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Abstract—Many software development tasks require develop-
ers to quickly learn a subset of an Application Programming
Interface (API). API learning resources are crucial for helping
developers learn an API, but the knowledge relevant to a
particular topic of interest may easily be scattered across different
documents, which makes finding the necessary information more
challenging. This paper proposes an approach to discovering
tutorial sections that explain a given API type. At the core
of our approach, we classify fragmented tutorial sections using
supervised text classification based on linguistic and structural
features. Experiments conducted on five tutorials show that our
approach is able to discover sections explaining an API type with
precision between 0.69 and 0.87 (depending on the tutorial) when
trained and tested on the same tutorial. When trained and tested
across tutorials, we obtained a precision between 0.74 and 0.94
and lower recall values.

I. INTRODUCTION

Many software development tasks require developers to
quickly learn the subset of an Application Programming
Interface (API) related to the task. Information that may be
necessary to complete a task can include explanation of rele-
vant domain concepts, functional descriptions of API elements,
directives and patterns for using the API correctly, etc. [1]. A
natural way to learn about an API is to peruse its learning
resources. These typically include reference documentation,
but also other types of documentation such as tutorials. API
tutorials are learning resources that combine both descriptive
text and code examples. Tutorials are usually organized as
a sequence of API usage examples, where different sections
address different programming tasks.

Tutorials are especially well-suited for developers unfamil-
iar with an API as they often teach readers about popular
API features used in a basic context. During real-life de-
velopment and maintenance tasks, API usage scenarios will
not necessarily align with predefined learning tasks, but may
instead involve program understanding activities anchored
around specific API types (e.g., “How are instances of these
types created and assembled?”, “What is the behavior that
these types provide together and how is it distributed over
the types?” [2, p. 441]). In addition to being located in
reference documentation explicitly associated with API types,
conceptual knowledge about type usage is also scattered
across different documents, which makes finding the necessary
information more challenging.

A number of issues make searching API tutorials for type
usage challenging. First, because API tutorials are task-based,
titles usually describe the task (e.g. “Error Handling”, “Input
and Output”) without referencing the types within. Second,
when they heavily rely on the general tutorial context, the
titles of tutorial sections are often not very informative (e.g.,
“Next”, “Example”, “Overview”, “General Case”).

Another alternative is to use search engines in the hopes
of finding type usage information in tutorials or other re-
sources [3]. In the specific case of searching for API type
usage information, there are two major causes of inefficiency.
First, API types are often mentioned in a tutorial section with-
out being the topic of the section (e.g., “SessionFactory is
null”), creating a large amount of noise for searchers interested
in learning about how to use the type [4]. For example,
in the tutorial for the JodaTime API (see Section II), 18
sections have a reference to the type DateTime, but only
eight of these sections actually explain how to use the type.
A second, and related, problem is that search engines only
return documents; if the document includes many references
to a type of interest, it is necessary to visit every reference
and assess each individually for relevance.

In this work we investigate the use of text classification to
discover tutorial sections explaining how to use a given API
type. Among many features we could analyze, we focused
our experimentation on the use of textual information. Lever-
aging textual information in the software engineering domain
requires coupling features related to the use of code words with
features obtained from natural language processing techniques.
We consider that a tutorial section explains an API type if it
would help a reader unfamiliar with the corresponding API
to decide when or how to use the API type to complete
a programming task. We consider API types (classes and
interfaces) as the best level of granularity for finding usage
information because a single section of an API tutorial usually
describes a solution for a programming task by using a set of
methods.

The problem we tackle is not simply one of information
retrieval (IR). Even if, in a first step, queries expressed in terms
of API element names retrieve tutorial sections that contain
the query word, in a second step the retrieved sections have
to be classified as relevant (i.e., containing an explanation)
or irrelevant. The difficulty of this step is to design features



Fig. 1. API Reference documentation annotated with links to tutorial sections.

