition, 1991.96

[133] Peri Tarr and Lori A. Clarke. Consistency management for complex applications. InProceed-
ings of the 20th International Conference on Software Engineering, pages 230–239. IEEE
Computer Society Press, Los Alamitos, CA, USA, May 1998.102

116

[134] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton. N degress of separation:
Multi-dimensional separation of concerns. InProceedings of the 21st International Confer-
ence on Software Engineering, pages 107–119. IEEE Computer Society Press, Los Alamitos,
CA, USA, May 1999. 3, 4

[135] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W. Selby, Jack C.
Wileden, Alexander L. Wolf, and Michael Young. Foundations for the Arcadia environ-
ment architecture. InProceedings of the 3rd ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environments, pages 1–13. ACM Press,
New York, NY, USA, November 1988.102

[136] Warren Teitelman and Larry Masinter. The Interlisp programming environment.IEEE Com-
puter, 14(4):25–33, April 1981.95

[137] Walter F. Tichy. RCS: A system for version control.Software—Practice and Experience,
15(7):637–654, July 1985.10

[138] Frank Tip. A survey of program slicing techniques.Journal of Programming Languages,
3(3):121–189, September 1995.10, 96

[139] Frank Tip, Jong-Deok Choi, John Field, and G. Ramalingam. Slicing class hierarchies in
C++. In Proceedings of the Conference on Object-oriented Programming, Systems, and
Applications, pages 179–197. ACM Press, New York, NY, USA, October 1996.96

[140] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Variable precision reaching definitions anal-
ysis for software maintenance. InProceedings of the 1st Euromicro Conference on Software
Maintenance and Reengineering, pages 60–67. IEEE Computer Society Press, Los Alamitos,
CA, USA, March 1997.31, 97

[141] Paolo Tonella. Concept analysis for module restructuring.IEEE Transactions on software
engineering, 27(4), April 2001. 99

[142] Arie van Deursen and Tobias Kuipers. Identifying objects using cluster and concept analysis.
In Proceedings of the 21st International Conference on Software Engineering, pages 246–
255. IEEE Computer Society Press, Los Alamitos, CA, USA, May 1999.99

[143] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright, Darin Swanson,
and Jeremy Isaak. Visualizing dynamic software system information through high-level mod-
els. InProceedings of the Conference on Object-oriented Programming Systems, Languages,
and Applications, pages 271–283. ACM Press, New York, NY, USA, October 1998.48

[144] Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and Martin P. Robillard. Efficient map-
ping of software system traces to architectural views. InProceedings of the 10th Annual IBM
Centers for Advanced Studies Conference, pages 31–40. IBM Corporation, Toronto, ON,
Canada, 2000.49

[145] Mark Weiser. Programmers use slices when debugging.Communications of the ACM,
25(7):446–452, July 1982.96

117

[146] Mark Weiser. Program slicing.IEEE Transactions on Software Engineering, 10(4):352–357,
July 1984. 10, 96, 97

[147] Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajlich, and LaTreva Pounds. A
comparison of methods for locating features in legacy software.Journal of Systems and
Software, 65(2):105–114, February 2003.98

[148] Norman Wilde and Christopher Casey. Early field experience with the Software Reconnais-
sance technique for program comprehension. InProceedings of the International Conference
on Software Maintenance, pages 312–318. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1996. 98

[149] Norman Wilde, Juan A. Gomez, Thomas Gust, and Douglas Strasburg. Locating user func-
tionality in old code. InProceedings of the Conference on Software Maintenance, pages
200–205. IEEE Computer Society Press, Los Alamitos, CA, USA, November 1992.11, 97

[150] Norman Wilde and Michael C. Scully. Software reconnaissance: Mapping program features
to code.Software Maintenance: Research and Practice, 7:49–62, 1995.11, 97, 98

[151] W. Eric Wong, Swapna S. Gokhale, Joseph R. Horgan, and Kishor S. Trivedi. Locating
program features using execution slices. InProceedings of the 1999 IEEE Symposium on
Application-Specific Systems and Software Engineering and Technology, pages 194–203.
IEEE Computer Society Press, Los Alamitos, CA, USA, March 1999.98

[152] Steven Woods and Qiang Yang. The program understanding problem: Analysis and a heuris-
tic approach. In18th International Conference on Software Engineering, pages 6–15. IEEE
Computer Society Press, Los Alamitos, CA, USA, March 1996.1

[153] S.S. Yau and J.S. Collofello. Some stability measures for software maintenance.IEEE
Transactions on Software Engineering, 6(6):545–552, November 1980.1

[154] Robert K. Yin. Case Study Research: Design and Methods, volume 5 ofApplied Social
Research Methods Series. Sage Publications Ltd., London, UK, 2nd edition, 1989.47, 48,
52

118

Appendix A

Relational Algebra

This appendix presents the notation and definitions of relational algebra used in the presentation of
the formalisms. The notation and the definition of most relational operators are taken from Schmidt
and Str̈ohlein [121]. Additional operator definitions are obtained from the presentation of Ince [61].
In this section it is assumed the reader is familiar with the basic concepts of set theory.

