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SUMMARY

During software maintenance tasks, developers often spend a valuable amount of effort investigating
source code. This effort can be reduced if tools are available to help developers navigate the source code
effectively. We studied to what extent developers can benefit from information contained in clusters of
change sets to guide their investigation of a software system. We defined change clusters as groups of
change sets that have a certain amount of elements in common. Our analysis of 4200 change sets for
seven different systems and covering a cumulative time span of over 17 years of development showed that
less than one in five tasks overlapped with change clusters. Furthermore, a detailed qualitative analysis
of the results revealed that only 13% of the clusters associated with applicable change tasks were likely
to be useful. We conclude that change clusters can only support a minority of change tasks, and should
only be recommended if it is possible to do so at minimal cost to the developers. Copyright © 2009 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

When involved in a task to change unfamiliar code, a software developer will generally spend
a valuable fraction of the task time investigating the code. In many development environments,
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investigating the source code can be supported in a wide variety of ways, from the most basic
cross-reference searches (e.g., for the callers of a method) to advanced tools that take advantage of
ever-growing quantities and types of software development data [1]. Examples of advanced tools
and techniques to support software investigation include query-based source code browsers [2],
association rule mining of change history [3], searchable project memory [4], automated feature
location [5], topology analysis of software dependencies [6], and semantic analysis [7]. The rich and
diverse collection of available software investigation tools and techniques is not surprising when
we consider the wide variety of questions developers ask during software change tasks [8]. In fact
the increasing size of most software systems motivates the development of a collection of search
tools that can maximize the efficiency of developers in different program investigation situations.
To complement this corpus, we were interested in assessing the potential of a software’s change

history to guide developers in their exploration of the code in the context of a change task. Specif-
ically, we sought to determine if we could recommend useful information about past changes to a
developer to facilitate their exploration of the code. For this purpose, we devised a simple technique
that scans the change history of a software system and determines if there exists any change clusters
that overlap with a set of elements of interest to a developer. The concept of a change cluster has
been used in the past for purposes such as analyzing the evolution of software systems [9]. In our
case, we define a change cluster to be a set of fine-grained program elements (methods or fields)
that are related through their change history. Our general assumption is that a developer working on
a task related to a change cluster can potentially benefit from knowledge about the set of elements
in the cluster. However, to assess this potential, we must answer two important questions. First, how
often do tasks overlap with change clusters? Second, to what degree does the retrieval of a change
cluster produce valuable information for developers? In our investigation of these questions, we
modeled change tasks as the set of elements committed together to a revision control system (see
Section 2.1).
These questions build on previous research in repository mining for the purpose of software

engineering. Others have proposed to mine software change repositories for association rules, and to
recommend an element for investigation if it has consistently been changed together with an element
currently being modified by the developer [3,10]. Although this idea was shown to be good at
recommending specific elements at the granularity of classes in particular situations (i.e., systematic
co-modifications of the same set of elements), it is too specialized to support general-purpose code
investigation because there may exist cases where elements that should be investigated together
were not changed in precisely the same change set. Instead, our goal was to broaden the idea of
mining association rules between sets of elements by proposing clusters of fine-grained elements
related through change history, but that were not necessarily modified in the same change sets.
We implemented a fine-grained change clustering technique and applied it to the revision history

of seven mature open-source systems. Our study of 4200 change sets for these systems covered a
cumulative time span of over 17 years of development. We analyzed this data in two ways. First,
we performed a quantitative analysis to determine the degree of overlap between change tasks and
change clusters, and tested different heuristics designed to increase the precision of the results (i.e.,
the relative number of recommended clusters that overlapped with a task). In a second phase of our
investigation, we conducted an in-depth qualitative analysis of the recommended change clusters
to assess their usefulness.
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2. CHANGE CLUSTERS

In our investigation, change clusters correspond to sets of fine-grained program elements (fields or
methods) that were changed or added as part of overlapping change sets, and that form a cohe-
sive subset of the program. The goal of extracting change clusters broadens the idea of mining
association rules between sets of elements [3,10] by proposing clusters of elements also related
through change history, but whose change pattern is not strictly an instance of an association
rule. The motivation for searching for task-related clusters in the change history of a system
stems from our previous work on the reuse of program investigation knowledge for understanding
code [11].

2.1. Background

Extracting change clusters requires access to software repositories that store software changes as
differences between versions of artifacts. Central to our study is the concept of a transaction (or
change set), that is, a number of software artifacts committed together to a software repository.
Some repository software (such as Subversion) explicitly supports the tracking of transactions.
Other systems (such as CVS), do not. In the latter case, it is nevertheless possible to convert a stream
of commit operations on individual artifacts into transactions. Following the common practice for
mining CVS repositories [12], we consider all commits sharing a user and log message performed
during a given time window to constitute a transaction.
Although commit operations are performed at the granularity of files, a parsing operation will

extract information about the individual program elements that were changed as part of a trans-
action. Henceforth, we will assume that a software repository can be abstracted as a sequence of
transactions, each describing the set of changed elements (fields and methods). For each changed
element, we record whether the element was added, deleted, or modified as part of the transac-
tion. In addition, transactions typically store meta-data such as a timestamp, the user name of the
developer performing the transaction, and a log message.
In modeling change tasks, we chose to use transactions instead of all the changed elements

associated with a feature or bug, as could be obtained from a bug database. Two main reasons
motivated this decision. First, for some projects it can be impossible to track all the changes
associated with a bug report because the tagging information is simply missing. Second, although we
realize that there is generally a one-to-many relationship between tasks as defined by a bug report and
transactions as recorded in a software repository, we were interested in studying interactions between
fine-grained bursts of developer activity, which we believe are better represented by transactions
than by the entire set of changes associated with a feature. This view is consistent with some of the
prior work on mining software repositories [3].

2.2. Motivating example

We illustrate the potential benefits of change clusters with a scenario taken from the change history
of Eclipse’s Core plug-in (JDT-Core, see Table I). In JDT-Core, transaction #2416 is a bug fix about
a property that stores the position in a source file of an abstract syntax tree node (the transaction
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Table I. References for target systems References (verified 6 January 2009).

