
Disseminating Architectural Knowledge
on Open-Source Projects

A Case Study of the Book “Architecture of Open-Source Applications”

Martin P. Robillard
School of Computer Science

McGill University
Montréal, QC, Canada

martin@cs.mcgill.ca

Nenad Medvidović
Computer Science Department

University of Southern California
Los Angeles, CA, USA

neno@usc.edu

ABSTRACT
This paper reports on an interview-based study of 18 au-
thors of different chapters of the two-volume book “Archi-
tecture of Open-Source Applications”. The main contribu-
tions are a synthesis of the process of authoring essay-style
documents (ESDs) on software architecture, a series of ob-
servations on important factors that influence the content
and presentation of architectural knowledge in this docu-
mentation form, and a set of recommendations for readers
and writers of ESDs on software architecture. We analyzed
the influence of three factors in particular: the evolution of a
system, the community involvement in the project, and the
personal characteristics of the author. This study provides
the first systematic investigation of the creation of ESDs on
software architecture. The observations we collected have
implications for both readers and writers of ESDs, and for
architecture documentation in general.

CCS Concepts
•Software and its engineering → Software architec-
tures; Documentation;

Keywords
Architecture Description, Open-Source Software

1. INTRODUCTION
Large software systems realize a number of important de-

sign decisions that are intended to remain stable [39, 44, 51].
These decisions and the properties they induce are often re-
ferred to as a software system’s architecture [41]. Knowledge
of a system’s architecture helps ensure the preservation of
its conceptual integrity in the face of on-going modifications.
However, while “every system has an architecture, whether
it is documented or not” [41], an architecture must be doc-
umented for stakeholders to take it into account.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884792

There have been a number of well-known attempts to cod-
ify architectural documentation: from the establishment of
standard architectural views as a documentation basis [31,
41], to semi-formal and formal architecture description lan-
guages [37, 44], to the standard Unified Modeling Language
(UML) [35], to suggested “best practices” for producing ar-
chitectural documentation [14]. Despite these efforts, how-
ever, there is no universally agreed-upon method for docu-
menting a software system’s architecture.

In recent years, we have witnessed the growing emergence
of informal attempts at communicating software architec-
ture knowledge through essays that combine narrative prose,
diagrams, and in some cases source code. This kind of essay-
style documentation is already publicly available for many
systems (e.g., Chromium [8], Firefox [22]), application do-
mains (e.g., consumer electronics [55], mobile robotics [36]),
and computing paradigms (e.g., grid [23], cloud [38]). Essay-
style documents (ESDs) on software architecture target the
broad dissemination of knowledge, as opposed to the system-
atic specification of the properties and elements of a software
system. Their increasing prevalence as vehicles for captur-
ing important software development ideas and experiences
makes them extremely relevant to the software architecture
discipline. As their popularity and availability grows, we
can expect them to play an increasing number of roles in
software projects, from recruiting and on-boarding new de-
velopers to maintaining architectural conformance.

Without a good understanding of the ESD approach to ar-
chitectural documentation, we are limited in our ability to
properly interpret the information they capture and to help
improve their quality. As a first step towards the better
understanding of the phenomenon of essay-style documen-
tation of software architecture, we conducted a case study
of a book project in which each chapter was the description
of the architecture of an open-source software system [10].
Our study relies on multiple surveys and interviews with
the authors of 18 of the book’s chapters, or 40% of the
applicable chapters. To ensure that the data we collected
could be interpreted in a meaningful way, we analyzed in
detail many other contextual aspects of the case, including
by studying the text of all chapters and by interviewing the
editors of the book.

The major contributions of this paper include (1) a syn-
thesis of the process of authoring ESDs on software architec-
ture; (2) a series of observations on three important factors
that influence the content and presentation of architectural

knowledge in this documentation form; (3) a set of specific
recommendations for readers and writers of essay-style doc-
uments on software architecture.

The three influential factors we surfaced are the evolution
of a system, the community involvement in the project, and
the personal characteristics of the author. In addition to the
inevitable fact that software architecture is a function of the
technical aspects of a system, the insights that emerge from
the study motivate the formulation of a hypothesis we call
the multiple lens hypothesis, which states that architectural
information is focused from four different types of lenses:
(1) technical, (2) historical, (3) personal, and (4) social.
Although non-technical elements have been part of software
architecture descriptions for decades, our study surfaces new
and unexpected insights about the relation between techni-
cal factors and the other lenses. For example, we describe
how some architects used stories of the evolution of their
system to describe and justify design rationale, as opposed
to the traditional approach of capturing rationale to support
evolution.

This paper is organized as follows. Section 2 details the
design of our case study and Section 3 the context for the
case under study. Section 4 summarizes our key findings,
while Section 5 discusses their implications, threats, and lim-
itations. Section 6 describes the related work that informed
the study and provided its theoretical departure point. Sec-
tion 7 concludes the paper.

2. CASE STUDY DESIGN
There are so many different contexts in which open-source

contributors produce architectural documentation that at-
tempting to study the phenomenon generally bears the risk
of becoming intractable. To scope our initial investigation of
the phenomenon, we decided to conduct a case study of the
production of architectural descriptions for the book “Ar-
chitecture of Open-Source Applications” [10], henceforth re-
ferred to with its acronym AOSA.

The Case
As part of the AOSA book project, co-editors Amy Brown
and Greg Wilson recruited 74 open-source contributors to
author a total of 49 chapters, of which 45 described the archi-
tecture of different open-source systems; four of the chapters
are not strictly on the architecture of a system, but address
more general topics (e.g., release engineering).1 The project
started in the spring of 2010 and was completed with the
publication of the second volume in June 2012. The authors
were instructed to write about 10 pages on the major design
decisions for their system, and to write for an audience of
experienced software developers. Given the relatively loose
initial editorial guidance, the authors produced a body of
work that varies greatly in quality, style, and choice of top-
ics. The result of this effort is freely accessible [10].

Our research design is thus that of the embedded multi-
ple case study [58] with two levels of context. The book
project as a whole provides a first, general, context (recruit-
ment strategy, editorial process, review process, etc.), and
the creation of each chapter forms a distinct embedded case
with its own context (type of system, technology, develop-
ment process, etc.). We distinguish between these two levels
of context with the terms general context vs. system context.

1These are chapters 9 and 13 in Vol.1, and 1 and 2 in Vol.2.

Table 1: Study Participants. ID: an alias for the par-
ticipant; Ch: chapter reference (volume-chapter);
System: the type of project; Occ.: participant’s oc-
cupation; Role: the participant’s role in the project.

ID Ch. System Occ. Role

1 1-2 Audio editor Technical Developer
2 1-6 Development env. Technical Contributor
3 1-10 Communication Technical Developer
4 1-12 Version control Technical Developer
5 1-19 Web application Technical Developer
6 1-24 Image processing Technical Founder
7 2-3 Operating system Technical Outsider
8 2-5 Compiler Research Founder
9 2-9 Image processing Technical Developer
10 2-11 Data visualization Technical Developer
11 2-12 Web content platform Media Contributor
12 2-13 Web content platform Technical Developer
13 2-14 Web server Business Founder
14 2-15 Middleware Technical Founder
15 2-20 Persistence framework Technical Founder
16 2-22 Web app. framework Technical Founder
17 2-23 Build tool Technical Developer
18 2-24 Middleware Technical Founder

Research Questions
Our case study seeks to answer the following questions:

RQ1: How do authors approach the production of essay-
style documentation of software architecture?

We define essay-style documentation (ESD) as software
architecture description in free narrative form, as opposed
to architectural documentation that follows prescribed, sys-
tematic templates [14] or standards [29]. In addition to
book chapters [10, 45, 53], formats for ESD on software
architecture include technical reports (e.g., on the Chrome
Browser [8]) and on-line articles (e.g., on the Firefox OS [22]).

