
Bridging the Gap between Aspect Mining and Refactoring

Isaac Yuen and Martin P. Robillard
School of Computer Science

McGill University

{iyuen|martin}@cs.mcgill.ca

ABSTRACT
Aspect-mining techniques help to identify crosscutting struc-
ture that could potentially be modularized through object-
oriented (OO) or aspect-oriented refactoring (AO). This pa-
per describes a case study in which we used aspect-mining
techniques to identify and refactor crosscutting concerns us-
ing aspect-oriented programming. We observed that, in our
case, there were many subtle variations in the implementa-
tion of the concerns that made them non-trivial to modu-
larize with AO refactoring. In the end, we solved our mod-
ularization problem using traditional OO refactoring. We
conclude that there exists an important gap between the
identification of crosscutting concerns and the technologies
available to mitigate the problem.

1. INTRODUCTION
Crosscutting concerns in a software system cause many

problems, including scattered duplicate code. As a result,
the system gradually becomes less maintainable. Aspect-
oriented programming (AOP) proposes a solution to the
crosscutting problem by supporting the modularization of
crosscutting concerns into aspects. The availability of as-
pects suggests that it should be possible to incrementally
refactor an existing object-oriented (OO) system into a more
modularized AO equivalent. Nevertheless, this strategy poses
at least three issues that must be addressed:

1. How to identify crosscutting concerns in a system;

2. How to determine if the concern code identified in
step 1 is refactorable;

3. How to refactor crosscutting concerns into aspects, ei-
ther manually or automatically.

Aspect mining addresses the first problem by identifying
potential crosscutting concerns in a system using techniques
such as fan-in analysis [15], lexical and dynamic analyses [6],
and version history mining [4]. For crosscutting concerns
that span many classes in a system, there exist tools that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop LATE ’07March 12-13, 2007 Vancouver, British Columbia,
Canada
Copyright 2007 ACM 1-59593-655-4/07/03 ...$5.00.

can help refactor the targeted code into an aspect automat-
ically [2]. Such tools can reduce the effort required and the
risks of introducing error typically associated with manual
refactoring. However, between the identification of crosscut-
ting concerns and the refactoring process, a developer must
determine if the crosscutting concerns are refactorable. In
particular, there are several issues that we must consider
before applying refactoring, including:

• Does the AOP language support the extraction of the
targeted crosscutting code?

• Can we deduce a pattern in the crosscutting code, such
that we can apply a general pointcut that captures all
relevant join points and produces a better modularized
system?

• If we find variants in the crosscutting code that do
not conform to the common patterns, what kinds of
measure can we take to eliminate the discrepancy?

We conducted a case study to explore these questions
by evaluating some crosscutting concerns in an open-source
project. We employed fan-in analysis [15] as the aspect min-
ing tool to help us locate the crosscutting concerns in the
target system. We then manually inspected the results of the
aspect-mining technique, and determined if there was an ap-
plicable AO refactoring [17] that could help us extract these
crosscutting concerns into an aspect. We concluded that
due to the variations in the code, it was difficult to choose
a refactoring that neatly encapsulated the crosscutting con-
cerns without sacrificing the readability and simplicity of
the pointcut descriptor.

We resolved to refactor our crosscutting concerns by incre-
mentally applying traditional OO refactoring such as Extract
Method and Pull Up Method [8]. This strategy simplified
the code and revealed some previously unseen relations be-
tween classes that participate in the implementation of the
same crosscutting concern. We argue that comprehensive
OO refactoring be a required preliminary step in assessing
the applicability of AO refactoring.

2. CASE STUDY SETUP
The initial goal of our case study was to inspect cross-

cutting code and assess the difficulty in refactoring it into
aspects. We chose an open-source Java project as our exper-
imental target, and assumed AspectJ as the targeted AOP
language for refactoring.

2.1 Target Systems
We applied our case study to an open-source project called

Freemind1. FreeMind is a mind-mapping software written
in Java. It is an editor for creating and navigating hier-
archical diagrams. The version we used (0.8.0) consists of
approximately 65,600 non-comment lines of code. FreeMind
has over 5 years of development history and is currently
maintained by 4-6 developers. FreeMind’s medium user base
(∼100,000 users) and its reputation2 convince us that it is
a representative example of a medium size Java project.