Ant ant.apache.org/ JDT-UI www.eclipse.org/jdt/ui/
Azureus azureus.sourceforge.net/ Spring springframework.org/
Hibernate www.hibernate.org/ Xerces xerces.apache.org
JDT-Core www.eclipse.org/jdt/core/

numbers are internally generated by our analysis infrastructure). This property is set by calling
the method setSourceRange() and the fix for the bug mainly involved modifying the method
setTypeForVariableDeclarationExpression() in the class ASTConverter.
As it turns out, two previous transactions in JDT-Core’s change history are highly related to this

bug fix: #1470 and #1476. In transaction #1470, a developer added a call (and the supporting code) to
setSourceRange() for array nodes inASTConverter.setTypeForVariableDeclara
tionExpression() and introduced a similar code pattern in the method ArrayType.
clone(). In transaction #1476, a developer removed the code in ArrayType.clone() and
inlined it in ASTConverter.setTypeForVariableDeclarationExpression(). The
developer also created a class, CopyPositionsMatcher, and used it in ASTConverter.set
TypeForVariableDeclarationExpression() to compute some intermediate source
range.
All of these modified elements are relevant to the change represented by transaction #2416. First,

the developer removed the class CopyPositionsMatcher introduced in transaction #1476 and
inlined it (with some modifications) in the ASTConverter.setTypeForVariableDeclara
tionExpression(). Then, the developer modified some code to compute the source range in
a way that is highly similar to how the code introduced in transaction #1470 worked.
In summary, the modifications performed in transaction #2416 involved understanding the code

changed in transactions #1470 and #1476 and using (by copying or inlining) some code introduced in
these two transactions. However, the commit messages and the bug reports of these two transactions
did not seem related at all, preventing their retrieval using standard search techniques. The clustering
technique we describe in the rest of this section is able to identify the two related transactions given
many combinations of pairs of methods in transaction #2416. In our scenario, having identified
two relevant methods, the developer could have instantly obtained a recommendation consisting of
the two transactions in the matching change cluster. With tool support such as SemDiff [13], the
developer would then be able to seamlessly peruse the transactions to view any of the 21 elements
changed, the log messages, or even the detailed changes to source code committed as part of the
transactions in the cluster.

2.3. Overview of the technique

We model a program P={e1, . . . ,en} as a set of program elements ei , which in our case are
Java fields and methods. Our technique takes as input a query Q⊆ P and returns a related cluster
C⊆ P‡. The idea is that Q represents a small number of elements related to a task (typically 2 or 3),
and that C represents a larger set of elements that are part of clusterable transactions, and that are

‡In practice a cluster is a more elaborate data structure that retains the list of transactions composing it, but this level of
detail is superfluous here.
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related to the task. Given a query, our technique retrieves the relevant clusters in four steps:

1. Determine the sequence of clusterable transactions: Transactions that involve too few or too
many changed elements to be useful are removed from the list of transactions processed by
the clustering algorithm (see next paragraph for thresholds). The result of this step is a list of
clusterable transactions.

2. Cluster transactions: The clusterable transactions are clustered based on the number of over-
lapping elements using the nearest-neighbor clustering algorithm defined in Figure 1. This
algorithm assumes that program elements (e.g., fields or methods in Java) can be uniquely
represented, and is not sensitive to whether a given program element exists or not in a given
version of a program. For example, if method m exists in one version, it is considered a valid
program element even if it is removed in a later version. We used a nearest-neighbor clustering
algorithm because it is a simple and intuitive way to associate elements transitively through
transactions. In other words, if elements A and B are changed together in one transaction, and
then B and C are changed together in another transaction, A and C might have a relation worth
reporting to a developer. The result of this clustering operation is a set of clusters representing
transactions that involve an overlapping set of elements. The only parameter of our clustering
algorithm is the minimum number of common elements between two transactions required
to assemble the two transactions in a cluster. Experimentation with the change history of
systems not used in the evaluation revealed four elements as the threshold leading to the most
balanced results [14]. To produce useful clusters, we remove, in the first step, all transactions
with less than four elements from the sequence of clusterable transactions as they can never
be clustered. Additionally, based on prior experimentation [11], we also remove transactions
with more than 20 changed elements as these generate overly large clusters that would require
developers to spend an unreasonable amount of effort to study. Removing large transactions
has the added side effect of eliminating transactions representing branch merges.

3. Retrieve the clusters matching a query: We return all the clusters C ∈C|Q⊆C .
4. Filter retrieved clusters. Based on various filtering heuristics (Section 2.4), we remove the

clusters that are not likely to be useful to developers from the list of results.

2.4. Filtering heuristics

The results of the search technique described above can be influenced by a number of heuristics that
are applied to the four steps above. We experimented with a number of filtering heuristics that we
developed based on insights gained during preliminary studies [11,14]. Based on these insights, we
fixed a number of parameters that clearly appeared as offering good results, such as the minimum
overlap value of 4 for the clustering algorithm. Other heuristics required further experimentations
and remained variables in our study.

Heuristic 1 (Ignore high frequency). In step 3, queries automatically return no result if any of the
query elements is an element that changed more than a specified number of times as part of any
transaction in the past.

We define the function [highFrequency(e,T )→boolean] as returning true if element e occurs
in 3% or more of the transactions in T . We designed this heuristic through prior experimentation
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Figure 1. Nearest-neighbor clustering algorithm.

after noticing many situations where some central or critical elements were continually modified.
In such cases, our hypothesis is that querying the change history for the highly changed element
returns too many recommendations to be useful.

Heuristic 2 (Minimum cohesion). We define the cohesion of a cluster C created through the clus-

tering of n transactions Ti as
∑n

i=1 |Ti |
|C |n . Cohesion varies between 0 and 1 and measures howmuch the

clustered transactions actually overlap. For example, a cluster created from transactions grouping
identical sets of changed elements would have a cohesion of 1.0. Two transactions of 5 elements,
of which 4 overlap, would create a cluster of cohesion (5+5)/(6 ·2)=0.83.