Given a set of ESDs and a proper description of the con-
text in which they were produced, we then seek to answer:

RQ2: What factors influence what authors select to in-
clude in an essay-style informal document on software archi-
tecture, and how they present it?

Case Selection
This case study relies on interview data from the editors and
authors of the AOSA book. As in most case studies, we had
to follow an opportunistic approach to participant recruit-
ment: We invited every author to participate and involved
all volunteers in the research (up to one per chapter). A to-
tal of 18 authors of 18 distinct chapters participated in the
study.

Table 1 summarizes relevant attributes of the study par-
ticipants, which map one-to-one with cases. Although par-
ticipants agreed to be personally identified, we refer to them
through identifiers to afford them a certain degree of pri-
vacy: Px refers to Participant number x. The table includes
selected contextual information. We include occupation to
distinguish between participants with a primarily technical
occupation (software engineering and variants) from a re-
searcher, media expert, and business person. The informa-
tion about the participant’s role in the project is our cate-
gorization based on the participant’s self-reported qualifica-
tion. The roles have an implied order of importance. With
Founder, we indicate a person who was critical to the incep-
tion of the project and (except for P5), acted as the main

architect or co-architect of the system. Developer indicates a
person who makes substantial technical contributions to the
project and exercises some degree of leadership or author-
ity in the project. Contributor indicates someone who may
have contributed to the project in non-developer capacity.
Outsider is someone who is not involved in the technical as-
pects of the project as a contributor, but who has technical
knowledge of the system. This variety of roles is reflective
of how architectures are documented in more traditional de-
velopment settings, where, in practice, different stakeholders
may author or contribute to such documents.

Data Collection
We began with a close reading of a sample of chapters to
get acquainted with the material and identify salient aspects
(e.g., use of source code, informal diagrams). In early 2014,
we asked one of the book’s editors (Wilson) to invite (by
email) all 74 of the authors to participate in this project.
Authors of 14 different chapters agreed to participate (Phase
I of the data collection).2 We sent each of the 14 authors a
questionnaire, shown in Figure 1, comprising seven questions
about the context for their contribution and their approach
for writing the chapter. Upon receiving a completed ques-
tionnaire, we scheduled a follow-up interview with each au-
thor. The interviews were semi-structured: we prepared an
interview guide by studying each participant’s chapter and
questionnaire responses and adapting a baseline interview
template to the specifics of author and their chapter [43,
§2.2]. For example, for the participant who was a project
outsider, we used the interview to learn about the partici-
pant’s connection to the project, a piece of information that
was not required from other participants. The interviews,
which lasted around 60 minutes on average, were conducted
using text-messaging software so that we could collect the
exact transcript of each interview. We also interviewed the
two co-editors of the book to collect information on the gen-
eral context of the project.

Following the analysis of the questionnaires and inter-
views, we emailed each participant a validation question-
naire. In May 2015 we sent to the authors of the remaining
chapters a follow-up invitation to contribute to the project.
Four more authors submitted the questionnaire and partic-
ipated in an interview (Phase II of the data collection). We
did not send the validation questionnaire to the Phase II
participants because their interviews focused on themes al-
ready validated as part of Phase I. Finally, we sent each
participant a draft of this paper and asked them to flag any
errors, and to comment on the credibility and usefulness of
the findings: 13 participants responded. In the end, our case
study can take into account the experience of 20 authors and
editors in the writing of 18 chapters, or exactly 40% of the
45 applicable chapters.

Data Analysis Method
We analyzed the questionnaire responses and interview tran-
scripts using a qualitative approach [43] adapted from groun-
ded theory methods [16].

The initial analysis of the chapters was exploratory, and
served as source of input for designing the survey and in-
terview instruments. We then systematically analyzed the
questionnaire responses and interview transcripts using open

2In several instances, a single author of a multi-author chapter
replied to our invitation but also copied their co-authors.

1. How do you describe your role in the project de-
scribed in the chapter? If there were other architects,
what was the division of responsibilities? [Role]

2. Did you consult any other people in writing the chap-
ter? If so, who were they? What was the purpose of
consulting them? [Collaborators]

3. What were the major types of topics (a.k.a concerns,
aspects, or issues) of the system that you decided to
describe in your chapter. Why did you select those?
What did you leave out? [Main Topics]

4. What approach did you follow for presenting different
topics? This includes the choice of figures and code
snippets and their notation, and the writing style you
adopted. [Writing Approach]

5. How did you decide on the sequence of topics (what
to present first, second, etc.)? Is this sequence impor-
tant to understand the system? [Topic Sequence]

6. Did you use any materials (documents, diagrams) in
writing the chapter? If so, what are those materials?
[Supporting Material]

7. Did the fact that the chapter was intended for a broad
audience impact how you approached/wrote it? If so,
in what ways? Did you include, change, or omit in-
formation because this was a book chapter and not
an architectural design document? If so, what infor-
mation? [Impact of Broad Audience]

Figure 1: Pre-interview questionnaire. The sum-
mary keywords following each question are for ease
of reference in the paper: they did not appear on
the questionnaire.

coding: we assigned codes to sentences or paragraphs and
we defined the codes as the study progressed. We subse-
quently used axial coding and went through the codes to
link them to categories of code that synthesize high-level
concepts (e.g., use of diagrams). We jointly completed this
analysis while immersed in the data during a week-long work
session during which we were physically collocated.

As a result of this initial analysis, we identified three im-
portant themes (evolution, community, and personal fac-
tors) and reached out to additional participants to specif-
ically develop them. At the end of Phase II, in which we
interviewed four additional participants, we systematically
re-coded all transcripts and questionnaires using the three
codes: evolution, community, and personal factors. We
then re-analyzed the data along each dimension, and pro-
duced the interpretations described in Section 4.2 (para-
graph “Main Themes”). We also integrated the input of the
participants in our final version.

3. GENERAL CONTEXT
In this section, we distill the critical aspects of the general

context in which architectural descriptions were produced.

Editorial Process
This section is a summary of the editorial process based on
the interview with the book editors.

The project proceeded in two phases corresponding to the
two volumes. The recruitment process involved email ad-
vertisement and solicitation, and snowball recommendations
(“friend-of-a-friend introductions”Wilson). The authors worked on

their chapters asynchronously and at different paces, which
varied from a few days to several months.

The text of an email for the authors included the following
guidelines: (a) “Our target is approximately 10 pages per chapter,

but can go higher...”; (b) “Your audience [has] probably been pro-

gramming for five years or more on top of a [B.Sc.] in some computer

related discipline [...] but hasn’t worked in your specific area [...]”;
(c) “Somebody once defined software architecture as the set of de-

cisions made in writing an application. I think that’s a good rule

for deciding what should be in or out of your chapter: what are the

things that are only “obvious” in retrospect? [...] (Another way to

think about the chapter is what the whiteboard talk you’d give to a

new developer who was about to start coding for you.)”.
Some authors did not strictly adhere to the guidelines, a

development that was recognized and accepted by the edi-
tors “if authors thought the most important/useful thing was to say

“XYZ”, who was I to tell them they were wrong?”Wilson, except for
“holding the line on [...] marketing”Brown.

Each chapter was sent out to two reviewers. The reviews
were returned to the editors, who forwarded the appropriate
comments to the authors with a request to incorporate them
into the final version. The chapters were then lightly copy-
edited by the two book editors. Although the editors gave
feedback to the authors, the authors’ creative license was
extensive, and“what you get in each chapter is often exactly what

the author originally wrote”Brown. The editors also did not give
guidance about diagrams, except that they wanted many.
They did not say anything about the use of source code.