TABLE I
EXPERIMENTAL CORPUS

API Tutorial URL (verified 28 August 2014) Alias Length (words)

JodaTime API http://joda-time.sourceforge.net/userguide.html JodaTime 4659
apache.commons.math library http://commons.apache.org/proper/commons-math/userguide/ Math Library 28 971
Java Collections Framework http://docs.oracle.com/javase/tutorial/collections/implementations Col. Official 23 583
Java Collections Framework http://tutorials.jenkov.com/java-collections/index.html Col. Jenkov 12 915
Smack API http://www.igniterealtime.org/builds/smack/docs/latest/documentation/ Smack 19 075

that are sufficiently refined to robustly capture the essence of
explanation of API elements.

As part of this work, we developed a coding guide to
allow human annotators to reliably label tutorial sections
as explaining or not explaining an API type and produced
an experimental training and evaluation corpus consisting
of five manually-labeled tutorials. This corpus is our first
contribution, described in Sections II and V.1 We then studied
the structure of these API tutorials and derived a procedure to
fragment tutorials into roughly equivalent units of information
(our second contribution, Section III), and designed a set of
features that we hypothesized captured important clues as to
what aspects of a tutorial section are indicative of explanations
of an API type. The features we designed involve the use of
natural language analysis techniques to capture the essence
of descriptive language for an API type. These features, and
the text transformation operations necessary to extract them,
form our third and most important contribution and are
described in Section IV. Finally, we applied a MaxEnt clas-
sifier [5] to our features and corpus to study different aspects
of our proposed technique, and compared the results with
a baseline obtained though a standard information-retrieval
based approach. The results of this multi-faceted empirical
evaluation is our fourth contribution.

Experimental results on our corpus showed that we can
classify tutorial sections as explaining a given API type or
not with a precision between 0.74 and 0.94 (depending on
the tutorial) when training on four tutorials and testing on a
fifth one. In similar conditions, we obtain a recall between
0.48 and 0.76. Finally, we verified that the text classifier-
based approach consistently obtained better precision than a

1http://cs.mcgill.ca/∼swevo/icse2015/

standard implementation of vector-space information retrieval
that analyzed the similarity between a tutorial section and a
type’s Javadoc comments.

As a demonstration application of our traceability technique,
we inject references to discovered tutorial sections directly into
the reference documentation of Java API types, together with
a by-line extracted from the corresponding section. Figure 1
illustrates the resulting outcome for interface Collection of
the Java Core Library. The right side panel has been added
by applying our approach. The panel shows links to specific
sections of two different tutorials that explain how to use
the interface. Finding these resources using a search engine
requires a non-trivial amount of manual effort.

II. EXPERIMENTAL CORPUS

Studying how to discover tutorial sections relevant to API
types requires a corpus of tutorials. We selected five tutorials
covering four different Java APIs. We selected the API tuto-
rials based on several criteria. First, since part of the solution
will require access to source code, we chose Java APIs that
are open source. Our solution requires people to look at the
tutorial and manually label different parts of the tutorial as
relevant or not to an API type. For this reason we selected
APIs with common application domains so that annotators
could label the data without special training. Tutorials should
also exhibit adequate use of the English language. Finally, we
wanted tutorials that are diverse in size, format and origin.

Table I lists the tutorials we selected for this research. The
JodaTime tutorial was mainly used for development. The Math
Library tutorial was used for testing during the development
period, and the other three tutorials were used only for testing
purposes.



TABLE II
RECODOC RESULTS FOR THE EXPERIMENTAL CORPUS. # CLTS SHOWS

THE NUMBER OF CODE-LIKE TERMS DETECTED IN EACH TUTORIAL.
# LINKS SHOWS THE NUMBER OF THESE CLTS THAT WERE LINKED TO A

SPECIFIC TYPE OF THE TUTORIAL’S TARGET API.