A.1 Notational Conventions

In this dissertation, the following notational conventions are used:

• Variables and label names are set initalics (e.g., the setS, the elemente, the relationCalls).

• The names of entities found in source code and in windows of graphical user interfaces are
set incourier type (e.g., classA, methodlog() , menuFile | Save As).

• The names of mathematical functions are set in normal type (e.g., the range function, ran()).

The following additional conventions are used when referring to entities in Java programs.

• The name of classes are in lower-case letters, with the first letter of each word capitalized
(e.g.,ChangeListener).

• Then name of class members (fields and methods) begin with a lower-case letter, with the first
letter of each following word capitalized (e.g.,firstItem).

A.2 Definitions

Definition A.1 (Homogeneous Relation)Let V be a set. A homogeneous relationR on V is a
subset of the Cartesian productV ×V . Elementsx, y ∈ V are said to be in relationR if (x, y) ∈ R.

Relations will usually be named, and defined either exhaustively by listing the corresponding
set of pairs, or through a comprehensive specification (e.g.,GreaterThan = {(x, y)|x > y}. When
the underlying setV a relation is defined over is not specified by the context, it will be indicated as
a subscript of the relation name (e.g.,RV).

Three special relations need to be considered: the empty relation, the identity relation, and the
universal relation.

119

The empty relation denotes the absence of a relation between any elements of a set. It is
represented with the symbolO.

Definition A.2 (Empty Relation) LetV be a set.OV = {}.

The identity relationI puts every element in relation with itself.

Definition A.3 (Identity Relation) LetV be a set.IV = {(x, y) ⊆ V × V | x = y}.

Finally, the universal relationU puts every element of a set in relation with every other element.

Definition A.4 (Universal Relation) LetV be a set.UV = V × V .

We following definitions provide useful operators on relations.

Definition A.5 (Transpose) LetR ⊆ V × V be a relation. We define the transpose ofR, R>, as

R> = {(x, y) ∈ V × V | (y, x) ∈ R}.

Definition A.6 (Composition) LetR,S ⊆ V ×V be relations. Their compositionR ◦S ⊆ V ×V

is given by
R ◦ S = {(x, z) ∈ V × V | ∃ y ∈ V : (x, y) ∈ R ∧ (y, z) ∈ S}.

Definition A.7 (Domain) LetR ⊆ V × V . The domain ofR is the set

dom(R) = {x ∈ V | (x, y) ∈ R}

Definition A.8 (Range) LetR ⊆ V × V . The range ofR is the set

ran(R) = {y ∈ V | (x, y) ∈ R}

Definition A.9 (nth Iterate) The nth iterate of a relation,Rn, is itsnth composition with itself.

R0 = I, Rn = R ◦Rn−1

Definition A.10 (Reflexive Transitive Closure) the reflexive transitive closureR∗ of a relationR

is the union of all its iterates
R∗ = R0 ∪R1 ∪R2 ∪ ...Rn.

Definition A.11 (Non-reflexive Transitive Closure) The non-reflexive transitive closureR+ of a
relationR is the union of all its iterates exceptR0

R+ = R1 ∪R2 ∪R3 ∪ ...Rn.

Definition A.12 (Domain Restriction) The domain restriction operator/ restricts the domain of a
relation. It has two operands: the first operand is a setS; the second operand is a relationR. The
result of the domain restriction operator is the subset ofR which only contains pairs whose first
element is contained inS:

S / R = {(x, y) ∈ R | x ∈ S}

We can also restrict the range of a relation.

Definition A.13 (Range Restriction) LetS be a set andR be a relation.

R . S = {(x, y) ∈ R | y ∈ S}

120

Appendix B

Relations in Java Programs

This appendix defines the boolean functions on elements of a Java program used in Figure3.1.
The definitions are based on the Java Language Specifications [48]. In the rest of this appendix,
references to the Java language specifications we be denoted by a simple subsection reference.

IsAClass(x) The function returns true ifx represents a class declaration (§8.1).

IsAnInterface(x) The function returns true ifx represents an interface declaration (§9.1).

IsAField(x) The function returns true ifx represents a field declaration. Fields can be declared
within a class declaration (§8.3), or as constants in an interface declaration (§9.3).