Chapter Metrics
Table 2 provides baseline metrics on the chapters that were
the target of our case study. The chapters are identified in
the form volume-chapter. The size metric is the number of
words of text excluding code blocks, punctuation, and ta-
bles. The number of system diagrams corresponds to the
number of diagrams that describe the structure of the sys-
tem. We excluded from this count the figures that depict
screen-shots of an application or the application’s output.
In the column listing the number of diagrams, we also in-
dicate in parentheses the number of system diagrams that
were drawn in the Unified Modeling Notation (UML) as a
subset of the total. Finally, the last column indicates the
number of code blocks in the chapter. The median values in
the last row of the table are the median values across all 45
applicable chapters. The complete metrics for the remaining
chapters are omitted for lack of space.

Collaboration Process
Although all authors interacted with the editors and review-
ers of their chapter, we noticed different collaboration mod-
els for obtaining the information for a given chapter from
other stakeholders. The authors engaged in three types
of collaboration processes: solo effort, with primary infor-
mants, or through community feedback.

Solo Effort. Nine participants clearly indicated that they
authored their respective chapters alone (P1,3,12,14,15,16,18) or
only with their co-author (P6,8). In all cases these authors
were developers or founders of their project (see Table 1).

Primary Informants. In five instances, the participant au-
thored their chapter with the help of one or two principal
informants (P4,7,9,10,17). In all cases, the primary informants

Table 2: Chapter metrics. Chapter : the chapter ID
in the form volume-chapter ; Nb. Au.: the number
of authors; Size: The number of words of text; Dia.:
The number of system diagrams, with the number
of diagrams drawn using UML in parentheses; Code:
the number of code fragments. Note that the Me-
dian values are computed for all 45 relevant chapters
of the AOSA book.

Chapter Nb. Au. Size Dia. (in UML) Code

1-02 1 6236 4 (0) 1
1-06 1 7360 9 (0) 11
1-10 1 4987 4 (0) 14
1-12 1 6416 3 (0) 2
1-19 1 4169 10 (0) 11
1-24 2 5780 4 (0) 11
2-03 1 4375 4 (0) 12
2-05 2 10 736 1 (0) 8
2-09 2 8985 7 (0) 8
2-11 2 5217 2 (0) 7
2-12 2 7767 1 (0) 0
2-13 1 5968 1 (0) 22
2-14 1 7041 1 (0) 0
2-15 1 5695 3 (0) 3
2-20 1 8197 16 (7) 13
2-22 1 6638 1 (0) 15
2-23 1 4800 3 (0) 7
2-24 1 6125 8 (0) 2

Median 1 6400 3 (0) 5

were the project’s founder or core developers. The contri-
butions of the primary informants included

• answering questions “I might have asked a question or two

[to] the primary architect”P4;

• validating the architecture description “[We] had [X and

Y] (both major contributors of the life of the project) read early

drafts of the chapter for clarity, accuracy and completeness”P10;

• providing feedback on content selection “The purpose of

consulting them was to get feedback on the chapter outline,

and the amount of focus put on each one of the sections”P9.

Community Feedback. The four remaining participants
relied on community feedback when putting together their
respective chapters. P2 and P5 were technical contributors
to the system described who interviewed the other major
contributors for questions and feedback. P11 was a non-
technical contributor to the project who set up a community
feedback process through a Wiki“we consulted dozens of people

to get information and make sure our understanding was correct.”P11

P13 was a founder of the project who was not involved in
technical work, and who relied on input from developers to
author the chapter. “I consulted [...] the original author of [the

system] (and the principal co-founder of the company), as well as

the other core developers we employ. I also ran the drafts against a

handful of the most prominent 3rd party developers... X in particular

gave a permission to re-use quite a bit of his guide [...] - that one

became the foundation for the last section.”P13

Supporting Material
Most authors used a combination of information sources to
produce their chapter, including the application source code,

the project web site, a developer Wiki, mailing lists, bug de-
scriptions, etc. Although most chapters do not provide an
explicit list of references, chapter 2-10 (GNU Mailman [56])
is an exception that lists the typical collection of information
sources available to authors. Although it is not possible to
reliably estimate to what extent each author used supporting
material of each type as part of their work, the answers to
Question 6 (Supporting Material) in the pre-interview ques-
tionnaire (Figure 1) confirmed that at least seven authors
relied on existing technical documentation on the respective
projects’ websites. In addition to technical documentation,
one participant (P9) mentioned that he ran some code met-
rics tool, and two participants (P14,15) mentioned that they
reused diagrams they had drawn previously for some other
purpose: “Some of the figures I used were influenced by diagrams I

had presented in talks in the past”P14

4. RESULTS
We organize our main observations in terms of the two

research questions (see Section 2). Section 4.1 explains how
authors approached the production of essay-style documen-
tation (ESD) of software architecture (RQ1). Section 4.2
elaborates on the factors that influenced what authors se-
lected to include in an ESD and how they presented it (RQ2).
In Section 5 we build on these observations to discuss the
lessons we can take away from the study and the implica-
tions for the documentation of software architecture.

4.1 Documentation Perspective
To understand how authors approached the production of

essay-style informal software architecture descriptions (RQ1),
we first clarify who they had in mind as an audience. This
leads us to analyze the question of the use of source code
and diagrams from the perspective of reader accessibility.
With these elements in place, we then shed light on the other
provisions the authors made to adapt the technical
content to their audience.

Audience
The review of the chapters and the results of the question-
naires and interviews confirm that the authors respected the
editorial guidelines about the target audience: the contents
were aimed at a “general programming audience”P1. At least 13
participants had made explicit mentions to this effect, such
as“I think I tried to target somewhat experienced software developers

that didn’t have any familiarity with [the system] or its codebase”P4.
As far as knowledge of the domain is concerned, there

was more variety: Some authors assumed no specialized do-
main knowledge “I included more overview text than if my audi-

ence were already familiar with embedded systems”P7. Only three
authors mentioned that they assumed knowledge of some
related technology or concepts specific to their chapters. In
response to the question “to what extent did you feel you could

rely on the general familiarity of your audience with Web servers...”

P13 replied “I presumed “to a great extent””. The two other
similar cases we encountered were P15 who expected “...some

degree of Python, and some degree of relational database knowledge”

and P16 who commented that his target audience “was likely

to be familiar with either MVC3 or Haskell, possibly both”.

3The Model-View-Controller architectural pattern.

Use of Source Code
As Table 2 shows, almost all chapters contain code frag-
ments. The tacit assumption made by authors is that read-
ers will be able to understand code. However, only four
authors mentioned this requirement explicitly: P15 and P16,
quoted above, and P12 “I felt I had to assume PHP knowledge”.
The developers of a compiler for Haskell (itself written in
Haskell), “deliberately tried to write for an audience that was not

deeply familiar with Haskell”P8, a thought that was almost iden-
tically echoed by P16 “I tried to provide code snippets that users

not familiar with Haskell would be able to understand/appreciate”.
While prior research on architectural description [13, 14,

33, 37, 51] has been largely divorced from implementation-
language concerns, such concerns figured prominently in the
ESDs we studied. For example, the four authors mentioned
above expressed sensitivity to this issue in cases of languages
with smaller user bases. This was especially noticeable when
contrasted with the widespread disregard for the same issue
in systems written in popular languages (Java, C, C++).
This point was summarized well by P18, who purposely did
not use any code fragments4 “...one thing that often gets in the

way is the language; if I included examples in C, I would have ex-

cluded Pythonistas, Ruby programmers, etc., from the audience.”P18.