Tutorial # CLTs # links

JodaTime 136 72
Math Library 901 418
Col. Official 711 574
Col. Jenkov 556 409
Smack 574 273

III. PREPROCESSING

Discovering relevant API sections in tutorials requires two
main preprocessing steps: 1) finding references to API types
in tutorials, and 2) fragmenting the tutorials.

A. Finding References to API Types

Finding API types mentioned in a tutorial is not a trivial
task because references to API elements in natural language
do not usually include the complete, correct, and unambiguous
identifier of the element. For example, the phrase “to create
a List...” may refer to java.util.List, java.awt.List,
or any other existing class named List in other libraries.
To find the exact API types referenced in a tutorial, we used
Recodoc [6], which identifies API types in two phases. First,
it finds all tokens that might be API elements. Such tokens are
called code-like terms (CLTs). Second, it disambiguates code-
like terms by analyzing the surrounding text and explicitly
linking them to the exact API type or type member they refer
to, if applicable. This problem is especially challenging when
resolving method names, such as add, which are heavily over-
loaded. Because our strategy involves replacing references to
type members with references to their declaring type, we must
also disambiguate members. For example, in a phrase such
as “use the add method to...”, we would need to detect that,
for example, the text references java.util.List.add(...)
to know that the text indirectly contains a reference to
java.util.List. Recodoc was showed to link API elements
from API tutorials and mailing lists with 96% precision and
96% recall [6].

We applied Recodoc separately to each tutorial to link code-
like terms in the text to the corresponding API elements (e.g.,
to link terms in the Math Library tutorial to elements in the
org.apache.commons.math packages). Table II reports on the
outcome of the process. For example, Recodoc found 901
code-like terms in the Math Library tutorial, out of which
418 were linked to the apache.commons.math API. Out of
these 418 cases, 35 code-like terms could not be automatically
disambiguated by Recodoc. We manually reviewed and disam-
biguated these cases based on the Recodoc recommendations.

B. Fragmenting Tutorials

To help users find information about API types efficiently,
it is necessary to point them to sufficiently short fragments
containing the relevant information (as opposed to referring
to the tutorial in general, or to very long sections). A basic

Fig. 2. Section lengths (in number of words) for the JodaTime tutorial

strategy could be to simply consider terminal sections (sections
without subsections) to be these fragments. Unfortunately, this
idea does not generalize well because different tutorials have
different section lengths, and some sections can be very long.

We addressed this challenge by designing a procedure that
attempts to split long tutorial sections so that each resulting
fragment is between a target minimum and maximum length,
while preserving the cohesiveness of the content. For determin-
ing the target minimum and maximum lengths for fragments,
we used the JodaTime tutorial as a benchmark because, in this
particular case, the length of sections was small and relatively
homogeneous.

Figure 2 shows section lengths for the JodaTime tutorial.
Each bar corresponds to a section and the height corresponds
to the number of words in a section. As can be seen from the
figure, the average length is between 100 to 150 words. Based
on this observation, we selected 100 words as a (target) min
length and 150 as a (target) max length for tutorial fragments.
In the following, the parameters min and max should be
understood as “target min” and “target max”.

To fragment a tutorial, we split the tutorial into structurally
or conceptually atomic units, and progressively reassemble
these units until the target length is obtained. The main steps
of our fragmentation algorithm are presented below:

1) Split the tutorial based on the table of contents or HTML
header tags. Exclude the section titles from further
processing.

2) For all sections extracted in Step 1, recursively split all
HTML elements if they are longer than max − min
(e.g. longer than 50 words). We try to split HTML
elements so they are smaller than max−min so that it
will later be easier to keep fragments within the range
[min,max]. We do not split an HTML element even
if it is longer than max − min if it does not contain
children, or if it is an HTML p, ul, table, dd, or dt
tag.

3) Merge dt elements with the following dd elements, and
merge ul elements with the previous paragraph (for
continuity).