IsAMethod(x) The function returns true ifx represents any declarative entity containing exe-
cutable code or that can be dispatched to executable code. This definition thus encompasses meth-
ods declarations (§8.4), including abstract (§9.4,§8.4.3.1) and static (§8.4.3.2) method declarations,
constructor declarations (§8.8), and instance (§8.6) and static (§8.7) initializer blocks. Although not
explicitly represented in Java programs, default constructors (§8.8.7) can also be represented in a
program model, and are considered to be methods. Instance field initialization code (§8.3.2.1) is
considered to be included in each constructor for the class declaring the field (including the default
constructor if applicable). Class field initialization code (§8.3.2.2) is considered to be part of the
static initializer block for the class. A default static initializer block can be defined for this purpose
if necessary.

Accesses(x,y) The function returns true ifx is a concrete (non-abstract) method,y is a field, and
x contains a field access expression (§15.11) referring to fieldy.

Calls(x,y) The function returns true ifx is a concrete (non-abstract) method,y a concrete or
abstract method (defined in a class or interface), andx contains a method invocation expression
(§15.12) such that:

1. y is the compile-time method determined by the algorithms of (§15.12.1-§15.12.3), or

2. y is a valid runtime binding for the compile-time method determined above.

121

In other words, Calls(x,y) puts in relation a method and both the static method binding and all the
potential dynamic bindings for the static binding. Determining which potential dynamic bindings
are applicable is dependent on a specific implementation the static analysis algorithm for extracting
the model, such as Class Hierarchy Analysis [32], or Rapid Type Analysis [5].

Checks(x,y) The function returns true ifx is a concrete (non-abstract) method,y is a non-primitive
type (class or interface), andx contains code containing a cast expression (§15.16) naming typey,
or aninstanceof operation (§15.20.2) naming typey.

Creates(x,y) The function returns true ifx is a concrete (non-abstract) method,y is a class type,
andx contains a class instance creation expression (§15.9) naming typey.

Declares(x,y) The function returns true ify is declared directly within the declaration ofx. The
following relations are possible:

• A type (class or interface) can declare fields (§8.3,§9.3) or methods (§8.4,§9.4);

• A type (class or interface) can declare another type (member class§8.5, or member interface
§9.5).

• A concrete (non-abstract) method can declare a class (local class,§14.3, or anonymous class,
§15.9.5).

ExtendsClass(x,y) The function returns true ifx andy are both class types, andx is declared to
extendy (i.e., directly extendsy, §8.1.3).

ExtendsInterface(x,y) The function returns true ifx and y are both interface types, andx is
declared extendy (i.e., directly extendsy, §9.1.2).

HasParameterType(x,y) The function returns true ifx is a method (abstract or concrete),y is a
non-primitive type, andy is contained in the list of parameters ofx (§8.4.1).

HasReturnType(x,y) The function returns true ifx is a non-constructor, non-initializer method
(abstract or concrete),y is a non-primitive, non-void type, andy is the return type ofx (§8.4).

Implements(x,y) The function returns true ifx is a class type,y an interface type, andx declares
to implementy (i.e., directly implementsy, §8.1.4).

OfType(x,y) The function returns true ifx is a field,y a non-primitive type (class or interface),
andx is declared to be of typey (§8.3,§9.3).

Overrides(x,y) The function returns true ifx is a concrete method,y is a method (concrete or
abstract), andx overridesy (§8.4.6.1).

122

Appendix C

Transcripts for the jEdit Case Study

This appendix contains the partial transcripts of the jEdit case study relevant to the investigation and
implementation of requirement 5 of the modification request (see Section4.5.2). The transcripts
list the actions performed by each subject for all of the episodes involving the discovery or use
of information related to the methodsBuffer.load(View,boolean) andBuffer.recover-

Autosave(View) .
A transcript consists of a list of useractions. An action is a record consisting of four fields. In

the transcript, an action appears as a line, with each field presented in a separate column. The first
field contains the time of the action, in terms of elapsed seconds since the beginning of the study
phase (investigation or execution). The second field contain the Eclipse view in which the event was
triggered. TableC.1 lists the possible values for this field.

The third field in a transcript action describes the action performed by the subject. TableC.2
lists the possible values for this field. Finally, the fourth field for an action lists the target of the
action.

The sections of the transcripts presented in this appendix list all actions for which the target
is either methodBuffer.load(...) or methodBuffer.recoverAutosave(...) .1, and the
five actions preceding or following a relevant action. In the transcripts, actions for which the target
includes either of the relevant methods are set in boldface.

1For a more concrete presentation, we have replaced the list of parameter types in method signatures by
the symbol “...”.