Diagram Notation
Most chapters had at least one diagram (see Table 2), but
only a small fraction made use of UML or another exist-
ing language. Under 10% of diagrams across all 45 chapters
(14/164) were drawn in UML, and no chapter author pre-
dominantly relied on UML. Furthermore, no diagram pro-
vided an explicit legend for the employed notation. Inter-
estingly, no responses to Question 7 (Impact of Broad Au-
dience) of the questionnaire from Figure 1 mentioned dia-
grams. We probed this question during the interviews, and
even then only three authors explicitly commented on the
link between diagrams and the audience. Two explicated
their assumption about the lack of knowledge of a specific
notation: “So when doodling a diagram I make sure I don’t expect

people to know some conventions in order to understand it...”P3; “In

my opinion most readers are not well versed in UML”P11. The third
author pointed out the informal nature of the document“this

is not technical documentation, mind you!”P18. The conclusion we
draw from this evidence is that the precision and rigor of the
modeling notation were not a priority for the participants.

Adaptation for the ESD Format
Although the general context is clearly the writing of an es-
say as opposed to systematic software documentation, the
authors were nevertheless tasked with communicating knowl-
edge on the architecture of their system. We investigated
how they bridged this dichotomy by systematically analyz-
ing the responses to Question 7 in the questionnaire (Impact
of Broad Audience), as well as related fragments from the
interviews.

Given that the length of the chapters was restricted, we
took into account that the scope of the treatment was lim-
ited and that authors had to make choices about what to
include “I did not distort any information. Just limited the scope of

what I wrote about.”P12 The extent of the adaptations made for
the essay style varied substantially between authors. Four

4The only exception were two instances of client-side usage of the
system’s API.

authors indicated they made few concessions to the essay
style (P4,5,7,12), e.g., “I wouldn’t do much differently if this were

an arch design doc”P7. In contrast, P8 focused heavily on what
a general reader “would find interesting”. Given this spectrum,
we focused our analysis on two themes: the addition of back-
ground (discussed by P2,5,7,9,13,14,15,17) and the granularity of
the descriptions (discussed by P1,3,6,8,10,11,16,18).

In our analysis, the term background refers to general
domain knowledge and historical facts that would be known
to the system’s developers. The addition of background in-
formation to a chapter was a common device to reach out to
a broader audience, but also to bridge perceived gaps in tech-
nical knowledge. For example, “I included more overview text

than if my audience were already familiar with embedded systems”P7;
“I explained the background because the problem area [...] is not

well-known and common...”P14. These comments show how the
authors engaged in a reflection on their target audience and
the background that is necessary to grasp the architecture
of their system. Background information was also provided
to give the reader a historical perspective which, in some
cases, was intended to illuminate the rationale for some ar-
chitectural decisions. “An architectural design document would

have been very dry and artificial, since it would have described the

engineering features [...], without explaining why they came to be”P9.
The question of granularity refers to the manner in which

the authors tackled the challenge of abstracting details of
their system in a way that is compatible with the essay-style
documentation. ESD is not amenable to more dynamic doc-
umentation features such as collapsible tables, cross-reference
tools, and interactive visualizations. On the one hand, in
this context the authors talked about avoiding “internals”P3,
“omitting details”P8, that “change over time”P10, not delving into
“technicalities”P18, or presenting only the “core essence”P6. On
the other hand, we found it much more difficult to elicit spe-
cific, concrete statements about how the abstractions were
tailored to the chapter format.

4.2 Content Selection and Presentation
To understand the factors that guided the authors in se-

lecting the specific content they presented in their respective
chapters, we first analyze the answers to the three relevant
questions from the pre-interview questionnaire (Figure 1).
We then elaborate on the three principal themes identified
in our analysis: (1) importance of a system’s evolution in
capturing its architecture, (2) central role of the system’s
development community, and (3) personal background and
preferences of the architecture document’s author.

Questionnaire Answers
Questions 3–5 (Main Topics, Writing Approach, Topic Se-
quence) targeted directly the issue of content selection and
presentation. The answers to these questions served as the
seed for the interviews.

Question 3: Main Topics. Five participants (P3,6,8,14,18)
simply indicated that their focus was to present “the general

structure of the project”P3, “a broad overview”P6, or some sim-
ilar generality. This was not a given however: P10 went
in the other direction “We talked mainly about the internals of

[the system]”. Six authors answered by listing one or a few
system features or other technical aspects, such as modular-
ity (P2), data structures (P4,7), persistence issues or compo-
nents (P12,17), and parallelism (P9). In addition, P9 also indi-

cated that he chose to put“a lot of emphasis on the fact that the

software architecture reflects the composition of the developer com-

munity, and their needs”. Five authors indicated that their top-
ics focused on providing a historical perspective that served
to explain the requirements of the system (P5,11,13,16,18). P5’s
answer provides the best summary for this kind of focus: “I

focused on a chronological narrative [...]. These [historical devel-

opments] provide the context of requirements on the system archi-

tecture”. Finally, two authors (P1,15) provided extended, in-
depth justifications of the topics of their chapter, which we
leveraged in our analysis of the main themes (below).

Question 4: Writing Approach. This question may have
required too much a posteriori introspection and many au-
thors found it, rightly, challenging. Four answered they did
not know (P2,8,11,13), seven (P4,6,7,9,10,16,18) provided superfi-
cial statements (“informal tone”P4, “casual writing style”P7), one
related the writing approach to the expected audience (P17),
and one focused on the linguistic aspects (P5). Two authors
answered that they approached the writing by“explaining this

to someone like myself”P3: “I thought about what I would want to

read, if approaching the project fresh, and the questions I would

have”P1. P15 described a variant of this idea “The code snip-

pets and figures were largely based on things I’ve explained in other

formats for years...”. Two answers were particularly original
in our context: P12 structured the chapter “around a min-

imal working [...] script”, and P14 emphasized the narrative
approach “In general, I like to tell stories to convey information”.

Question 5: Topic Sequence. The dominant answers for
this question were variants of the bottom-up (i.e., details
first) (P4,10,16), and top-down (i.e., details last) (P1,5,6) or-
ders of presentation. P8 was not concerned with sequence
“We just identified the big topics [...] and wrote a section on each”.
P2,3 were influenced by the chronological development of the
system: “I subconsciously just follow the history of the project and

go about presenting things in the order they were built”P3. P7 pre-
sented the material in “descending order of importance” and P18

in increasing order of complexity: “I’ve tried to present top-

ics more accessible to general public first...”P18. P15 chose one
of only two perceived options given the architecture of the
system “either learn the Core first from the inside out and then

the ORM, or learn the ORM first and then dive into the underlying

Core structures”P15. The order of presentation for P12 natu-
rally follows from his decision to present the construction
of a script, and the same applied to P14, albeit to a lesser
extent: “I think the sequence I presented fit nicely within the“story”

concept”. P17, who was describing the architecture of a build
system, followed the order of the build pipeline. The re-
maining authors (P9,11,13) did not provide an answer that we
could clearly interpret.

Main Themes
In their comments, our participants provided numerous in-
sights on how technical and domain aspects of the project in-
fluenced the content and presentation of their essay. For ex-
ample: “The main aspects discussed were the Data Pipeline, Paral-

lelism,... They are at the core of the needs of image processing...”P9.
This was, however, largely expected, and documentation of
the technical aspects of architectural descriptions is treated
in numerous other sources (e.g., [14, 34, 35, 37, 44, 51]).

The major original elements we surfaced as part of our
analysis concern the importance of the system’s evolu-

tion, its development community, and the personal
characteristics and preferences of the author. Given
the space available we focus our report on the insights we
gathered related to these three themes.