4) Iteratively merge sibling HTML elements until the
length of the resulting element exceeds the min length,
and add any subsequent sibling with length 0. Here
adding even a single element might increase the length
of a fragment to exceed the max length. However, as



TABLE III
FRAGMENTATION RESULTS

Length (words)
Tutorial # Sec. # Seg. Mean Median Linked Pairs

JodaTime 33 33 140 104 29 72
Math Library 77 158 203 201 102 251
Col. Official 56 73 172 163 57 233
Col. Jenkov 70 79 141 132 69 150
Smack 60 65 229 212 46 86

elements were split to be smaller than max−min except
for a few exceptions, the section length will generally
be shorter than the max length.

5) If a section has been fragmented in Steps 2, 3, or 4 then
the title of the subsection is formed by concatenating the
title of the closest enclosing section with a sequential
index.

We fragmented all tutorials except the JodaTime tutorial us-
ing the algorithm described above (JodaTime was our baseline
for fragment length boundaries); Table III presents the results.
For example, the Math API tutorial was originally divided into
77 sections. Those 77 sections were subsequently fragmented
into 158 sections with an average length of 203 words. This is
longer than the target length (150 words) but our approach is
heuristic and prioritizes the structural coherence of a section
fragment above its length. For this tutorial, Recodoc identified
references to elements in the Math API in 102 out of the 158
sections fragments. Overall, there were 251 ⟨API type, section
fragment⟩ pairs. For all tutorials, we annotated all ⟨API type,
section fragment⟩ pairs except for the Math Library, where
time constraints limited us to 102 of the 251 available pairs.

In this paper, we consistently use the term “section” for
readability. However, the term should be understood as “sec-
tion fragment” whenever the results of the approach are
concerned.

IV. RELEVANCE CLASSIFICATION

In this section we describe the text transformation opera-
tions we implemented to support the extraction of classifica-
tion features (Section IV-A) and present our design of classifier
features (Section IV-B).

A. Text Transformation Operations

Most text analysis approaches require a pipeline of process-
ing steps to extract features from text. Here we summarize
the main steps of our pipeline, putting the emphasis on the
problems and solutions specific to the task of analyzing API
tutorials. A complete description of the related algorithms can
be found in a separate report [7].

To extract sub-paragraph features, we use the Stanford
Parser [8] to split paragraphs into sentences. This parser
relies on the detection of sentence-ending characters (i.e., .,
!, or ?); however, in HTML files, many logical text units are
not terminated by a symbol (e.g., list items), or are split by
structural elements (e.g., code snippets). To overcome these
problems, we collapse code snippets to treat them as words,
and then automatically inject additional punctuation.

We collapse all code snippets into a special keyword that
holds a unique identifier referring to the original snippet. When
we later add punctuation, the collapsing function checks if the
code snippet is followed by a new sentence. We say that a
code snippet is followed by a new sentence if the next symbol
is in uppercase or is an opening HTML tag. If so, a period is
added at the end of the code snippet marking the end of the
sentence. If the preceding sentence did not end before the code
snippet (e.g., there was no period preceding the code snippet),
then the code snippet is folded into that sentence. For example,
Figure 3 shows a section of the JodaTime tutorial in HTML
before collapsing code snippets.

1 ... In datetime maths you could say: </p>
2 <div class="source">
3 <pre> instant + duration = instant </pre>
4 </div>
5 <p>Currently, there is only one implementation of....

Fig. 3. Tutorial text before code snippet collapse

When the code collapsing algorithm is applied, the HTML
markup is removed and this excerpt gets transformed into the
result presented in Figure 4. Note that in the modified version,
a period is added after the code snippet, to indicate the end
of the current sentence and the beginning of the new one.

1 ... In datetime maths you could say: CODEID=7.
2 Currently, there is only one implementation of...