Table C.1: View codes
Code Description
Concerns The FEAT Concern Graph View.
Editor A text editor or the editor area of a perspective.
Explorer The Eclipse Package Explorer View.
Participants The FEAT Participants View.
Projection The FEAT Projection View.
Relations The FEAT Relations View.
Result A view listing Eclipse search results.
Tasks An Eclipse View listing a set of tasks (e.g., syntax errors).
Viewer An HTML Browser (e.g., Internet Explorer).
Workbench The Eclipse workbench toolbar or menus.

123

Table C.2: Action codes
Code Description
Add Add an element to a concern.
Browse Peruse the declarative structure of a class or source code.
Change Modify an element.
Execute Execute (i.e., run) an application).
New Create a new element.
Query Perform a structural (i.e., cross-reference) query.
Recall Make visible an element previously accessed.
Search Perform a lexical (i.e., keyword) search.
Select Select an element in a view, when this actions has a side effect.
View Access the source code for an element.

C.1 Subject C1

Investigation

0:38:55 Explorer Browse Buffer
0:38:59 Explorer View Buffer.save(...)
0:39:01 Explorer View Buffer.save(...)
0:39:04 Editor Browse Buffer.java
0:39:54 Explorer Browse Buffer
0:39:59 Explorer View Buffer.recoverAutosave(...)
0:40:35 Explorer Browse Buffer
0:40:45 Explorer View Buffer.autosave()
0:41:14 Explorer Browse Buffer
0:41:18 Explorer View Buffer.saveAs(...)
0:41:20 Explorer View Buffer.save(...)

...
0:45:00 Result View Buffer.autosaveFile referenced by Buffer.close()
0:45:10 Editor Change Notes (not relevant)
0:45:35 Result View Buffer.autosaveFile referenced by Buffer.finishSaving(...)
0:45:38 Result View Buffer.autosaveFile referenced by Buffer.getAutosaveFile()
0:45:43 Result View Buffer.autosaveFile referenced by Buffer.setPath(...)
0:45:59 Result View Buffer.autosaveFile referenced by Buffer.recoverAutosave(...)
0:46:05 Result View Buffer.autosaveFile referenced by Buffer.load(...)
0:46:06 Result View Buffer.autosaveFile referenced by Buffer.finishSaving(...)
0:46:14 Result View Buffer.autosaveFile referenced by Buffer.close()
0:46:20 Result View Buffer.autosaveFile referenced by Buffer.autosave()
0:46:23 Result View Buffer.autosaveFile referenced by Buffer.finishSaving(...)
0:46:27 Editor Browse Buffer.java

...
0:48:41 Explorer View jEdit.propertiesChanged()
0:49:08 Editor Change Notes (not relevant)
0:50:14 Editor Change Notes (not relevant)
0:53:08 Editor Change Notes (relevant)
0:53:21 Explorer Browse jEdit
0:53:33 Result View Buffer.autosaveFile referenced by Buffer.recoverAutosave(...)
0:53:44 Editor Change Notes (recoverAutosave, wrong name)
0:53:58 Editor Change Notes (recoverAutosave, corrects the name)
0:54:07 Editor Browse jEdit
0:54:20 Editor Change Notes (implementation strategy for R5)
0:55:53 Editor Query Buffer.recoverAutosave(...) referenced by
0:55:56 Result View Buffer.recoverAutosave(...) referenced by Buffer.load(...)
0:57:14 Editor Recall Autosave.java
0:57:53 Editor View Notes
0:58:15 Editor Change Notes (not relevant)

124

Execution

...
0:56:13 Workbench Execute jEdit
0:56:30 Editor View Notes (R5).
0:56:48 Editor Recall Buffer.java
0:56:54 Explorer Browse Buffer
0:56:59 Explorer View Buffer.removeAllMarkers()
0:57:00 Explorer View Buffer.recoverAutosave(...)
0:57:05 Explorer Change Buffer.recoverAutosave(...)
0:57:34 Workbench Execute jEdit
1:00:33 Editor Recall jEdit.java
1:00:42 Editor Change jEdit.propertiesChanged()

C.2 Subject C2

Investigation

...
0:16:16 Editor Change Notes (not relevant)
0:16:30 Editor Recall Autosave.java
0:17:33 Editor Browse Autosave.java
0:17:57 Editor View Buffer.autosave()
0:18:40 Explorer Browse Buffer
0:19:08 Explorer View Buffer.recoverAutosave(...)
0:19:29 Explorer Browse Buffer
0:19:32 Editor View Notes
0:19:42 Editor Recall Autosave.java
0:19:44 Editor Recall Buffer.java
0:20:13 Editor Change Notes (requirement 3)