2.2 Locating crosscutting candidates
Fan-in analysis is an aspect-mining technique that iden-

tifies crosscutting concerns whose implementation consists
of a large number of scattered invocations of specific func-
tionality implemented by a method. The number of dis-
tinct calling methods gives the fan-in metric of the invoked
method [14]. The FINT3 Eclipse plug-in is a tool that sup-
ports fan-in analysis and navigation of crosscutting con-
cerns, and was used as the aspect-mining tool in this case
study. The results of FINT provided us with the fan-in val-
ues for all methods in the system. Since FINT does not
provide information about the locations of the crosscutting
calls, we manually inspected the call sites of each crosscut-
ting candidate that has a fan-in value of at least 8 to deter-
mine if it forms a refactorable crosscutting concern.

2.3 Criteria for refactorable concerns
There is no formal guide to determine precisely what a

refactorable crosscutting concern consists of. Therefore, we
choose to look for a crosscutting concern that satisfies the
following criteria:

Occurrence: A refactorable crosscutting concern should
crosscut at least 8 different method bodies4 in the system.
In particular, we looked for clusters of at least 3 method in-
vocations that can be found in all of the crosscutted method
bodies.

Pattern: There should be a consistent pattern with re-
spects to the order of invocations of these methods.

Absence of complex control structures: AspectJ
does not have pointcut descriptors for control-flow such as
loop, or switch statements [11]. Complex control struc-
tures also introduce irregularities among the crosscutting
call sites. Therefore, we only considered crosscutting code
that was not nested in control structure.

3. CASE STUDY RESULTS
We identified two refactorable crosscutting concerns using

fan-in analysis. For each, we describe the nature of the con-
cern’s implementation, the challenges it poses to AO refac-
toring, our proposed solution, and our observations.

3.1 Overview of crosscutting candidates
The fan-in analysis of FreeMind reported a number of

methods with fan-in higher than 100. However, we found
that candidates that have high fan-in values are often not

1http://freemind.sourceforge.net
2FreeMind was chosen as SourgeForge Project of the Month
in February 2006.
3http://swerl.tudelft.nl/bin/view/AMR/FINT (v0.6)
4The default threshold fan-in value of FINT is 8

refactorable, either because they reside inside some control-
flow structure (such as a switch statement), or because the
locations of the call sites do not form any pattern. How-
ever, we located two groups of methods, with fan-in values
of 32 and 49 respectively, that exhibit some recurring code
patterns for refactoring. We outline the evaluation of each
concern in the following sections.

3.2 Action Concern

Common pattern in crosscutting code.From the results
of fan-in analysis, we noticed a group of methods that are
invoked in the same pattern consistently, and whose fan-in
value is equal or close to the other methods in the group.
We identified that this group contains a code clone, and this
clone is found in 32 different method bodies (see Table 1).

Figure 1 shows an example of this clone in AddArrowLink

Action.java. In general, the clone consists of three method
calls that are always in the same order: a call to execute-

Transaction() is preceded by a call to startTransaction()

and followed by a call to endTransaction(). In most cases,
their call sites are adjacent to each other inside a method
body. The fact that the clones are not located inside a loop
or a branch makes the sequence of calls a good target for
refactoring.

Crosscutting calls Fan-in

ActionFactory.startTransaction(String)) 33
ActionFactory.executeAction(ActionPair) 37
ActionFactory.endTransaction(String) 33

Intersection 32

Table 1: Fan-in values for methods of the Action

Control concern

public void addLink(MindMapNode source, MindMapNode target)

{
/* Begin clone */
modeController.getActionFactory().

startTransaction(String) getValue(NAME));
modeController.getActionFactory().

executeAction(getActionPair(source,target));
modeController.getActionFactory().

endTransaction((String) getValue(NAME));

/* End clone */
}

Figure 1: Action Control concerns in

AddArrowLinkAction.java

Challenges for AO refactoring.The code for this concern
exhibits a consistent behaviour [13], and the method signa-
tures reveal that it acts as a transactional control. There are
two options to extract the crosscutting code into an aspect:

Option 1. Refactor the calls to startTransaction() and
endTransaction() into an ‘around’ advice of the containing
method.