Evolution. Software evolution has been studied from an ar-
chitectural perspective for a few decades already [39, 44].
Several notations for capturing architectural evolution have
been proposed [37], and a number of evolution-inspired pat-
terns and styles have been developed, refined, and put into
widespread use [51]. The principles of a system’s evolution
have also been recognized as a key part of at least one stan-
dard definition of software architecture [41, p.12]. However,
our study uncovered another role of evolution that is not as
readily recognized in the software architecture literature:

A system’s evolution was an active driver of architectural
description, rather than a passive system trait to be cap-
tured and managed by notations, patterns, and styles.

The following quotes are illustrative: “History can inform your

understanding of the structure”P1; “recognizing that the architecture

is alive is critical to understanding the very nature of software”P9.
As we discussed in Section 4.1, authors included informa-

tion about the history and evolution of their systems to pro-
vide background for a general audience. However, we found
that in many cases information on the evolution of the sys-
tem also served to complement and strengthen the technical
discussion. Many authors “thought it was important to describe

how the architecture had progressed as opposed to presenting it fully

formed”P2. The reasons are that evolution information illus-
trates the rationale for architectural decisions“Why the library

abstractions forced us to copy data”P1, more generally helps to
explain the current structure“it’s also useful to keep that kind of

evolution in mind because you sometimes get that parts of the archi-

tecture have been converted to a new style...”P4, or actually serves
as a way to validate the existing architecture by showing
how it enabled certain anticipated evolution paths (P6). P2

and P5 in particular wrote chapters with a strong historical
perspective, following a model we would call the “incremen-
tal requirements reveal”, where each section addresses new
features and how they added to the previous version. This
model was also followed, to a lesser extent, by P4: “I [...]

go about presenting things in the order they were built”. A final
insight is that, as P9 points out, a system’s architecture is
fluid, and recent changes may influence the content selection
approach of the author: “another key formative influence on the

chapter is that it was written shortly after Moodle 2.0...”P12.
The information regarding a system’s evolution was seen

as helpful in elaborating the architecture by most, but not
all of the participants. A notable exception was P8, who
indicated that he did not see evolution as a relevant factor.

Community. Traditional software architectural design is a
collaborative process that involves a team of architects whose
target audience comprises the project’s managers as well as
the resulting system’s developers, customers, and users [31,
39, 44, 51]. Architectural documents are typically targeted
at a subset of these stakeholders. For example, an archi-
tect may use the documents to discuss certain design deci-
sions with other architects, or to communicate a vision of
the system to developers. In other words, the architecture
document is intended for this relatively small community.

What we found in the architectural ESDs we studied is
very different. “What is missing from many people’s picture of

open source software development is that it is a technical AND SO-

CIAL enterprise”P1. A major aspect of the general context for
this study is the open-source nature of the projects. Eight
authors made specific remarks about the impact of the com-
munity on the architecture.

When describing the architecture of an open-source sys-
tem, the resulting document is for but also about the con-
tributor community.

This insight is illustrated by the following quotes: “I did not

want to dis the project too much”P1; “fourth [paragraph] was my

attempt to acknowledge the work of 3rd party guys”P13; “Commu-

nicating WHAT the technical debt is, is necessary for building a

consensus”P1; “I think one of the first things that I’d like to happen

is for a person (hopefully a future contributor) to decide which part

of the project they like the most”P3.
For a number of projects, the community had a direct im-

pact on the architecture: “the architecture is shaped by social

forces as well as technical ones”P1; “the community was also very

vocal about certain changes”P2;“OMPI represents a community, and

it’s not just based on any one persons opinion”P14. In some in-
stances, the developer community influenced the ideas un-
derlying the architecture’s design as well as its documenta-
tion (P11,12). “Lots of people wrote [the wiki page]. I don’t know

who the main contributor was.”P12 An important link to the con-
text is that in the projects of P2,6,14 a plug-in infrastructure,
which allowed community contributions and/or code shar-
ing, was an important part of those systems’ architectures.

Personal factors. A writing process is necessarily a per-
sonal endeavor. The study allowed us to explore how per-
sonal characteristics and preferences of authors impacted
their architectural descriptions in the context of ESDs. First,
as pointed out above, some authors envisioned the informa-
tion needs of the reader as similar to those they had when
they started the project (P1,3,9,14), e.g., “The reader that I had

in mind was “myself when we were starting the toolkit””P9.
In a traditional architectural design setting, it is expected

that an expert—likely a system’s architect—will document
the architecture. By contrast, we learned that the idea of
a “monopoly” on architectural knowledge crumbles in many
open-source development contexts.

In the absence of a formal documented architecture, au-
thors shaped an understanding of the architecture from
personal experience with and exploration of the system.

In that sense, each resulting ESD reflects its authors’ back-
grounds, interests, preferences, and knowledge about the
system. This phenomenon was particularly pronounced in
the case of P7, a project outsider who undertook the task of
understanding the architecture specifically for the purpose
of writing the chapter: “I created figures in the chapter that I

had created on paper while learning about [the system]”. While P7

was the only “outsider” among our study participants, this
is not an uncommon occurrence: in another recent on-line
book effort that provided architectural ESDs of open-source
systems, none of the ten chapter authors were the respective
systems’ contributors [53]. It is important to note that the
case of an outsider having to capture a system’s architec-
ture is also relevant to the more traditional setting, when
architectural documentation falls out of date and must be
recovered from the implementation artifacts [39, 51].

Given the restricted size of the chapters, content selec-
tion was particularly important. In a traditional setting,
the stated or assumed goal of an architectural document is
to completely and accurately capture the architecture from
one or more perspectives [14, 31, 35, 37] (although it is ac-
knowledged that this is difficult to do in practice [21, 44,
51]). This is not the case with essay-style documents. Many
of the authors (P1,2,4,7,12,14,17) were candid about the fact
that they selected topics based on their personal knowledge
or interest for certain aspects of a system. For example,
P1 discussed performance at length in the chapter because
it was “a personal concern for me [...], not necessarily because it

is a key aspect to the success of [the system].” As another ex-
ample, P12 included “the most interesting aspects I had noticed

while working on [the system]”. In a similar vein, close to one
half of the chapter written by P14 focuses on the plug-in
system of the application, a decision which also originates
in the author’s prior work: “using plugins for HPC architectures

was the topic of my Ph.D. dissertation”. P17 exemplifies the case
of interest-based selection: “[I focused on a certain component]

mainly because I’m interested in dependency chains and optimisation

and the code around it was interesting”.
In addition to topic selection, in an architectural ESD the

overall presentation style will also be a reflection of the au-
thor’s personal characteristics (P2,5,6,9,12,14,15,18). Examples
included the use of stories (P1), reliance on a specific pattern
of interleaving decisions with diagrams (P5), and the deci-
sion whether to include references to code (P6) or not (P18).

Finally, one of the most consistent observations about
the influence of the authors’ personal characteristics on ar-
chitectural descriptions concerns the lack of use of a stan-
dard notation—specifically, UML—for diagrams. We found
that, in many cases, this could simply be explained by the
lack of familiarity of an author with UML or with diagram-
ming tools (P5,6,8,10,13,16,17). In most other cases, the authors
thought the notation was unfit for the purpose of capturing
their vision of the system’s architecture (P1,2,3,4,9,14), e.g.,
“there’s just no sense in trying to adhere to some part of UML when

all I want to do is draw a picture to illustrate an idea I’m trying to

convey”P4. P18 used UML in an“informal way”, and P15 made a
more systematic use of it, corroborating our hypothesis that
personal background (in this case, proficiency) determines
the inclination to use it: “I worked in UML-ish places in the 90s”.

5. DISCUSSION
In this section, we reflect upon the implications of our

study, describe its quality and credibility attributes, and
discuss its limitations.