...
0:23:51 Editor View File.delete()
0:23:56 Editor Recall Buffer.java
0:24:02 Explorer View Buffer.autosave
0:24:21 Editor Seach ‘‘delete’’ in Buffer.java
0:24:40 Editor Search "autosaveFile.delete" in Buffer.java
0:24:47 Editor Browse Buffer.load(...)
0:25:12 Editor View File.delete()
0:25:18 Editor Recall Buffer.java
0:25:28 Editor Query File.delete() referenced by
0:26:05 Editor Search "autosaveFile.delete" in Buffer.java
0:26:25 Editor Browse Buffer.java
0:26:51 Editor Browse Buffer.load(...)
0:26:59 Editor View Notes
0:27:54 Editor Recall Autosave.java
0:28:04 Editor Recall LoadSaveOptionPane.java
0:28:08 Editor Browse LoadSaveOptionPane.java
0:28:28 Editor Recall Autosave.java

...
0:41:50 Editor Recall Buffer.java
0:41:53 Explorer Browse jEdit
0:42:00 Explorer View jEdit.openFile(...)
0:42:04 Editor Recall Buffer.java
0:42:09 Explorer Browse Buffer.java
0:42:12 Explorer View Buffer.recoverAutosave(...)
0:42:34 Editor Recall jEdit.java
0:42:37 Editor Browse jEdit.java
0:42:50 Explorer Browse jEdit
0:42:53 Explorer View jEdit.propertiesChanged()
0:43:03 Explorer Browse jEdit

...

125

0:43:03 Explorer Browse jEdit
0:43:15 Explorer View jEdit.propertiesChanged()
0:43:21 Explorer Recall Buffer.java
0:43:28 Editor Browse Buffer.java
0:43:30 Explorer Browse Buffer
0:43:35 Explorer View Buffer.recoverAutosave(...)
0:43:50 Editor Query Buffer.recoverAutosave(...) referenced by
0:43:53 Results View Buffer.recoverAutosave(...) referenced by Buffer.load(...)
0:44:44 Editor View Notes
0:44:51 Editor Recall Buffer.java
0:44:55 Editor Recall Notes
0:44:58 Editor Change Notes: (adds ‘‘buffer.load()’’)
0:45:04 Editor Recall Buffer.java
0:45:07 Editor Browse Buffer.java
0:45:15 Explorer Browse Buffer
0:45:17 Editor Recall Notes
0:45:20 Editor Change Notes (adds Buffer.recoverAutosave())
0:45:58 Editor Recall Buffer.java
0:46:01 Explorer Browse Buffer
0:46:18 Explorer View Buffer.save(...)
0:46:20 Explorer View Buffer.saveAs(...)
0:46:21 Explorer View Buffer.save(...)

...
0:49:33 Result View Buffer.finishSaving(...) references "delete"
0:49:37 Editor Browse Buffer.java
0:50:15 Explorer Browse Buffer
0:50:22 Explorer View Buffer.autosaveFile
0:50:25 Result View Buffer.finishSaving(...) references "delete"
0:50:50 Result View Buffer.load(...) references "delete"
0:51:12 Editor Recall Notes
0:51:18 Editor Recall Buffer.java
0:51:22 Editor Recall Notes
0:51:26 Editor Change Notes (adds reload to R5)
0:51:28 Editor Recall Buffer.java
0:51:37 Editor Query Buffer.load(...) referenced by
0:51:46 Result View Buffer.load(...) referenced by Buffer.checkModTime(...)
0:51:57 Result View Buffer.load(...) referenced by Buffer.reload(...)
0:52:05 Result View Buffer.load(...) referenced by jEdit.openFile(...)
0:52:09 Result View Buffer.load(...) referenced by jEdit.openTemporary(...)
0:52:13 Result View Buffer.load(...) referenced by jEdit.reloadAllBuffers(...)
0:52:18 Explorer Browse Buffer
0:52:32 Explorer View Buffer.load(...)
0:52:54 Editor Recall Notes
0:53:02 Editor Change Notes (add info for R5)
0:53:10 Editor Recall Buffer.java
0:53:21 Editor Recall Notes
0:53:43 Editor Recall Buffer.java

...