The intuition behind this heuristic is that clusters with low cohesion may represent transactions
that have been clustered but that do not represent changes associated with a common high-level
concern. Based on initial prototyping and on an analytic interpretation of themeasure, we determined
that 0.6 seemed a reasonable cohesion cutoff. When this heuristic is enabled, in step 3 of the
technique, clusters are only returned if they have a minimum cohesion of 0.6.

Heuristic 3 (Minimum Transactions). In step 3, the minimum number of transactions that must be
associated with a cluster for it to be returned as a match.

The idea behind this last heuristic is to avoid returning results that are single transactions or
very small groups of transactions, which may have been spuriously clustered. We experimented
with values 2 and 3. A value of one returns all clusters, whereas higher values produce very few
recommendations.
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Heuristic 4 (Maximum time span). We reject any cluster whose last (most recent) transaction is
more than a threshold t days earlier than the date of the query.

For example, with a 30-day threshold, for a query performed on July 1, 2008, we would reject a
cluster whose last transaction was performed on April 15, 2008. This heuristic was introduced after
studying the results reported in our previous experiment [14], where we noticed that many reported
clusters were not useful simply because the reported elements were stale, a well-known risk when
analyzing historical data [15, p. 125]. Based on a preliminary study of our previous results, and our
experience with the study of software evolution in general, we opted to study three thresholds for
this heuristic: 30, 90, and 180 days.

3. EMPIRICAL ASSESSMENT

The overall goal of this research was to assess to what extent can we use past changes to inform
software investigation? This section describes the empirical setup we designed to answer that
question. We start by refining our general research goal with three specific research questions.

3.1. Research questions

Q1. Support frequency. What percentage of change tasks relate to change clusters? Although we
expect support frequency to vary across different projects, we wanted to get a general estimate of
the amount of historical information we can use to produce recommendations to support ongoing
maintenance.
Q2. Impact of Heuristics. What is the impact of the filtering heuristics on the overall precision

of the recommendations?
Q3. Value of the information. To what degree are recommended change clusters likely to be

useful to developers?

3.2. Methodology

The basic methodology we employed for answering the research questions was to apply various
configurations of our technique to the change repositories of a number of long-lived Java systems.
For each system we proceeded with the following steps:

1. We produced a sequence of analyzable transactions. An analyzable transaction is a transaction
with three or more changes that are not additions (i.e., that are changed or deleted elements),
and with a total of 20 or fewer elements (to filter out large code cleanups and major code reor-
ganizations unlikely to map to focused changed tasks). Transactions outside this range cannot
be efficiently analyzed with the procedure described in the following steps (because newly
added elements have no chance of resulting in a matching query unless they are reintroduced).
The list of analyzable transactions is different from the list of clusterable transactions in that
analyzable transactions represent transactions to which our empirical design is applicable,
whereas clusterable transactions are any transactions that can be used to create clusters.

2. We skip the first 200 analyzable transactions, to analyze transactions that approximate tasks on
a system with a reasonable amount of change history. We analyze the following 600 analyzable
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transactions in the system’s change history. We analyzed 600 transactions because this was
the largest common 100-multiple of analyzable transactions among all the target systems.

3. For each analyzable transaction Ti (for i>200), we apply the clustering algorithm of Figure 1
to the set of all clusterable transactions {Tj | j<i}.

4. For transaction Ti , we produce a set of queries Q={(em,en)|(em,en)∈Ti ×Ti ∧em �=en∧
{em,en}∩additions(Ti )=∅}. In other words, we consider all possible combinations of two
elements in Ti that do not correspond to elements added as part of the transaction. Although, in
theory, |Q|≈(|Ti |

2

)
can grow very large, restricting our analysis to transactions with a maximum

of 20 (changed) elements leads to a tractable number of combinations (190). We use this
strategy because a maintenance task can be approached from different angles (i.e., different
elements being selected as starting points for the investigation). For example, a developer
might want to start with elements A and B while another developer would start by looking
at elements B and C . With our strategy, we exhaustively take into account all the possible
starting points of two elements.

5. We retrieve the clusters formed by at least two transactions. If filtering heuristics are enabled,
we apply the heuristics to remove unwanted clusters.

6. We measure various properties of the output clusters. We refer to the output of our technique
as recommended clusters, or simply recommendations.

We use four measures to assess the results of experiments as described above.

Measure 1 (Supported transactions). The number of transactions (out of 600 analyzed for a system)
for which at least one query generates a recommendation.

This measure assesses how many tasks could potentially have benefited from the technique, in
answer to research question Q1.

Measure 2 (Input coverage). For transactions that produce at least one recommendation, the ratio
of recommendations to the total number of queries for the transaction.

For instance, a transaction with five elements would generate
(5
2

)=10 queries. If only four of
these queries produce a recommendation, Input Coverage =0.4. This value is aggregated over all
supported transactions to produce an overall ratio. This measure estimates the probability that a
transaction would have retrieved change clusters if a developer entered a query based on the first
two relevant elements identified. In other words, if for a transaction Input coverage =1.0, any
query will produce the output cluster(s), and hence the probability to produce a recommendation
is 1.0. The measure of input coverage will help us assess Q1.

Measure 3 (Scattered clusters). The ratio of transactions for which there is at least one recommen-
dation of a scattered cluster to the total number of supported transactions. A scattered cluster is
defined as a cluster grouping elements in at least three different classes and two different packages,
generated from transactions that span at least 7 days.

This measure estimates the number of tasks for which recommended clusters could have been
particularly useful to developers as they represent scattered (and thus potentially hard to find)
elements. This measure is intended to help provide answers to questions Q2 and Q3.
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Measure 4 (Recommendation accuracy). A measure of how accurate the recommended cluster is.
We estimate the accuracy of a recommended cluster by calculating the average precision and recall
of each recommendation, and then generating the average F-measure for all the recommendations.
The precision for a cluster is the number of non-query elements in the cluster that are also in
the transaction analyzed, divided by the number of non-query elements in the cluster. The recall
is the number of non-query elements in the cluster that are also in the transaction, divided by
the number of non-query elements in the transaction. The F-measure is the harmonic mean of
both precision and recall, calculated as F=2 ·P ·R/(P+R). Our final measure of recommendation
accuracy is the average F measure over all recommendations. Recommendation Accuracy varies
between 0 and 1: a value of 1 indicates that precision and recall are perfect for all recommendations,
and degrades according to a corresponding degradation in precision/recall as measured by the
F-measure.