Fig. 4. Tutorial text after code snippet collapse

Collapsing code snippets not only makes sentence detection
more accurate, it also creates a possibility to exploit the
relationships between sentence words and code snippets. After
being collapsed, a code snippet becomes just another word
in the sentence and as any other word in the sentence, it
has relationships with sentence words. As API types are also
part of the sentence, we can identify the relationship between
an API type and the code snippet. If a relationship does not
exist, at least we can identify whether the API type appears
in the same sentence with a code snippet. This is important
information because usually important API types of the code
snippet are mentioned before it.

When extracting the text from HTML, if the content of
an element such as h1, h2, dt, dd, p, or tr ends without
punctuation, then we add a period at the end. In the case of
items such as li or td, we add a comma for every item except
the last one, after which we add a period.

Most of the textual features we extract require the tagging
of words with their part-of-speech (POS) tags (e.g., adjec-
tive vs. noun). For this purpose, we use the Stanford Parser.
Unfortunately, this off-the-shelf tool was trained on a corpus
of Wall Street Journal articles and makes many tagging errors
when applied to API documents.

To overcome the mistagging of technical concepts, we re-
implemented a multi-word term detection algorithm [9].
This method outputs multi-word phrases with corresponding
confidence scores. With the use of this algorithm, we extracted
more than 30 000 multi-word phrases from the official Java



Tutorials2 and selected all the phrases with a confidence
score above an arbitrarily-determined threshold of 10. This
procedure resulted in 1037 multi-word concepts associated
with API terminology.

We produced the list automatically for reproducibility,
which implies that it contains some noise: some of the selected
multi-word concepts are not real concepts, but reoccurring
word combinations (e.g. new connection, current JDK, etc.).
We did not remove such cases to prevent subjective bias, but
we observed that spurious multi-word phrases do not have a
negative effect on the classification procedure. In any case,
for some phrases it is questionable whether they represent a
concept or not (e.g., “last element” or “default layout”).

After obtaining the list of concepts, occurrences of these
concepts were concatenated so that from here on they would
be treated as one token (e.g., “defaultLayout”), and we forced
the POS tagger to tag the phrases as a noun.

During multi-word concept extraction we observed that
usually an API type is used in the sentence as part of a
noun phrase. For example, in the sentence from the JodaTime
tutorial: “Within Joda-Time an instant is represented by the
ReadableInstant interface”, ReadableInstant is an API type
and the noun phrase it is part of is “the ReadableInstant
interface”. According to the Stanford Parser, “interface” is the
main noun and ReadableInstant is a descriptive word for
it. This means that in the above example, “interface” is the
object which “is represented by ...”. In practice, we found
it necessary to map relationships to API types and not their
qualifiers. In this example, we want to associate instant with
ReadableInstant, as opposed to “interface”. We thus re-
place all noun phrases which contain an API type with the
API type itself. For example, in our previous case the sentence
would become (words in brackets removed): “Within Joda-
Time an instant is represented by [the] ReadableInstant

[interface]”.

B. Feature Design

In designing features, we took into account both linguistic
and structural properties of the text. We can distinguish
between five groups of features. The first group of features
comprises general features expressed as a real value (as
opposed to boolean features). Tutorial-, section-, and sentence-
level features are first-order logical predicates whose truth is
evaluated by taking into account information about the entire
tutorial, a single section, or a single sentence, respectively.
Finally, dependency-based features are real-valued features
that take into account dependencies between words in the text.

Table IV summarizes our entire set of features. Below, we
clarify only the features that are not self-evident from the
table. A complete description of each feature can be found in
a separate report [7]. All features describe a tuple ⟨s, t⟩ where
s is a section (fragment) and t is an API type mentioned in
the section.