Execution

...
0:17:32 Editor Recall jEdit.java
0:17:42 Editor Change jEdit.propertiesChanged()
0:19:07 Editor Recall Notes
0:19:22 Explorer Browse jEdit
0:19:30 Explorer Browse Buffer
0:19:43 Explorer View Buffer.load(...)
0:19:52 Editor View Buffer.recoverAutosave(...)
0:19:58 Editor Change Buffer.recoverAutosave(...)
0:20:01 Editor Recall LoadSaveOptionPane.java
0:20:07 Editor Recall jEdit.java

126

0:20:12 Editor Recall Buffer.java
0:20:14 Editor Change Buffer.recoverAutosave(...)
0:20:46 Editor Query Buffer.recoverAutosave(...) referenced by
0:20:56 Editor Recall Notes
0:21:05 Editor Change Notes (relevant)
0:22:04 Editor Recall Buffer.java
0:22:12 Editor Browse Buffer.java
0:22:16 Explorer Browse Buffer
0:22:32 Explorer View Buffer.recoverAutosave(...)
0:22:37 Editor Browse Buffer.recoverAutosave(...)
0:22:39 Editor Change Buffer.java
0:23:29 Editor Search ‘‘autosavefile’’ in Buffer.java
0:23:39 Editor Browse Buffer.java
0:23:40 Editor Search ‘‘autosavefile’’ in Buffer.java
0:23:49 Editor Browse Buffer.java

C.3 Subject F1

Investigation

...
0:41:12 Projection View jEdit.openFile(...) accessing BufferUpdate.CREATED
0:41:17 Projection View jEdit.openFile(...) accessing jEdit.bufferListLock
0:41:18 Projection View jEdit.openFile(...) accessing jEdit.saveCaret
0:41:26 Projection Query jEdit.openFile(...) calling
0:41:31 Projection View jEdit.openFile(...) calling BufferUpdate.$<$init$>$(...)
0:41:38 Projection View jEdit.openFile(...) calling Buffer.load(...)
0:41:41 Projection View Buffer.load(...)
0:41:52 Editor Browse Buffer.load(...)
0:42:18 Projection Query Buffer.load(...) calling
0:42:23 Projection View Buffer.load(...) calling Buffer.recoverAutosave(...)
0:42:40 Concerns New Buffer recovery
0:42:50 Concerns Select Buffer recovery
0:42:52 Projection Add Buffer.load(...) calling Buffer.recoverAutosave(...)
0:42:57 Projection Query Buffer.recoverAutosave(...) called by
0:43:00 Projection View Buffer.recoverAutosave(...) called by Buffer.load(...)
0:43:10 Projection Query Buffer.recoverAutosave(...) calling
0:43:13 Projection View Buffer.recoverAutosave(...) calling Buffer$4.$<$init$>$()
0:43:26 Editor Browse Buffer.java
0:44:02 Projection Query Buffer declaring
0:44:12 Projection View Buffer.addBufferChangeListener(...)
0:44:22 Editor Browse Buffer.java
0:44:32 Editor View Buffer.addMarker(...)

...
0:49:43 Projection View Buffer.setDirty(...) called by Buffer$1.run()
0:49:49 Projection View Buffer.setDirty(...) called by BufferOptions.ok()
0:50:03 Projection Recall all of Buffer
0:50:08 Projection Browse all of Buffer
0:50:20 Concerns Select Buffer recovery
0:50:21 Participants Select Buffer.recoverAutosave(...)
0:50:25 Participants Query Buffer.recoverAutosave(...) called by
0:50:30 Projection View Buffer.recoverAutosave(...) called by Buffer.load(...)
0:50:41 Editor Browse Buffer.load(...)
0:51:16 Participants Select Buffer.recoverAutosave(...)
0:51:19 Relations View Buffer.recoverAutosave(...) called by Buffer.load(...)
0:52:01 Participants View Buffer.recoverAutosave(...)
0:52:14 Relations View Buffer.recoverAutosave(...) called by Buffer.load(...)
0:52:29 Editor Browse Buffer.load(...)
0:52:34 Participants Query Buffer.load(...) called by
0:52:40 Projection View Buffer.load(...) called by Buffer.checkModTime(...)
0:52:50 Editor Browse Buffer.checkModTime(...)
0:52:55 Projection View Buffer.load(...) called by Buffer.finishSaving(...)

127

0:52:59 Projection View Buffer.load(...) called by Buffer.reload(...)
0:53:11 Projection View Buffer.load(...) called by jEdit.reloadAllBuffers(...)
0:53:15 Editor Browse jEdit.reloadAllBuffers(...)
0:53:46 Projection View Buffer.load(...) called by jEdit.openTemporary(...)
0:53:53 Projection View Buffer.load(...) called by jEdit.openFile(...)
0:54:04 Participants View Buffer.load(...)
0:54:53 Editor Browse Buffer.load(...)
0:55:14 Participants Query Buffer declaring
0:55:18 Projection Query Buffer.autosaveFile accessed by
0:55:24 Projection View Buffer.autosaveFile accessed by Buffer.close()
0:55:32 Projection View Buffer.autosaveFile accessed by Buffer.finishSaving(...)
0:55:37 Projection View Buffer.autosaveFile accessed by Buffer.getAutosaveFile()

...