In the context of our approach, it should be noted that the precision and recall ratios grossly
underestimate the performance of the approach because they are calculated based on the elements
changed as part of a task, whereas we attempt to produce recommendations of what a developer
needs to investigate. We have used the accuracy measure described above because, in the absence of
additional information about the change tasks, it is the only way to rigorously assess our technique.
In practice the F-measure calculated represents an extreme lower bound on the accuracy of the
approach. For example, a recommendation with an F-measure of 0.0 may still have been useful if it
allowed the developer to find related, but unchanged, program elements. The main purpose of this
measure is to provide a robust and objective way to measure the impact of the various heuristics to
answer Q2. However, the intermediate F-measures can also help us to interpret the results for the
purpose of assessing Q3.
Additional explanations of our experimental method, including an example application, can be

found in a separate publication [14, Section 3.3].

3.3. Comparison with prior experiments

The methodology described in this section was used to replicate the experiment described in
a previous paper [14]. We replicated the experiment because our initial results indicated a
number of necessary improvements and additional trends worthy of being studied. Specifically,
the experiment described in this paper replicates the previous experiment with the following
differences:

• We have improved our transaction detection engine to automatically filter out any transactions
where the only changes detected were in the comments to elements (as opposed to the code).
This improvement is in response to the observation that many useless clusters had been detected
for cleanups to the Javadocs comments.

• We increased the number of analyzed transactions considered from 500 to 600 (the largest
possible 100-multiple given our available data).

• We investigated the effect of an additional heuristics, MAX TIME SPAN, with three different
values.

As such, the specific goal of the experiment was to confirm the earlier findings with more rigorous
analyses, obtain more accurate answers to our questions, as well as test the new heuristics.
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4. QUANTITATIVE RESULTS

We describe our data sources and quantitatively analyze the results of the experiment.

4.1. Data sources

Systems were selected among the population of available and long-lived open-source Java projects.
We selected open-source projects that are sponsored and developed by different organizations, each
with their own rules and development processes. However, these are not necessarily representative
of all systems and, in particular, proprietary software products are likely to exhibit a different
process. To be selected for analysis, a system needed to have at least 800 analyzable transactions.
For each system, we considered all transactions starting at the first transaction, but removed small
and large transactions as described in the previous section. Table I provides the references to the
systems we analyzed, and Table II reports on their main characteristics as related to our research
questions. For each system, the columns First and Last give the dates of the first and the last
analyzed transactions, respectively. These correspond to the 201st and 800th analyzable transactions
available in the repository. The following column gives the number of days between the first and
the last transactions analyzed. Column Trans. gives the total number of transactions committed
between the first and the last analyzed transactions. For instance, for the Ant project, we analyzed
600 transactions out of 3853 because 3853−600=3253 transactions were too small or too large to
be considered analyzable (see Section 3.2). Finally, the last three columns describe the amount of
clustering that took place for the last analyzed transaction. ColumnClusters gives the clusters formed
for the last analyzable transaction and column Pool gives the maximum number of clusterable
transactions. The last column is the ratio of Pool to Clusters, or the average number of transactions
per cluster. Experimentation showed that the number of clusters grows linearly with the number of
transactions analyzed.

4.2. Q1: support frequency

Table III reports on the measure of Supported Transactions and Input Coverage for all systems
analyzed. The second and third columns give the number of supported transactions (out of 600)
and the corresponding ratio, respectively. The fourth column gives the input coverage measure.

Table II. Characteristics of target systems.

System First Last Time Trans. Clusters Pool Ratio

Ant 6 Dec 2001 17 Jul 2007 2048 3853 1142 1231 1.078
Azureus 12 Nov 2003 14 Jul 2004 244 3103 851 960 1.128
Hibernate 4 Dec 2003 19 Aug 2005 623 3922 1038 1116 1.075
JDT-Core 17 Jan 2002 15 Jul 2003 544 4192 652 806 1.236
JDT-UI 20 Aug 2001 15 May 2002 268 3081 894 962 1.076
Spring 1 Feb 2004 6 Feb 2006 370 3627 1203 1303 1.083
Xerces 17 May 2001 8 Nov 2007 2366 2681 802 922 1.150

Total 6463 24459
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Table III. Experimental measures—default configuration.

System Supported Ratio Coverage Scattered Accuracy

Ant 87 0.15 0.17 0.29 0.23
Azureus 131 0.22 0.26 0.48 0.29
Hibernate 60 0.10 0.23 0.33 0.35
JDT-Core 189 0.32 0.20 0.74 0.24
JDT-UI 63 0.11 0.22 0.62 0.28
Spring 62 0.10 0.27 0.66 0.36
Xerces 148 0.25 0.31 0.64 0.28

Average 105.7 0.176 0.236 0.537 0.291

As this data shows, on average less than 1 in 5 analyzed transaction overlaps with change clusters.
As it is expected, the number of supported transactions varies per system (�=0.085 for the ratio).
The input coverage values show that on average close to 1 in 4 queries will yield a recommended
cluster if a cluster can be recommended. Values of the input coverage metric are more stable
(�=0.046).
The general answer to our first research question is that it is reasonable to expect that less than 1 in

5 maintenance tasks overlaps with change clusters. In addition, querying for change clusters based
on two relevant methods will identify the cluster about 1 in 4 times. A rough overall interpretation
of this data is thus that a developer who identifies two elements modified as part of a task and
performs a query using our technique can expect to see a recommendation 0.176×0.236≈4%
of the time. This corroborates our previous estimate of 5%. The lower value with the replicated
experiment is easily explained as an effect of our exclusion of comments-only modifications when
determining transactions.