This options requires that startTransaction() and end-

Transaction() always be located at the beginning and end
of the method body, which is not true for all cases. Figure 2
shows a variant that contains some initialization code before
the clone.

Option 2. Refactor the startTransaction() and endTrans-

action() into an ‘around’ advice of executeAction(). While
the approach solves the problem created by the variant in

public void setEdgeColor(MindMapNode node, Color color) {
try {

doAction = createEdgeColorFormatAction(node, color);
undoAction = createEdgeColorFormatAction(node,

((EdgeAdapter) node.getEdge()).getRealColor());

/* Begin clone */
controller.getActionFactory().

startTransaction(this.getClass().getName());
controller.getActionFactory().

executeAction(new ActionPair(doAction, undoAction));

controller.getActionFactory().
endTransaction(this.getClass().getName());

/* Ends clone */
} catch (JAXBException e) {

e.printStackTrace();
}

}

Figure 2: Initialization code before

startTransaction() in EdgeColorAction.java

Figure 2, it creates two new challenges. First, there are also
variants of the clone in which executeAction() is not called
right after the startTransaction() (see Figure 3). The fan-
in analysis (Table 1) also shows that executeAction() has
a higher fan-in value than the other two methods, and we
noticed that there are several exceptions where startTrans-
action() and endTransaction() are not called along with
executeAction(). A pointcut descriptor that accounts for
these exceptions would be difficult to create.

public void setNodeText(MindMapNode selected, String newText){

String oldText = selected.toString();

try {}

/* First part of the clone */
c.getActionFactory().startTransaction(c.getText("edit_node"));

EditNodeAction EditAction =

c.getActionXmlFactory().createEditNodeAction();
EditAction.setNode(c.getNodeID(selected));
EditAction.setText(newText);

EditNodeAction undoEditAction =
c.getActionXmlFactory().createEditNodeAction();

undoEditAction.setNode(c.getNodeID(selected));
undoEditAction.setText(oldText);

/* Second part of the clone */
c.getActionFactory().executeAction(

new ActionPair(EditAction, undoEditAction));
c.getActionFactory().endTransaction(c.getText("edit_node"));

} catch (JAXBException e) {
e.printStackTrace();

}

}

Figure 3: Clone variant in EditAction.java

Refactoring solution.The first step of refactoring must
resolve the inconsistency found in Figures 2 and 3. Since in
most cases all three calls in the clone are adjacent to each
other, the best approach is to ‘correct’ the type of variant
found in Figure 3 and change the locations of startTrans-
action() and endTransaction() to make them adjacent to
the executeAction() call. The main challenge of the change
is that we must verify that it does not change the behavior of
the containing method body. In all cases of this crosscutting
concern, we manually verified that this change was safe.

We then used the Extract Method technique to extract the
clone in each class into a new method called runTransaction

(see Figure 4).
After the extraction, we discovered an interesting core-

protected void runTransaction(ActionPair target,
String startName, String endName)

{
modeController.getActionFactory().startTransaction(startName);
modeController.getActionFactory().executeAction(target);

modeController.getActionFactory().endTransaction(endName);
}

Figure 4: Extracted method runTransaction()

lation between the refactored classes. For instance, most
of the classes that contain the clone are descendants of the
FreemindAction class, even though the FreemindAction class
does not contain the clone. Therefore we applied the Ex-
tract Superclass method repeatedly to extract the runTrans-
action() method into FreemindAction. This refactoring re-
duced the lines of code count by approximately 300.