5.1 Implications
This study provides the first systematic investigation of

the creation of ESDs for software architecture. The obser-
vations we collected have implications for both readers and
writers of ESDs, and for the broader field of software archi-
tecture documentation.

The major outcome for readers of software architecture
ESDs is to facilitate a deeper and more critical interpreta-
tion of these documents. Despite the largely uniform process
described in Section 3, the process descriptions we provide in
Sections 3 and 4.1 illustrate the wide variety of perspectives
with which authors can approach how they convey architec-
tural information—including through a tutorial (P12), the
use of stories (P1,14), the relating of historical information

(P2,5), etc. Before we undertook this project, our view of the
AOSA chapters was somewhat unidimensional: we consid-
ered that the chapters presented the prevalent architectural
perspective of a project within a community. We could, of
course, note the differences in style and surmise that various
factors would influence what we read, but our ignorance of
the underlying factors stifled further consideration. The ob-
servations we report in Section 4 provide additional texture
to the ESDs of the AOSA book, with broader implications
on architecture description in general.

The study surfaced how three important non-technical
aspects—evolution, community, and author characteristics—
are intimately tied to architectural descriptions in a way that
was overlooked by previous software architecture work. The
study therefore provides a tool for the critical interpretation
of ESDs on software architectures. The set of insights that
can be derived from it is open-ended, but should include
a number of questions about the genesis of the document:
What is the role of the author? What part of the appli-
cation did they work on? How is community involved in
architectural decisions? What were the major versions and
how did they impact the system? For example, three major
insights we personally took away were: (1) an ESD tends to
become a description of a composite of multiple versions of a
system (evolution); (2) some architectural information may
not be traceable to any particular contributor (community);
and (3) an author becomes a de facto authority on a system
by virtue of capturing their understanding of it in the ESD
(personal factors).

For writers of ESDs, several observations can serve as the
basis for a checklist of important points to consider:

• In contrast to formal architectural documents for which
specific stakeholders profiles should be identified [41],
the audience for ESDs will typically be open-ended and
not well defined. Some of our participants struggled
with the question of the accessibility of their material
(e.g., how much background to include or whether to
use source code). This suggests that, rather than link-
ing the ESD to specific stakeholders, it may be more
useful to specify the software development topics that
are explicitly captured in the document (e.g., using the
ACM Computing Classification System [4]).

• Given the concerns the authors shared about the acces-
sibility of code fragments, if used, source code should
be vetted for readability. To a certain degree, this may
be possible to support automatically [12].

• The impact of an author’s experience and training on
the architecture document must be made transparent.
To this end, the ESD should include a biography that
summarizes the author’s involvement with the system
in terms that can be related to the ESD’s content.

• The sequence of topics presented in the ESD can be
planned according to one of the strategies we reported
in Section 4.2–Question 5: Topic Sequence.

• One should explicitly assign a purpose to those stories
of the system’s evolution that are deemed architec-
turally relevant. For example, that purpose may be to
document rationale, or to validate key design decisions.

We argue that the implications of this study go beyond
the ESD format by providing several insights on the nature

of architectural information. (1) A system’s architecture is
inextricably tied to its evolution, both through the role evo-
lution plays in clarifying the design rationale, and in chang-
ing (and, in the process, often “breaking”) the architecture.
In that sense, the evolution is not only an object of architec-
tural design (something that has been previously acknowl-
edged in the literature [44, 51]), but also an active driver
of architecture and architectural description. (2) An archi-
tecture is, obviously, a product of its community, whether
small and tightly-knit, large and porous, or anything in be-
tween. However, in addition to this common ground, we
observed how the architecture can also be a reflection of its
community in ways that may go beyond Conway’s Law [15].
The community-induced forces we learned about may not be
unique to open-source projects or ESDs, and we see an op-
portunity for further study on the relation between develop-
ment communities and software architecture documentation.
(3) An architecture is a direct reflection of its creator(s); by
extension, the architecture document is a direct reflection
of its creator(s). The personal knowledge, understandings,
experiences, perspectives, interests, and biases become in-
extricably woven into the architecture documents. Again,
this suggests that software architecture may be much more
subjective at its heart than previously acknowledged.

Although the above factors directly influence how we think
and go about designing and documenting software systems,
they have not yet been given extensive treatment in software
architecture and architecture description literature to date.

5.2 Quality and Credibility
As pointed out by Strauss and Corbin: “Some qualitative

researchers maintain that the [standard validity criteria] by which

quantitative studies are judged are quite inappropriate for judging

the merit of qualitative studies”[46, p.266]. Instead, we prefer to
talk of the accuracy and credibility of the research. Creswell
proposes eight strategies for ensuring the accuracy of the
results of qualitative studies [17, p.196]. Here we discuss
how we implemented the six most relevant strategies.5

First, we used all three different types of triangulation:
data, observer, and methodological [42, p.15]. In terms of
data, we were able to check the statements the participants
made in interviews against their questionnaire responses, the
actual content of their chapters, and (for a subset of their
statements) the input of the book editors. Both authors
of this paper participated in the data collection and analy-
sis, thus fulfilling the requirement for observer triangulation.
Finally, some of our observations take into account quantita-
tive aspects of the chapters (e.g., number of code fragments),
which provides additional methodological triangulation.

We also used member-checking by asking participants for
validation at two separate points in the process (validation
questionnaire and final feedback). We used rich descriptions
to the extent possible by phrasing our observations directly
in the words of the participants. The bias that we bring is
that both authors are software engineering professors who
teach software architecture principles in a formal setting;
this bias was transparent throughout the study. We also
report all significant discrepant information that runs con-
trary to our themes. Finally, we asked one editor (Wilson)
for feedback on a draft in lieu of a peer debriefing session.

5We omit spend time in the field and use an external auditor.

5.3 Limitations
The main limitations relate to the sampling, the special-

ized context, and the extent of the theme saturation. Our
inevitable use of opportunistic sampling means that we may
be unaware of some influential factors experienced by an au-
thor who did not participate in the study. Given the multi-
case and exploratory nature of our study, the absence of such
insights has limited potential to radically alter or contradict
existing observations. However, it limits the breadth of what
we can report. The specialized context (the writing of a
book chapter) means that some of the observations may not
apply directly to other contexts, such as reference documen-
tation, or documentation produced in a corporate environ-
ment. Finally, as is usually the case with interviews, partic-
ipants will be more passionate about certain aspects of their
project than others, and may have little to say about some of
the study themes. Our primary data collection method, the
semi-structured interview, did not allow us to elicit an even
amount of comments across, both, participants and themes.
For this reason, some themes were developed based on the
input of a limited number of participants. We mitigate this
threat by focusing on the three primary themes and by sys-
tematically reporting the participants who supported each
of our observations.

6. RELATED WORK
A number of software architecture books have emerged

over the past two decades (e.g., [5, 11, 14, 21, 25, 26, 41, 44,
51]). Each of them has dealt with the issue of architectural
documentation. On the whole, they advocate some combi-
nation of formal and semi-formal special-purpose notations
(e.g., [44]), including UML (e.g., [26]), use of rigorously cap-
tured architectural patterns (e.g., [11]) and styles (e.g., [51]),
representation of particular architectural views (e.g., [5]),
and templates that mandate inclusion of specific informa-
tion in a specific order (e.g., [25]). Overall, the advocated
approaches were not followed by the AOSA authors.

The software architecture documentation concepts found
in the above books are also discussed in many smaller pub-
lications that focus on architecture description languages
(e.g., [13, 33, 37]), UML (e.g., [1, 32, 35]), architectural
patterns and styles (e.g., [7, 30, 55]), architectural views
(e.g., [9, 54, 31]), and standardized templates for capturing
architectural knowledge (e.g., [19, 29, 50]).