4.3. Q2: effect of filtering heuristics

To study the effect of the various heuristics, we calculated the effect of applying each heuristic
on the values of the Supported Transactions, Scattered Clusters, and Accuracy metrics. We can
analytically determine that Supported Transactions will drop as the result of filtering more clusters:
our experiments revealed to what extent. In the case of Scattered Clusters, we have no a priori theory
about the effect of the heuristics on the nature of the clusters identified: we used our experiments
to discover this effect (using a two-tailed Wilcoxon signed-rank test). Finally, the heuristics were
designed to improve the results; hence, our theory was that the heuristics should result in an
increased accuracy, and we used our experiments to test this hypothesis using a one-tailed Wilcoxon
signed-rank test. In the following, we consider results to be statistically significant at p=0.05.
Table III also reports on the measure of Supported Transactions, Scattered Clusters, and Accuracy

for the default configuration. In this configuration, Heuristics 1 (IGNORE HIGH FREQUENCY), 2
(MIN COHESION 0.6), and 3 (MAX TIME SPAN) are disabled, and the parameter value for Heuristic
3 (MIN TRANSACTIONS) is 2. No correlation was detected between the Supported Transactions,
Scattered Clusters, and Accuracy variables. Compared with our previous experiment, the average
value of Supported changed from 0.49 to 0.54, and the Accuracy changed from 0.33 to 0.29. Given
the amount of natural variability in the different data sets we analyzed, we do not consider these
changes to be significant.
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Table IV. Effect of filtering heuristics on the number of supported transactions (Sup.), the number of scattered
clusters (Sca.), and the accuracy (Acc.).

High frequency Min cohesion Min transactions

System Sup. (%) Sca. (%) Acc. (%) Sup. (%) Sca. (%) Acc. (%) Sup. (%) Sca. (%) Acc. (%)

Ant −7 +3 +6 −39 −63 +29% −71 −17 −71
Azureus −13 0 +4 −63 −62 +49 −53 +58 −14
Hibernate −13 −31 +6 −53 −46 +6 −52 +3 +12
JDT-Core −2 +1 0 −47 −42 +25 −37 +17 −11
JDT-UI 0 +0 0 −52 −19 +20 −73 +33 +9
Spring 0 +0 0 −39 −5 +26 −68 +29 −55
Xerces −20 −13 +13 −48 −43 +6 −40 +27 −0

Average −7.9 −5.7 +4.2 −48.7 −41.0 +23.0 −56.1 +21.4 −18.7

Average numbers in italics indicate results significant at the 0.05 level.

Table IV shows the effect of the filtering heuristics on the variables of interest. The first column
group provides the results of applying the IGNORE HIGH FREQUENCY heuristic. Applying this
heuristic results in an average of 7.9% drop in the number of supported transactions. There is no
statistically significant effect on the number of scattered clusters reported. A one-tailed Wilcoxon
test shows a statistically significant (positive) impact on the accuracy (p=0.0488). These overall
results confirm our preliminary results [14].
The second column group of Table IV shows the effect of the MINIMUM COHESION (0.6)

heuristic. Applying this heuristic results in an overall 48.7% drop in the number of supported
transactions. A two-tailed Wilcoxon test shows a statistically significant negative effect on the
number of scattered clusters reported (p=0.0156). There is also a statistically significant positive
impact on the accuracy. The negative effect on the number of scattered clusters is easily explained
by the design of this heuristic. If we assume that most transactions tend to modify elements in
the same classes, the requiring a minimum cohesion will eliminate overly scattered clusters, which
may not be desirable and somewhat counterbalances the increase in the accuracy. These new results
confirm the ones previously obtained but the trends are much more accentuated. The statistically
significant impact on the accuracy had not been originally supported by the original experiment.
The third column group of Table IV shows the effect of the MINIMUM TRANSACTIONS (3)

heuristic. Applying this heuristic results in an average of 56.1% drop in the number of supported
transactions. A two-tailed Wilcoxon test shows a statistically significant positive effect on the
number of scattered clusters reported (p=0.0469). There is no statistically significant positive
impact on the accuracy. Again, the impact on Scattered Clusters is intuitive: clusters with more
transactions are likely to be more scattered. The fact that this heuristic has no obvious bearing on
the accuracy also means that it might not be universally desirable. Although the per-system values
are quite different from the original experiment (due to the large relative increase in the transactions
analyzed given the filtering ratio), the overall trends are identical.
Table V shows the effect of the MAXIMUM TIME SPAN heuristic with values 180, 90, and 30,

respectively. Applying this heuristic results in an average drop of 21.2 to 52.7%, depending on the
threshold. There is no statistically significant positive impact on the number of scattered clusters
reported. However, with a value of 180 the heuristic produces a significant increase in the accuracy
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Table V. Effect of Max Time Span 180,90,30.

System Supported (180,90,30) (%) Scattered (180,90,30) (%) Accuracy (180,90,30) (%)

Ant −69 −82 −91 −36 −13 −13 +50 +85 +99
Azureus −4 −18 −34 +4 +6 −8 +3 +11 +23
Hibernate −10 −23 −45 −11 −9 −18 +2 −4 −1
JDT-Core −15 −33 −56 +2 +3 +7 +4 +9 +21
JDT-UI −6 −13 −33 +4 +9 0 +1 +3 +7
Spring −16 −29 −58 −10 −11 −19 +8 +16 +10
Xerces −28 −40 −52 −2 +2 +6 0 −23 −18

Average −21.2 −33.9 −52.7 −6.8 −2.0 −6.4 +9.8 +13.8 +20.2

Average numbers in italics indicate results significant at the 0.05 level.

Table VI. Overlap.

System Def. (%) HF (%) MC (%) MTS (%)

Ant 49 53 57 56
Azureus 52 58 41 52
Hibernate 57 60 75 61
JDT-Core 56 57 51 58
JDT-UI 60 60 57 64
Spring 66 66 68 65
Xerces 61 65 47 65

Average 57 60 57 60

(p=0.0156). Applying the heuristic with the two other thresholds also led to positive average
increases, but for thresholds of 90 and 30 days, the trends were not statistically significant at the
0.05 level.