3.3 XML Attribute Serialization concern

Common pattern in crosscutting code.From the results
of the fan-in analysis, we noticed another group of method
calls that represents another refactorable code clone. This
group of code clones spans over 49 different method bodies
(see Table 2). Figure 5 shows an example of this clone in the
AddIconActionTypeImpl.serializeAttributes() method.
In fact, every clone exclusively resides in the body of a
serializeAttributes() method, and serializeAttribu-

tes() implements a method of the XMLSerializable inter-
face. This implies that every class that is involved in this
concern implements XMLSerializable. From this informa-
tion we deduced that the clones belong to the XML At-
tribute Serialization concern.

public void serializeAttributes(XMLSerializer context)
throws org.xml.sax.SAXException

{

/* Clone begins */
context.startAttribute("", "color");

try {
context.text(((java.lang.String) _Color));

} catch (java.lang.Exception e) {

Util.handlePrintConversionException(this, e, context);
}

context.endAttribute();
/* Clone ends */

super.serializeAttributes(context);
}

Figure 5: An Example of the refactorable code clone

in AddIconActionTypeImpl.java

Challenges with AO refactoring.The XML Attribute Se-
rialization concern consists of an interface implementation
and we considered it as a type of role superimposition con-
cern [13]. There are two options to extract the crosscutting
clones into an aspect:

Option 1. Refactor the clone into a ‘before’ advice of
serializeAttributes(). Ideally, this option produces the
most simplified and modularized implementation of the con-
cern. However, there are variants of serializeAttributes()
where this approach is not applicable. For instance, a vari-
ant may contain more than one instance of the clone, or
the clone may reside in a control structure (e.g. inside an
if branch or a while loop) (see Figure 6). Since the vari-
ants account for half of the method bodies that contain the
clone, we would have to make some exclusions in the point-
cut descriptor, and the concern would not be completely

Crosscutting calls Fan-in

XMLSerializer.startAttribute(String, String) 49
XMLSerializer.text(String) 53
Util.handlePrintConversionException(Object, Exception, XMLSerializer) 50
XMLSerializer.endAttribute() 49

Intersection 49

Table 2: Fan-in values of XML Attribute Serialization concern

modularized in an aspect, hence defeating the purpose of
the refactoring.

public void serializeAttributes(XMLSerializer context)

throws org.xml.sax.SAXException
{ /* Clone begins */

context.startAttribute("", "enabled");

try {
context.text(DatatypeConverter.printBoolean(_Enabled)));

} catch (java.lang.Exception e) {
Util.handlePrintConversionException(this, e, context);

}

/* Clone ends */
context.endAttribute();

if (_Color!= null) {
/* Clone begins */

context.startAttribute("", "color");
try {

context.text(((java.lang.String) _Color));

} catch (java.lang.Exception e) {
Util.handlePrintConversionException(this, e, context);

}
context.endAttribute();
/* Clone ends */

}
super.serializeAttributes(context);

}

Figure 6: A variant of serializeAttributes() that

contains 2 clones.

Option 2. Refactor the clone into an ‘around’ advice of
XMLSerializer.text(). Although this option can be gener-
alized to every instance of the crosscutting call sites, the fan-
in analysis (Table 2) shows that there are several situations
in which XMLSerializer.text() is not called along with
XMLSerializer .startAttribute() and XMLSerializer.-

endAttribute(). We must account for these exceptions in
the pointcut descriptor.

Again, due to the irregularity of the crosscutting clones,
neither option can provide a refactoring that completely and
neatly encapsulates the crosscutting concern into an aspect.
However, we could apply the same object-oriented refactor-
ing strategy as the previous concern to eliminate the clones.

protected void serializeXMLAttribute(XMLSerializer context,
String url, String local, String _text)

throws org.xml.sax.SAXException {
context.startAttribute("", local);

try {
context.text(_text);

} catch (java.lang.Exception e) {
Util.handlePrintConversionException(this, e, context);

}

context.endAttribute();
}

Figure 7: Extracted method serializeXMLAttribute()

from the crosscutting code clones

Refactoring solution.. We applied the Extract Method
technique to extract the clone into a new method called
serializeXMLAttribue() (see Figure 7):

When we inspected the inheritance relationship between
the classes that contain the crosscutting clone, we noticed
that 33 of the 49 classes declaring our extracted method
are descendants of the XmlActionImpl class. Therefore, we
repeatedly applied the Pull Up Method to serializeXML-

Attribute() until we reached the XmlActionImpl class. The
refactored version reduced the line of code count by approx-
imately 200 lines.