Execution

...
0:21:57 Participants View LoadSaveOptionPane. save()
0:22:03 Viewer View Instructions
0:22:11 Editor Recall jedit gui.props
0:22:17 Editor Change jedit gui.props
0:22:50 Concerns Select Buffer recovery
0:22:53 Participants Select Buffer.recoverAutosave(...)
0:22:57 Participants View Buffer.load(...)
0:23:25 Editor Browse Buffer.load(...)
0:23:58 Participants Query Buffer declaring
0:24:03 Projection Browse Buffer declaring
0:24:18 Tasks Select Syntax error in Buffer.java
0:24:29 Editor Search ‘‘LoadAu’’
0:24:35 Editor Search ‘‘delete()’’
0:24:54 Editor Browse Buffer.java
0:25:05 Tasks Select Syntax error in Buffer.java
0:25:09 Editor Change Buffer.java
0:25:19 Participants Select Buffer.recoverAutosave(...)
0:25:24 Participants View Buffer.recoverAutosave(...)
0:25:30 Participants Select Buffer.load(...)
0:25:32 Relations View Buffer.load(...) calling Buffer.recoverAutosave(...)
0:26:05 Participants Select Buffer.recoverAutosave(...)
0:26:13 Participants View Buffer.recoverAutosave(...)
0:26:17 Editor Change Buffer.recoverAutosave(...)
0:27:50 Concerns Select Buffer autosaving
0:27:53 Participants View Autosave.actionPerformed(...)
0:28:00 Concerns Select Option settings
0:28:04 Concerns Select Buffer autosaving
0:28:10 Editor Browse Autosave.java

...
1:47:31 Editor Browse Autosave.java
1:47:41 Editor Change Autosave.java
1:48:51 Editor Browse Autosave.java
1:50:09 Workbench Execute jEdit
1:51:08 Concerns Select Buffer recovery
1:51:09 Participants Select Buffer.recoverAutosave(...)
1:51:23 Editor Change Buffer.recoverAutosave(...) (fix bug)
1:52:05 Workbench Execute jEdit
1:52:51 Editor Recall jedit.props
1:52:53 Editor Search ‘‘autosave’’
1:52:54 Editor Change jedit.props
1:53:08 Workbench Execute jEdit

...

128

C.4 Subject F2

Investigation

0:22:48 Projection Add Buffer.getAutosaveFile()
0:23:07 Projection Browse Buffer
0:23:19 Projection Query Buffer.autosaveFile accessed by
0:23:23 Projection View Buffer.autosaveFile accessed by Buffer.close()
0:23:32 Projection View Buffer.autosaveFile accessed by Buffer.finishSaving(...)
0:23:56 Projection View Buffer.autosaveFile accessed by Buffer.recoverAutosave(...)
0:24:18 Projection Add Buffer.autosaveFile accessed by Buffer.recoverAutosave(...)
0:24:38 Projection Query Buffer.recoverAutosave(...) called by
0:24:42 Projection View Buffer.recoverAutosave(...) called by Buffer.load(...)
0:24:54 Projection Add Buffer.recoverAutosave(...) called by Buffer.load(...)
0:24:59 Editor Browse Buffer.load(...)
0:25:38 Editor Browse Buffer
0:25:44 Projection View Buffer.load(...)
0:25:55 Participants Select Buffer.recoverAutosave(...)
0:25:58 Participants View Buffer.load(...)
0:26:01 Relations View Buffer.load(...) calling Buffer.recoverAutosave(...)
0:26:11 Concerns Select Clean up backup files
0:26:12 Concerns Select Recover from backup
0:26:12 Concerns Select Make backup files
0:26:15 Viewer View Instructions
0:26:36 Participants Select Buffer.autosave()

...
0:49:00 Participants Select Autosave.actionPerformed(...)
0:49:03 Participants View Autosave.actionPerformed(...)
0:49:55 Editor Browse Autosave.java
0:50:31 Concerns Select Recover from backup
0:50:35 Participants Select Buffer.autosaveFile
0:50:38 Participants Select Buffer.load(...)
0:50:42 Participants Select Buffer.recoverAutosave(...)
0:50:48 Participants View Buffer.recoverAutosave(...)
0:51:13 Participants Query Buffer.recoverAutosave(...) called by
0:51:17 Projection View Buffer.recoverAutosave(...) called by Buffer.load(...)
0:53:02 Editor Browse Buffer.java
0:53:32 Concerns Select Clean up backup files
0:53:36 Participants Select jEdit.getBuffers()
0:53:50 Participants Select Autosave.actionPerformed(...)
0:53:52 Participants View Autosave.actionPerformed(...)

...