4.4. Q3: result usefulness

Because our overall accuracy metric is difficult to interpret, we provide a simpler metric: the ratio
of supported transactions for which the recommended cluster overlapped with the task (with at
least one element in addition to the query). Supported transactions with an average F-measure
greater than zero. Table VI presents the results for the default configuration (Def.) as well as for the
three heuristics that have a significant effect on quality: IGNORE HIGH FREQUENCY (HF), MIN

COHESION 0.6 (MC), and MAX TIME SPAN 180 (MTS). The last row shows the (unweighted)
average of averages (so as not to correlate the overall average with that of the systems with the
most recommendations).
We observe that, on average, the recommended cluster for roughly 60% of the supported trans-

actions overlaps with the elements modified as part of the task. Conservatively, we can interpret
this value to be an upper bound on the number of tasks that have a measurable potential of being
supported through change clusters. Combining this ratio with the average support ratio in Table III,
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we determine that we cannot reasonably expect that more than 0.176×60%=11% of the tasks
have the potential to benefit from change clusters. We conclude that, although cases such as the one
described in Section 2.2 have good potential to decrease the amount of program navigation required
for a task, such cases will not be common in the life cycle of a system. In Section 5, we present
the results of a detailed qualitative study that provides much deeper insights into the usefulness of
the recommended clusters.

4.5. Threats to validity

In our overall evaluation of recommendation accuracy, we have made three conservative assump-
tions. First, we have systematically queried for recommendations for all analyzable tasks, including
tasks for which a developer would not require assistance (e.g., introducing localization strings,
adding comments, etc.). Second, we compared our recommendations against elements actually
modified as part of a task, even though we know that these form a proper subset of the elements
investigated as part of the task. Finally, since we have not incrementally re-created intermediate
versions of the system, we could not detect the recommended elements that no longer existed at the
time of the corresponding query. In practice, such elements would be eliminated from the recom-
mendations. The likely impact of these three assumptions is that our results may underestimate the
true potential of the approach. The analysis described in the next section sheds light on the impact
of the first two assumptions.

5. QUALITATIVE STUDY OF RECOMMENDATIONS

The results we reported in the last section provide a precise and objective assessment of the degree to
which tasks overlapped with change clusters for seven different systems. However, this assessment
contributes limited insight into the potential usefulness of the clusters retrieved. We completed
our investigation by conducting a detailed qualitative study of the clusters that would have been
recommended to developers for the systems we analyzed. The goal of this qualitative study was
to answer our third research question (Section 3.1) by determining if recommended clusters would
have been useful to developers, and why or why not.

5.1. Methodology

The strategy for our qualitative analysis was to manually inspect all of the recommendations
produced with the technique described in Section 3, and to assess whether, and why, the recom-
mended clusters would have been useful (or not) in the given context. We chose to manually inspect
the results after realizing the limitations of automated assessments based on the quantitative charac-
teristics of the results, such as degree of overlap, or the characteristics of the clusters. Indeed, every
development context is different and we felt that only a close inspection of each recommendation
scenario would truly enable us to comment on the usefulness.
We therefore extracted the details of all of the 340 recommended clusters (across all seven

systems) produced with the three valid heuristics enabled (IGNORE HIGH FREQUENCY, MIN

COHESION 0.6, and MAX TIME SPAN 180). The analysis then proceeded in three phases. In the
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first phase, one of the two authors manually inspected the details of each recommendation. These
details included all the change information for both the queried transaction and all of the transac-
tions in the cluster. This information included, for all transactions: the commit message, the date
of the transaction, the user name of the committer, the list of elements changed as part of the
transaction, and, for the transactions in the cluster, the list of elements that overlapped with the
queried transaction. From this information we could also derive the precision and recall of each
transaction in the cluster with respect to the queried transaction.
Each of the authors inspected roughly half of the supported transactions. For each transaction,

we created a set of notes that indicated whether the cluster would have been useful or not, with
detailed justification.
In a second phase, both authors, as a team, reviewed and discussed the commented recommen-

dations, and tried to group the descriptions into categories, following a process of open coding
[16]. In addition to the information above, for this phase we used the SemDiff change-history
analysis tool [13], which displays the detailed changes to the source code captured by any trans-
action. For example, using SemDiff, it was possible to determine whether a change to a method
involved extensive rework or simply involved minor cosmetic changes such as renaming local
variables. During this review phase, assessments were challenged by one of the authors and any
question about the interpretation of the recommendation was answered through detailed analysis
of the code changes. The result of this phase was the assignment of an interpretation code to
each recommended cluster, which reflected the consensual assessment of both authors. As part
of this process, all recommendations with an accuracy of 0 (i.e., for which there was no overlap
of more than two elements between the cluster and the queried transaction) were coded as ‘no
match’, and conservatively judged as not useful. The second phase elicited 17 distinct interpretation
codes.
In the third phase, we revisited the data to interpret the meaning of the codes in rela-

tionship to each other. This phase resulted in the merging of different codes into a final set
of 10 codes, and a conceptual organization of the relationships between different groups of
codes.

5.2. Interpretation codes

Our qualitative analysis allowed us to distinguish between 10 clearly distinct situations representing
the interaction between recommended clusters and a queried transaction (referred to as change task,
or task).
No Match: This code was automatically assigned to any cluster that did not overlap with the task

beyond an initial query. Although there is technically a small possibility that NO MATCH clusters
could be helpful, we conservatively ignored this possibility and considered that NO MATCH clusters
would not be useful. The NO MATCH code is the only one that was assigned without manual
interpretation of a recommendation.
Spurious: This code was assigned to cases where we could not discover any semantic relationship

among the transactions in the cluster, and between the cluster and the task. SPURIOUS cases
thus represent accidental clustering of transactions that have nothing to do with one another, and
therefore have no potential to help developers. For example, in some cases, spurious clusters were
recommended because the queried transaction overlapped with a cluster that included a transaction
corresponding to many changes to a large hub class.
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Management: This code represents cases where the task was related to code management and
would have been very unlikely to benefit from change clusters. Examples of code management
tasks include: modifications to comments, code cleanups, simple refactorings, trivial reverts to
prior code, addition of testing code, etc. If a code management task was associated with multiple
recommendations, we assigned the MANAGEMENT code to all recommendations.
Obvious: This code was assigned to cases where the cluster clearly represented a semantically