The most comprehensive treatment of software architec-
ture documentation is provided by Clements et al. [14]. They
introduce “seven rules for sound documentation”. These
were partially followed by AOSA authors. For example,
the AOSA chapters were written “from the reader’s point
of view”, but did not necessarily “use a standard organiza-
tion”. Clements et al. describe four different architecture
elaboration techniques: decomposition, uses, generalization,
and layered. AOSA authors relied on these only informally
and did not refer to them explicitly. The use of different
architectural views and diagrams as suggested by Clements
et al. is only sporadically followed by the AOSA authors.
None of the authors used the modeling notations described
by Clements et al. beyond the selective use of UML.

Several existing works focus specifically on the use of UML
in practice. They help to inform some of the observations
we made in our study. Fowler [24] suggests three different
ways in which UML is used: as a design sketching aid, as

a formal design notation, and as a programming language.
Petre [40] conducted a study of the use of UML in prac-
tice where she found that UML was not widely used due to
its complexity, lack of formal semantics, inter-view synchro-
nization, and the resulting inconsistencies. This corrobo-
rated observations made in prior studies (e.g., [2, 3, 27, 28]),
and reinforced the previously stated views [20, 32, 52] that
UML’s strengths (e.g., its wide applicability due to many
views) are also a source of its observed weakness (e.g., its
perceived complexity). This is also echoed in several of the
responses we received in our study.

Several studies have also looked at social factors that in-
fluence architecture. For example, Waterman et al. [57] in-
terviewed agile software developers to determine how much
architectural design to conduct “up-front” as opposed to al-
lowing it to emerge during development. The authors iden-
tified five different strategies—respond to change, address
risk, emergent architecture, big design up-front, frameworks
and template architectures—that can help an agile developer
make this decision. AOSA authors touched upon several of
these strategies in our study.

Tamburri and Di Nitto [48] have coined the term “social
debt” to reflect the cost added to a project due to subopti-
mal architectural decisions that stem from issues connected
to project personnel. The authors identify four sources of
social debt: (1) separation of the system’s architect from
the developers; (2) different mindsets among architects; (3)
architectural decisions that are implicitly captured across a
sea of system artifacts; and (4) growing size of the develop-
ment network. Each of these four sources was reflected in
the decisions and responses of our study participants.

Su et al. [47] studied how researchers and practitioners
“forage”documents when they are looking for architecturally-
relevant information. They found that, on the whole, their
participants looked for some subset of a system’s purpose,
actors, quality requirements, logical components, use cases,
deployment of components, external dependencies, data per-
sistence, and underlying platform. Su et al. also observed
several sequences in which their subjects preferred to forage
the architectural documents (e.g., quality requirements →
components → use cases vs. components → use cases →
deployment). To a large extent, this is reflective of the in-
formation and chapter organizations encountered in AOSA.

Our work is not the first to investigate knowledge capture
and dissemination about a software system. Dagenais and
Robillard [18] studied the role and impact of documentation
in open-source projects. They found a link between the fre-
quency of project documentation and code quality. They
also observed the influence of the project community’s in-
volvement on the documentation, both positive (via regular
interaction with the community) and negative (via the use
of public wikis, which decrease the authoritativeness of the
documentation). Our study refined and reinforced several
of the findings as they pertain to software architecture.

Tang et al. [49] conducted an early survey to assess how ar-
chitectural design rationale is documented by practitioners.
This study uncovered that practitioners generally acknowl-
edge the value of documenting architectural rationale, but
do not always actually do it. Some of the reasons stem from
the time constraints faced in software projects, and from
the unclear cost of documenting rationale due to the lack of
standardized approaches. Tang et al. found that practition-
ers tend to invent their own notations or introduce “home

brewed” variations to existing notations. A similar obser-
vation was made by Baltes and Diehl [6], who found that
the sketches and diagrams developers use to capture differ-
ent aspects of a software system are typically informal, but
occasionally include UML elements or use variants of UML.
These observations were corroborated by our study.

7. CONCLUSION
With this study, we took an in-depth look at how 18

authors created essay-style descriptions (ESDs) of architec-
tures for a set of open-source projects. The experiences we
analyzed have three major implications.

First, as architectural ESDs are becoming a more common
form of publicly accessible source of information on popu-
lar software systems (e.g., including the recent descriptions
of ten such systems [53]), we can only assume that they
will serve as a guide to an increasing number of software
developers. By providing a rich account of the factors that
influence the creation of ESDs, we hope to inform the future
interpretation of these kinds of documents.

Second, by sharing a systematic interpretation of the les-
sons and experiences of highly-skilled open-source contrib-
utors, we hope to provide a basis for expanding our under-
standing of each ESD’s context and underlying phenomena.
In turn, this will serve as a foundation for planning future
architectural ESD projects. For example, we discussed how
the few AOSA authors who opted to use UML typically did
so very informally, as a sketching tool. On the other hand,
the authors of architectural ESDs in another recent project,
DESOSA [53], relied on UML noticeably more and tended
to include diagrams automatically generated by Eclipse from
the systems’ implementations. The structures of DESOSA
chapters were also more uniform than is the case with AOSA
chapters. Each of these differences can be attributed to the
shared training the DESOSA authors received (in this case,
as part of a university course).

Finally, many of the comments and rationales discussed
in connection with the three novel themes we analyzed—
evolution, community, and personal factors—have implica-
tions that go beyond the essay-style documentation format
and may be worth exploring in the context of formal ar-
chitectural documentation. On the one hand, it could be
argued that traditional software architecture literature aims
to facilitate and explain how to document a system’s ar-
chitecture for the benefit of system stakeholders, while the
AOSA authors clearly also had to communicate their archi-
tectures broadly and effectively. On the other hand, insights
such as the use of evolution stories to document rationale,
or the impact of an author’s experience on the selection
of architectural concerns that are conveyed, would benefit
from further study in the traditional setting. Ultimately,
the boundary between essay-style architectural descriptions
and formal documentation may not be as crisp as it can
initially appear.

8. ACKNOWLEDGMENTS
This project was suggested by Greg Wilson. The authors

are grateful to Greg Wilson and Amy Brown for their as-
sistance and to the study participants for their enthusias-
tic contributions to software architecture and this study.
Thanks also to Christoph Treude for valuable comments.
This work was funded by NSERC and by NSF award 1117593.

9. REFERENCES
[1] M. Almorsy, J. Grundy, and A. S. Ibrahim.

Automated Software Architecture Security Risk
Analysis using Formalized Signatures. In Proceedings
of the 35th ACM/IEEE International Conference on
Software Engineering, pages 662–671, 2013.

[2] J. Aranda. A Theory of Shared Understanding for
Software Organizations. PhD thesis, University of
Toronto, Canada, 2010.

[3] J. Aranda, S. Easterbrook, and G. Wilson.
Requirements in the wild: How small companies do it.
In Proceedings of the 15th IEEE International
Requirements Engineering Conference, pages 39–48,
2007.

[4] Association for Computing Machinery. The 2012 ACM
computing classification system.
http://www.acm.org/about/class/class/2012, 2012.

[5] M. A. Babar, T. Dingsoyr, P. Lago, and H. van
Vliet (eds.). Software Architecture Knowledge
Management. Springer, 2009.

[6] S. Baltes and S. Diehl. Sketches and diagrams in
practice. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering, pages 530–541, 2014.

[7] J. M. Barnes, D. Garlan, and B. Schmerl. Evolution
styles: foundations and models for software
architecture evolution. Software and Systems
Modeling, pages 649–678, 2014.

[8] A. Barth, C. Jackson, C. Reis, and The Google
Chrome Team. The security architecture of the
chromium browser. Technical report, Stanford
University, 2008.
http://seclab.stanford.edu/websec/chromium/.