Using the inheritance graph, we also noticed that there are
several classes that share the same prefix, such as MenuAction
BaseImpl, MenuCategoryBaseImpl, and MenuSubmenuTypeImpl.
Although these classes do not inherit from any other project
class, we deduced that they are conceptually related and
should be connected together through a superclass. We
applied the Extract Superclass refactoring to refactor the
serializeXMLAttribue() method in each class to a new
superclass AbstractMenuBaseTypeImpl, and further elimi-
nated approximately 90 lines of code.

4. DISCUSSION

The road from aspect-mining to aspect refactoring can
be long and winding.Although aspect-mining techniques
such as fan-in analysis were able to detect crosscutting func-
tionality in our case study, only a small subset of the iden-
tified concerns could be refactored into aspects. One rea-
son is that AOP languages such as AspectJ can only cap-
ture a small set of program execution points. Furthermore,
AO transformations have many restrictions with respects
to the structure and pattern of the crosscutting code, and
can only be applied directly in certain circumstances [10].
This requirement of uniformity can rarely be expected from
a large system, especially open source projects that have
evolved over a long period of time. Developers may intro-
duce changes to the code that disrupt the original structure
or pattern and that breaks the regularity required for AO
refactoring.

AO refactoring requires an initial stage of OO refactor-
ing. In our case, crosscutting concerns were associated with
code clones. There were several benefits to applying tradi-
tional OO transformations to refactor these clones. First, by
extracting the code clones into a separate method, the in-
tent of the clone becomes explicit, and the total code size is
reduced. Secondly, for clone variants that cannot be directly
refactored, we can study the discrepancies, which helps us
to spot potential bugs in the system. Thirdly, we may be
able to reveal some unseen relationships among the classes
that share the same clone, and further refactor the code.
Finally, untangling a concern is a major challenge in large-
scale AO refactoring [2]. By repeatedly refactoring the code
to a more concise form, our OO refactoring strategy may
help us overcome this challenge.

5. RELATED WORKS
Aspect-mining techniques identify the crosscutting con-

cerns in a system either statically or dynamically. Fan-in
analysis [15] is a static aspect mining technique that deter-
mines the scatteredness of code by identifying methods that
are called in many places in the project. Lexical-based anal-
ysis derives crosscutting concerns by grouping program ele-
ments based on their lexical representations [6]. A version-
history based approach by Breu and Zimmermann [4] ana-
lyzes the addition and evolution of program elements and
correlates them with the author and timestamp data from
the version control history. This approach is more scalable
to large projects since the precision of the crosscutting con-
cerns increases with the project size and history. A case
study by Bruntink et al. [5] applies several clone detection
techniques to an industrial C application and analyzes their
effectiveness in finding the crosscutting concerns. Dynamic
aspect mining [3] depends on run-time program behavior to
identify recurring execution patterns that can be classified as
a concern. Tonella and Ceccato apply concept analysis [18]
to analyze how execution traces are related to class methods
and identify related methods as a crosscutting concern.

There are several case studies that evaluates the appli-
cability of AO refactoring. Monteiro et al. [16] and Hanne-
mann et al. [9] separately conducted studies that applied AO
refactorings incrementally on small code examples that use
design patterns such as the Observer Pattern. Marin also il-
lustrated the AO refactoring approach on JHotDraw project
and completely extracted the Undo concern into an aspect
[12]. However, the crosscutting concerns identified in these
projects do not exhibit the irregularities in our FreeMind
examples. Coyler et al. [7] also conducted a case study that
seperated the EJB support from an large-scale application
server using AO refactoring.

Automated AO refactoring remains a challenge. Binkley
at al. [1] [2] created a semi-automated approach to refactor
object-oriented program elements into aspects. Currently,
the prototype lacks syntactic checks and oftens provide er-
ronous refactored code and unreadable pointcuts that can be
improved. Hannemann et al. [10] developed another semi-
automated approach called role-based refactoring. However,
the target code must conform to certain design patterns to
enable the refactoring and is not flexible for general use.