Execution

...
0:13:12 Participants Select Autosave.actionPerformed(...)
0:13:13 Participants View Autosave.actionPerformed(...)
0:13:20 Editor Recall jEdit.propertiesChanged()
0:13:23 Editor Change jEdit.propertiesChanged()
0:15:17 Concerns Select Recover from backup
0:15:19 Participants Select Buffer.recoverAutosave(...)
0:15:23 Participants View Buffer.recoverAutosave(...)
0:15:32 Participants View Buffer.load(...)
0:15:36 Editor Browse Buffer.load(...)
0:16:50 Participants Select Buffer.recoverAutosave(...)
0:16:51 Participants View Buffer.recoverAutosave(...)
0:17:01 Participants View Buffer.load(...)
0:17:06 Editor Browse Buffer.load(...)
0:18:30 Editor Change Buffer.load(...)
0:19:45 Editor Search modTime
0:20:09 Participants View Buffer.load(...)

129

0:20:20 Editor Browse Buffer.load(...)
0:20:49 Editor Change Buffer.load(...)
0:21:40 Participants View Buffer.load(...)
0:21:43 Editor Change Buffer.load(...)
0:22:04 Concerns Select Make backup files
0:22:14 Viewer View Instructions
0:22:57 Workbench Execute jEdit
0:26:09 Concerns Select Make backup files
0:26:11 Participants Select Buffer.autosave()

...

130

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgments
	 1 Introduction
	1.1 Concerns
	1.2 An Example of Program Evolution Involving Scattered Concerns
	1.3 Existing Support for Scattered Concerns
	1.4 Concern Graphs
	1.5 Overview of the Dissertation

	 2 The Concern Graph Model
	2.1 Design Goals
	2.2 Formal Representation
	2.2.1 Programs
	2.2.2 Fragments
	2.2.3 Concerns

	2.3 Analyses
	2.3.1 Concern Analysis
	2.3.2 Inconsistency Management

	2.4 Summary

	 3 Tool Support for Concern Graphs
	3.1 General Mapping Function for Java
	3.2 The Feature Analysis and Exploration Tool
	3.2.1 Usage Model
	3.2.2 User Interface
	3.2.3 Implementation

	 4 Validation
	4.1 Methodology
	4.2 AVID Study
	4.2.1 Theory
	4.2.2 Study Design
	4.2.3 Results
	4.2.4 Validity

	4.3 Jex Study
	4.3.1 Theory
	4.3.2 Study Design
	4.3.3 Results
	4.3.4 Validity

	4.4 Redback Study
	4.4.1 Theory
	4.4.2 Study Design
	4.4.3 Results
	4.4.4 Validity

	4.5 jEdit Study
	4.5.1 Theory
	4.5.2 Study Design
	4.5.3 Results
	4.5.4 Validity

	4.6 ArgoUML Study
	4.6.1 Theory
	4.6.2 Study Design
	4.6.3 Results
	4.6.4 Validity

	4.7 Summary

	 5 Automating Concern Graph Creation
	5.1 Investigation Transcripts
	5.2 Inference Algorithm
	5.2.1 Calculating Probabilities
	5.2.2 Calculating the Correlation Metric
	5.2.3 Generating Concerns

	5.3 Empirical Evaluation
	5.3.1 Implementation Status
	5.3.2 Configurations
	5.3.3 Studies
	5.3.4 Results
	5.3.5 Observations

	5.4 Summary

	 6 Discussion
	6.1 The Development and Evaluation of the FEAT Tool
	6.2 Training and the Use of FEAT
	6.3 Capturing System Behavior with Concern Graphs
	6.4 The Importance of a Good Seed
	6.5 Concern Interaction Analysis
	6.6 The Influence of Concern Graphs on the Evolution Process
	6.7 Future Work
	6.7.1 Automatic Concern Graph Construction
	6.7.2 Concern Databases
	6.7.3 Pattern-based Code Investigation
	6.7.4 Concern Graph-based Code Refactoring

	 7 Related Work
	7.1 Concern Code Location
	7.1.1 Cross-referencing Tools
	7.1.2 Program Slicing
	7.1.3 Feature Location Techniques
	7.1.4 Clustering Techniques

	7.2 Concern Documentation
	7.2.1 Textual Documentation
	7.2.2 Conceptual Modules
	7.2.3 Concern Visualization Tools
	7.2.4 Virtual Files
	7.2.5 Advanced Separation of Concerns Mechanisms

	7.3 Inconsistency Management

	 8 Conclusions
	Bibliography
	Appendix A Relational Algebra
	A.1 Notational Conventions
	A.2 Definitions

	Appendix B Relations in Java Programs
	Appendix C Transcripts for the jEdit Case Study
	C.1 Subject C1
	C.2 Subject C2
	C.3 Subject F1
	C.4 Subject F2