2http://docs.oracle.com/javase/tutorial/

TABLE IV
SUMMARY OF FEATURES

Feature Description

Real-valued features

freq How strongly an API type is associated to a
tutorial section.

wordNum Frequency with which an API type or part of
it is mentioned as simple words, not as code
words

substituteNum Frequency with which an API type is a sub-
stitute for its methods and fields

Tutorial-level features

inParentTitle TRUE for ⟨s, t⟩ if s is a subsection of another
section S and t is present in the title of S

isOnlyOne TRUE for ⟨s, t⟩ if s is the only section of the
tutorial which mentions t

Section-level features

inCode TRUE for ⟨s, t⟩ if s contains a code snippet
and the code snippet contains t

notInCode TRUE for ⟨s, t⟩ if s contains a code snippet
and the code snippet does not contain t

moreThanOnce TRUE for ⟨s, t⟩ if t is mentioned in s as a
code term more than once

once TRUE for ⟨s, t⟩ if t is mentioned in s as a
code term only once

inTitle TRUE for ⟨s, t⟩ if t is present in the title of s

inFirstSent TRUE for ⟨s, t⟩ if the first sentence of s
contains t as a simple word or as a code word

Sentence-level features

isExample TRUE for ⟨s, t⟩ if any sentence of s mentions
t as an example

isInParentheses TRUE for ⟨s, t⟩ if any sentence of s mentions
t in a phrase surrounded with parentheses

withCode TRUE for ⟨s, t⟩ if any sentence of s mention-
ing t contains a code snippet

importantSentence TRUE for ⟨s, t⟩ if any sentence of s mention-
ing t is considers as “important”

modal TRUE for ⟨s, t⟩ if in any sentence of s men-
tioning t, a verb applied to t has modal verb

negation TRUE for ⟨s, t⟩ if in any sentence of s
mentioning t, negation is applied to the verb
connected to t

inEnum TRUE for ⟨s, t⟩ if in any sentence of s, t
is enumerated with more than one other API
types, or connected to other API type with
“or”.

Dependency-based features

depScore A relevance score based on the dependencies
of t.

relScore A relevance score based on the relation types
of dependencies of t.



freq: We use the following formula to calculate freq:

freq(s, t) =
tfs,t
dft

(1)

where tfs,t is the number of occurrences of the API type t in
the section s and dft is the number of sections containing the
API type t.
wordNum: Some of the API types or part of API type names
can be used in the text of the section as simple words and
not as a code term. For calculating the wordNum feature, we
first extract the lemmas of all words in the section using the
Stanford toolkit [8]. Then we calculate a weight:

w(s, t) =
∑

lw∈LW (s)

AreAlike(t, lw) (2)

where LW (s) is the set of lemmas of all words in the section
s. AreAlike is a function which returns 1 if lw matches fully
the name of the API type t and 0.5 if lw matches t partially.
For detecting a partial match, t is split by CamelCase and each
part is compared with lw.

As Nigam et al [5] observed, unscaled frequencies of
the terms negatively affected the accuracy of the MaxEnt
classifier. During the initial experiments we observed the same
behaviour, and for that reason we decided to normalize the
wordNum feature. As there is no theoretical upper limit for
w, we used an approximate upper limit. We chose 5 to be the
upper limit and calculated the final value for the feature as
follows:

wordNum(s, t) =

{
1, if w(s, t) ≥ 5
w(s,t)

5 , Otherwise
(3)

substituteNum: This feature is the ratio of references to a type
t where t is a substitute for one of its declared elements, over
all mentions of t including substitutions.
isExample: This feature is a predicate evaluated to TRUE if
the name of the API type is preceded, in the same sentence,
by one of the following phrases: “such as”, “for example”, or
“for instance”.
isInParentheses: When an API type is mentioned in parenthe-
ses, it also can be an example and carries a secondary function
for the text. The only exception we considered is when the text
in parentheses starts with the word “note”, in which case it
usually carries important information.
withCode: As mentioned in Section IV-A, after collapsing
code snippets, they can become part of the sentences. This
usually happens when an API type is one of the main
components of the code snippet. Based on this observation,
we introduced the withCode feature, which is TRUE if an API
type appears in the same sentence as the code snippet.
importantSentence: A sentence is considered important if it is
in the imperative mood or if it starts with instructive words
(to, when, by, try, note, in order). We consider a sentence to
be in the imperative mood if any verb of the sentence does
not have a subject or its subject is “you”.
Dependency-based Features: These features are based on the
typed dependencies of the code-like term. Typed dependen-
cies are the triples consisting of (governor-relation-dependent