[9] S. Brinkkemper and S. Pachidi. Functional
architecture modeling for the software product
industry. In Proceedings of the 4th European
Conference on Software Architecture, pages 198–213,
2010.

[10] A. Brown and G. Wilson, editors. The Architecture of
Open-Source Applications, volume 1 and 2. lulu.com,
2012. http://www.aosabook.org/en/index.html.

[11] F. Buschmann, K. Henney, and D. C. Schmidt.
Pattern-Oriented Software Architecture: On Patterns
and Pattern Languages. John Wiley & Sons, 2007.

[12] R. P. Buse and W. Weimer. Learning a metric for
code readability. IEEE Transactions on Software
Engineering, 36(4):546–558, 2010.

[13] C. Chapman, W. Emmerich, F. G. Marquez,
S. Clayman, and A. Galis. Software architecture
definition for on-demand cloud provisioning. Cluster
Computing, 15(2):79–100, 2012.

[14] P. Clemens, F. Bachmann, L. Bass, D. Garlan,
J. Ivers, R. Little, P. Merson, R. Nord, and
J. Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2nd edition, 2010.

[15] M. Conway. How do committees invent? Datamation,
14(4):28–31, 1968.

[16] J. Corbin and A. Strauss. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications, 3rd edition,
2007.

[17] J. W. Creswell. Qualitative Inquiry and Research

Design. Sage Publications, 2nd edition, 2007.

[18] B. Dagenais and M. P. Robillard. Creating and
Evolving Developer Documentation: Understanding
the Decisions of Open Source Contributors. In
Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 127–136, 2010.

[19] K. A. de Graaf, A. Tang, P. Liang, and H. van Vliet.
Ontology-based software architecture documentation.
In Proceedings of the 2012 IEEE Joint Working
Conference on Software Architecture and 6th European
Conference on Software Architecture, pages 121–130,
2012.

[20] D. Dori. Why significant UML change is unlikely.
Communications of the ACM, 45(11):82–85, 2002.

[21] G. H. Fairbanks. Just Enough Software Architecture:
A Risk-Driven Approach. Marshall & Brainerd, 2010.

[22] Firefox Team. Firefox OS architecture.
https://developer.mozilla.org/en-US/Firefox OS/
Platform/Architecture, 2015.

[23] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Computing
Applications, 15(3):200–222, 2001.

[24] M. Fowler. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley
Professional, 3rd edition, 2003.

[25] I. Gorton. Essential Software Architecture. Springer,
2nd edition, 2011.

[26] C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley Professional, 1999.

[27] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristofferson. Empirical assessment of MDE in
industry. In Proceedings of the 33rd ACM/IEEE
International Conference on Software Engineering,
pages 471–480, 2011.

[28] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristofferson. Model-driven engineering practices in
industry. In Proceedings of the 33rd ACM/IEEE
International Conference on Software Engineering,
pages 633–642, 2011.

[29] ISO/IEC/IEEE. Iso/iec/ieee 42010:2011, systems and
software engineering—architecture description.
http://www.iso-architecture.org/42010/, 2011.

[30] A. Jansen, P. Avgeriou, and J. S. van der Ven.
Enriching software architecture documentation.
Journal of Systems and Software, 82(8):1232–1248,
2009.

[31] P. B. Kruchten. The 4+1 view model of architecture.
IEEE Software, 12(6):42–50, 1995.

[32] C. F. Lange, M. R. Chaudron, and J. Muskens. UML
Software Architecture and Design Description. IEEE
Software, 23(2):40–46, 2006.

[33] N. G. Leveson, editor. IEEE Transactions on Software
Engineering – Special Issue on Software Architecture.
Volume 21, Issue 4, 1995.

[34] N. Medvidovic, E. Dashofy, and R. Taylor. Moving
Architectural Description from Under the Technology
Lamppost. Journal of Information and Software
Technology, 49(1):12–31, 2007.

[35] N. Medvidovic, D. Rosenblum, D. Redmiles, and

J. Robbins. Modeling software architectures in the
Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology, 11(1):2–57,
2002.

[36] N. Medvidovic, H. Tajalli, J. Garcia, Y. Brun, I. Krka,
and G. Edwards. Engineering heterogeneous robotics
systems: A software architecture-based approach.
IEEE Computer, 44(5):62–71, 2011.

[37] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Transactions on Software
Engineering, 26(1):70–93, 2000.

[38] R. Moreno-Vozmediano, R. Montero, and I. Llorente.
Iaas cloud architecture: From virtualized datacenters
to federated cloud infrastructures. IEEE Computer,
45(12):65–72, 2012.

[39] D. E. Perry and A. L. Wolf. Foundations for the Study
of Software Architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40–52, 1992.

[40] M. Petre. UML in practice. In Proceedings of the 35th
ACM/IEEE International Conference on Software
Engineering, pages 722–731, 2013.

[41] N. Rozanski and E. Woods. Software Systems
Architecture: Working with Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley
Professional, 2nd edition, 2011.

[42] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case
Study Research in Software Engineering: Guidelines
and Examples. John Wiley and Sons, Inc., 2012.

[43] C. B. Seaman. Qualitative methods in empirical
studies of software engineering. IEEE Transactions on
Software Engineering, 25(4):557–572, 1999.

[44] M. Shaw and D. Garlan. Software Architecture:
Perspectives on An Emerging Discipline. Prentice
Hall, 1996.

[45] D. Spinellis and G. Gousios, editors. Beautiful
Architecture: Leading Thinkers Reveal the Hidden
Beauty in Software Design. O’Reilly Media, 2009.

[46] A. Strauss and J. Corbin. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications, 2nd edition,
1998.

[47] M. T. Su, E. Tempero, J. Hosking, and J. Grundy. A
study of architectural information foraging in software
architecture documents. In Proceedings of the Joint
Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software
Architecture, pages 141–150, 2012.

[48] D. A. Tamburri and E. Di Nitto. When software
architecture leads to social debt. In Proceedings of the
12th Working IEEE/IFIP Conference on Software
Architecture, pages 61–64, 2015.

[49] A. Tang, M. A. Babar, I. Gorton, and J. Han. A
survey of the use and documentation of architecture
design rationale. In Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture,
pages 89–98, 2005.

[50] A. Tang, P. Liang, and H. van Vliet. Software
architecture documentation: The road ahead. In
Proceedings of the 2011 Working IEEE/IFIP
Conference on Software Architecture, pages 252–255,
2011.

[51] R. Taylor, N. Medvidovic, and E. Dashofy. Software
Architecture: Foundations, Theory, and Practice. John
Wiley & Sons, 2009.

[52] D. Thomas. MDA: Revenge of the modelers or UML
utopia? IEEE Software, 21(3):22–24, 2004.

[53] A. van Deursen and R. Slag. DESOSA 2015: Delft
students on software architecture.
http://delftswa.github.io/, 2015.

[54] U. van Heesch, P. Avgeriou, and R. Hilliard. A
documentation framework for architecture decisions.
Journal of Systems and Software, 85(5):795–820, 2012.

[55] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for consumer
electronics software. IEEE Computer, 33(3):78–85,
2000.

[56] B. Warsaw. The Architecture of Open-Source
Applications, volume 2, chapter 10: GNU Mailman.
lulu.com, 2012.
http://www.aosabook.org/en/mailman.html.

[57] M. Waterman, J. Noble, and G. Allan. How much
up-front? A grounded theory of agile architecture. In
Proceedings of the 37th ACM/IEEE International
Conference on Software Engineering, pages 347–357,
2015.

[58] R. K. Yin. Case Study Research. Sage, 2013.