cohesive set of elements associated with a high-level design concern, but where the elements in
the cluster would have been totally obvious for a developer engaged in the associated task. For
example, this code captured situations where the elements changed in the task are a proper subset
of the set of elements changed in at least one transaction in the cluster.
Same Task: This code was assigned when the transactions in the cluster clearly pertain to the

same general task as the queried transaction. This case is easy to observe because the transactions
in the cluster and the queried transaction form a sequence in a short amount of time (1 or 2 days),
by the same developer (or, very rarely, by a pair of developers).
Systematic: This code represents cases where the task was related to some systematic change

and would have been very unlikely to benefit from history-based clusters. A systematic change is
a change that naturally aligns with the structure of the code, such as changing all versions of an
overloaded method, all implementors of an interface, etc. If a systematic task was associated with
multiple recommendations, we assigned the SYSTEMATIC code to all recommendations.
Association: This code represents the case of a task that overlaps with the cluster because of

an association rule, namely, there exists two or three elements that systematically change together.
This case typically results in very low precision recommendations, where the only overlap between
the cluster and the task that we observed were the elements instantiating the association rule.
Valuable: This code represents cases where there is a strong conceptual relationship among the

transactions in the cluster, and between the cluster and the task, and the information in the cluster
would not have been obvious to the developer because it spanned multiple classes and represents
changes that did not occur recently, or that were not committed by the same developer responsible
for the task. For example, the situation described in Section 2.2 corresponds to an actual case
of VALUABLE cluster detected during our study. This code also includes cases where the task
is a complicated revert to a previous state that is represented by the recommended clusters. We
judged that these recommended clusters could be useful to help the developer understand the design
they are reverting to. Because this code represents a positive recommendation, we assigned this
code conservatively, if no other code could better describe the case. We also did not use fixed
thresholds to make our decision, because our prior experience [14] showed that this approach was
unsatisfactory for producing meaningful interpretations due to the large variety of programming
styles and software change contexts.
Finally, we also created two codes to represent cases where transactions in the same cluster had

different interpretations. For example, the VALUABLE/SPURIOUS code represents cases where one
(or more) transaction in the cluster is clearly useful to know about whereas other ones appear to be
spuriously associated with the task.

5.3. Results

Figure 2 provides a guide to interpreting our classification codes, and is the result of our manual
analysis and classification of the recommendations. In the figure, the single (vertical) axis indicates
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Figure 2. Interpreting the analysis codes.

the degree of estimated usefulness for a recommendation associated with a code. The figure also
shows an additional level of classification for some of the codes. The group labeled False Positives
captures cases where the clustering of transactions did not produce the intended results. Such
cases are at the bottom of the figure as they constitute recommendations of negative value (that
is, a developer would have to spend effort ruling them out as useful). The group labeled Task
Not Applicable includes two codes that describe situations where recommendations would not
have been very useful because of the characteristics of the task, as opposed to the characteristics
of the recommendations. Within this group, we rate SYSTEMATIC cases as slightly more useful
because we observed some systematic change tasks where additional information about prior work
could have confirmed a developer in their decision to refactor some code. A third group, labeled
Unsurprising, collects the codes representing situations where valid information is recommended,
but this information would have been unlikely to add to the knowledge of a developer. We put
this group at the boundary between useful and useless because, again, in a few cases the obvious
information could have played a confirmatory role. Within this group, SAME TASK situations
are the less likely to be useful given the short time span between recommended transactions and
the corresponding task. Of the four remaining codes, OBVIOUS/SPURIOUS is ranked below the
Unsurprising group because of the contamination from the spurious transaction; VALUABLE is
ranked at the top by definition; VALUABLE/SPURIOUS is ranked just below VALUABLE for the
value of the part of the cluster that is not spurious; ASSOCIATION is ranked relatively low because
of the large number of false positives we observed in clusters that included an association rule.
Table VII reports on the number of codes assigned to recommendations in each of our systems. If

we remove the 68 cases (20%) of recommendations produced for non-applicable tasks, we conclude
that retrieving change clusters for our seven target systems produced 65% of false positives, 15%
of valid but unsurprising information, and 13% of valuable information. Despite the fact that our
clustering approach was not specifically designed to recover the association rules between elements,
we were nevertheless surprised to discover only three clear cases of association rules for the 4200
transactions that we analyzed. This result appears to reinforce prior observations by Zimmermann
et al. [3] that, although association rules are not uncommon between classes, such relationships
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Table VII. Results of the qualitative analysis.

Code Ant Azu. Hib. JCore JUI Spr. Xer. Avg. (%)

NO MATCH 6 17 4 30 9 12 25 30
SPURIOUS 2 7 3 32 6 3 22 22
MANAGEMENT 3 3 13 17 6 9 7 17
VALUABLE 1 5 0 14 4 4 8 11
OBVIOUS 2 5 5 10 1 0 3 8
SAME TASK 2 4 1 5 1 2 0 4
SYSTEMATIC 0 0 3 2 0 5 0 3
VALUABLE/SPURIOUS 1 0 0 4 1 0 1 2
OBVIOUS/SPURIOUS 0 0 0 4 0 2 1 2
ASSOCIATION 0 1 0 1 1 0 0 1

are much rarer at the level of individual methods. Although clustering classes or source files might
have returned more recommendations, we focused on recommending individual methods because
it is not clear how recommending large code elements like classes or files can support software
investigation.
Considering our entire body of experimental work, we observe that in the seven systems we

analyzed, change tasks are only rarely associated with change clusters. With our three valid filtering
heuristics enabled, analyzing 4200 transactions resulted in the recommendation of only 340 change
clusters. Of these change clusters, our qualitative inspection revealed only 36 valuable recommen-
dations, for a total of 178 clear false positives. Putting it all together, we conclude that a simple
overlap-based change clustering technique would have produced valuable recommendations in less
than 1% of the tasks corresponding to individual commits to a revision control system. The impli-
cations of this result is that change clusters should only be recommended if it is possible to do so
at close to no cost to the developers.