6. CONCLUSION
We described our efforts to locate refactorable crosscut-

ting concerns in an open-source project using an aspect-
mining technique, and to refactor the identified code to mit-
igate their crosscutting nature. The concerns that could
be refactored were rare, and we discovered that we could
not find an appropriate AO refactoring approach that could
produce a simpler and more modularized code, due to the
variations in the structure. We resorted to a traditional OO
refactoring strategy, and discovered some hidden relation-
ships between classes that helped us further simplify the
code as a step that could facilitate future AO migration.
We conclude that there exists an important gap between the
identification of crosscutting concerns and the technologies
available to mitigate the problem.

7. ACKNOWLEDGEMENT
This work was supported by the Fond Québécois de la

recherche sur la nature et les technologies (FQRNT).

8. REFERENCES
[1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and

P. Tonella. Automated refactoring of object oriented
code into aspects. In Proceedings of the 21st IEEE
International Conference on Software Maintenance,
pages 27–36, 2005.

[2] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and
P. Tonella. Tool-supported refactoring of existing
object-oriented code into aspects. IEEE Transactions
on Software Engineering, 32(9):698–717, 2006.

[3] S. Breu and J. Krinke. Aspect mining using event
traces. In Proceedings of the 19th IEEE international
conference on Automated software engineering, pages
310–315, 2004.

[4] S. Breu and T. Zimmermann. Mining aspects from
version history. In Proceedings of the 21th IEEE
international conference on Automated software
engineering, pages 221–230, 2006.

[5] M. Bruntink, A. van Deursen, T. Tourwe, and R. van
Engelen. An evaluation of clone detection techniques
for crosscutting concerns. In Proceedings of the 20th
IEEE International Conference on Software
Maintenance, pages 200–209, 2004.

[6] M. Ceccato, M. Marin, K. Mens, L. Moonen,
P. Tonella, and T. Tourwe. A qualitative comparison
of three aspect mining techniques. In Proceedings on
the 13th International Workshop on Program
Comprehension, pages 13–22, 2005.

[7] A. Colyer and A. Clement. Large-scale aosd for
middleware. In Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 56–65, 2004.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, June
1999.

[9] J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. In Proceedings of
the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 161–173, 2002.

[10] J. Hannemann, G. C. Murphy, and G. Kiczales.
Role-based refactoring of crosscutting concerns. In
AOSD ’05: Proceedings of the 4th international
conference on Aspect-oriented software development,
pages 135–146, 2005.

[11] E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 26–35, 2004.

[12] M. Marin. Refactoring JHotDraw’s Undo concern to
AspectJ. In Proceedings of the First Workshop on
Aspect Reverse Engineering (WARE)., 2004.

[13] M. Marin, L. Moonen, and A. van Deursen. A
classification of crosscutting concerns. In Proceedings
of the 21st IEEE International Conference on
Software Maintenance, pages 673–676, 2005.

[14] M. Marin, L. Moonen, and A. van Deursen. A
common framework for aspect mining based on
crosscutting concern sorts. In Proceedings of the 13th

IEEE Working Conference on Reverse Engineering,
pages 29–38, 2006.

[15] M. Marin, A. van Deursen, and L. Moonen.
Identifying aspects using fan-in analysis. In
Proceedings of 11th Working Conference on Reverse
Engineering, pages 132–141, 2004.

[16] M. P. Monteiro and J. M. Fernandes. Refactoring a
java code base to aspectj: An illustrative example. In
Proceedings of the 21st IEEE International Conference
on Software Maintenance, pages 17–26, 2005.

[17] M. P. Monteiro and J. M. Fernandes. Towards a
catalog of aspect-oriented refactorings. In Proceedings
of the 4th international conference on Aspect-oriented
software development, pages 111–122, 2005.

[18] P. Tonella and M. Ceccato. Aspect mining through
the formal concept analysis of execution traces. In
Proceedings of the 11th IEEE Working Conference on
Reverse Engineering, pages 112–121, 2004.