5.4. Threats to validity

The main threats to the validity of our qualitative analysis are investigator bias during the coding
phase and limited external validity due to the system-specific characteristics of change streams.
A qualitative analysis involving manual inspection of the recommendations was necessary to

obtain the rich interpretation reported in this section. However, this detailed interpretation is subjec-
tive and influenced by the experience of the authors. Notwithstanding the inherent subjectivity of the
process, many factors contribute to the robustness of the classification. First, neither of the authors
was involved in the development of any of the target systems, and as such our interpretation is likely
to be similar to the intended audience for the recommendations (namely, developers unfamiliar with
a system). Second, the classification was done in three phases, including first an individual coding
and then a consensual assessment of the codes. Third, the categories emerged from the data, and
were not initially planned by the investigators. Fourth, except in a few cases, the richness of the
data we analyzed made the classification unambiguous, and for any situation that could be classified
in more than one way, we automatically opted for the broadest and least useful code. Fifth, the
purpose of our investigation was not to validate a specific recommendation technique, but rather
to understand the potential of change clusters to help code investigation in general. Finally, our
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complete list of recommendations, associated tasks, and coding data is available upon request for
independent analysis.
Analyzing the recommendation and task data in detail clearly illustrated the extent of the cultural

differences in software change practices between projects. In some projects, change logs include
detailed comments and represent coherent tasks. In other cases, most of the commit comments
are empty and tasks are committed as series of short bursts. This general phenomenon is perhaps
best evidenced by Table VII, which shows large discrepancies between projects. For example, the
change history of Hibernate contained numerous code management tasks, whereas in the case of
Azureus these were relatively rare. As a result, the interpretation of trends over change history can
be very project specific. We were fortunate to select seven target systems that ended up covering a
broad spectrum of change practices. However, the overall results we report are unlikely to reflect
what can be expected from the change history of any specific system.

6. RELATED WORK

There exists the mining of software repositories [15,17] and on the use of clustering algorithms in
software engineering. This discussion focuses on the most similar and recent work in the area of
software evolution.

6.1. Mining software repositories

Our study was partially inspired by the work of Zimmermann et al. [3] and Ying et al. [10] on the
mining of association rules in change history. As described in Section 1, we sought to expand the
technique to be able to recommend larger (but less precise) clusters of elements to guide program
navigation.
Bouktif et al. also investigated how to recommend co-changes in software development [18]. As

opposed to the work cited above, Bouktif et al. used change patterns instead of association rules. In
addition, their approach does not attempt to reconstruct transactions, and can consider associated
files that were changed in different transactions.
ChangeDistiller is a tool to classify changes in a transaction into fine-grained operations (e.g.,

addition of a method declaration), and determines how strongly the change impacts other source
code entities [19]. Our approach uses similar repository analysis techniques but is focused on
providing task-related information as opposed to an overall assessment of a system’s evolution.
Finally, repository mining can also be used to detect aspects in the code [20]. In this context,

aspects are recurring sets of changed elements that exhibit a regular structure. Aspects differ from
the clusters we detect in the regular structure they exhibit, which may not necessarily align with
the code that is investigated as part of change tasks.

6.2. Clustering analysis

The classical application of clustering for reverse engineering involves grouping software entities
based on an analysis of various relations between pairs of entities of a given version of the
system [21], possibly with human assistance [22]. Despite its long and rich history, experimentation
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with this approach continues to this day. For example, Andreopoulos et al. combined static
and dynamic information [23], Kuhn et al. used a textual similarity measure as the clustering
relation [24], and Christl et al. used clustering to assist iterative, semi-automated reverse engi-
neering [25]. The main differences between most clustering-based reverse engineering techniques
and the subject of our investigation are that the entities we cluster are transactions, rather than
software entities in a single version of a system. For this reason, our analysis is based strictly on
the evolving parts of the system.
Both Kothari et al. [9] and Vanya et al. [26] recently reported on their use of clustering to study

the evolution of software systems. The idea of using change clusters is the same in both their work
and ours, but the purpose is different. Kothari et al. use change clusters to uncover the types of
changes that happened (e.g., feature addition, maintenance, etc.) during the history of a software
system. Vanya et al. use change clusters (which they call ‘evolutionary clusters’) to guide the
partitioning of a system that would increase the likelihood that the parts of the system would evolve
independently. In contrast, we cluster transactions based on overlapping elements (not files), to
recommend clusters to support program investigation, as opposed to architectural-level assessment
of the system.
Finally, Hassan and Holt evaluated, on five open-source systems, the performance of several

methods to indicate elements that should be modified together [27]. This study found that using
historical co-change information, as opposed to using simple static analysis or code layout, offered
the best results in terms of recall and precision. The authors then tried to improve the results using
filtering heuristics and found that keeping only the most frequently co-changed entities yielded the
best results. As opposed to our approach, the evaluated filtering heuristics were only applied on
entities recovered using association rules and not using clustering techniques. The focus of their
study was also more specific, as they recommend program elements that were strictly changed, as
opposed to recommending elements that might be inspected by developers.

7. CONCLUSION

Developers often need to discover code that has been changed in the past. We investigated to what
extent we can benefit from change clusters to guide program investigation. We defined change
clusters as groups of elements that were part of transactions (or change sets) that had elements in
common. Our quantitative analysis of over 17 years of software change data for a total of seven
different open-source systems revealed that less than one in five tasks overlapped with a change
cluster, but that even at this rate most of the recommended clusters are false positives. Applying a
set of empirically-tested filtering heuristics on the data produced only 340 recommendations over
the entire 4200 changes analyzed, a recommendation ratio of 8%. An in-depth qualitative analysis
of the recommended clusters further showed that only 13% of the recommendation for applicable
change tasks were likely to be useful. We conclude that recommending change clusters extracted
from simple revision control systems amounts to finding needles in a haystack: valuable information
exists but is well hidden. The ever-changing structure of the code, the lack of documented rationale
for change sets, and the idiosyncrasies of the process used for committing changes, all hinder the
discovery of relevant change sets. The practical implication of our findings is that change clusters
should only be recommended if it is possible to do so at close to no cost to the developers.
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