words), as (cat-subject-eat), where relation is the linguistic re-
lation type connecting words such as subject, object, adjective,
etc. Certain dependencies might be indicative of the relevance
of a section to a type or not. For example, when a type is the
subject of a verb, then it is likely that it is the main focus of the
sentence. We decided to exploit this information for improving
the classification results. API tutorials are particularly suitable
for exploiting the regularities of text because they contain
repetitive grammatical structures. For example, three sections
in the JodaTime tutorial start with the phrase (“A <concept>
in Joda Time represents...”).

To leverage typed dependencies for our classification, first
we had to identify positive and negative dependencies and
create a database of such dependencies with corresponding
weights. We used the Java tutorials to create the database.
We extracted 1785 dependencies in which either the governor
or the dependent was a code-like term (CLT). Afterward, the
first author manually annotated each dependency as positive,
negative or not useful. She labeled a typed dependency as
positive or negative if it contributed to the relevance or non-
relevance of the section for explaining the code-like term.
From 1785 extracted typed dependencies, she classified 725
as positive, 445 as negative, and 615 as not useful. Those 615
triples classified as not useful were ignored and were not used
in the following steps. The useful instances overall mapped to
246 distinct typed dependencies and 39 distinct relations.

TABLE V
A FEW EXAMPLES OF DEPENDENCIES.

Gov Rel Dep #Total #Pos Z-score Norm

use dobjMDneg3 clt 5 0 -2.85 0.32
clt nsubj4 specify 11 11 2.6 0.93

catch dobjMD5 clt 2 0 -1.81 0.44
define prepIN6 clt 12 0 -4.42 0.19

use dobj7 clt 88 61 1.42 0.79

For each type of dependency, we computed a weight based
on the annotation results. The intuition for the weight cal-
culation was that the more often a dependency appears as
positive, the larger the weight should be. However, both the
ratio of positive instances and the absolute popularity of the
dependency should also have a role. Taking this intuition into
account, we use the Z-score to calculate the weight for each
dependency.

Table V provides a sample of dependencies and relevant
values indicating how strongly they show evidence for the
relevance of an API element. As a justification for using the Z-
score, the third and fourth lines contain dependencies in which
all instances were marked as negative, so their percentage of
negative cases is identical; however the Z-score takes into

3object of a verb, where the verb is preceded by a modal verb and the
negation word “not”

4subject of a verb
5object of a verb, where verb is preceded by a modal verb
6prepositional phrase with preposition IN
7object of a verb



account the number of occurrences and thus distinguishes
these two cases, giving more weight to the third example,
which is six times more frequent than the fourth one.

To use the Z-score as a feature for classification, we calcu-
lated the normalized version of all scores. The total score for
the section was calculated by taking all dependencies which
contain an API type and averaging their score.

V. ANNOTATING THE EXPERIMENTAL CORPUS

The investigation of a supervised classification approach for
discovering tutorial sections explaining API types requires the
creation of a set of labeled data items to train the classifier.
In this research, a data item is a tuple ⟨s, t⟩ consisting of
a section s and an API type t. Annotating (or labeling) the
tutorials for this research requires a subjective judgment of
whether the section s explains type t or not. To ensure a high
level of rigour in our annotation process, we constructed a
detailed annotation guide [7, Appendix], developed a dedicated
annotation tool, and asked two human annotators to label each
data item ⟨s, t⟩. In case of disagreement, the final label for each
data item was obtained by consensus of the two annotators.

The annotation tool we developed displays each section
with HTML formatting, sequentially highlights all API types
found in the section, and provides functionality to save and
resume the current state of the annotation task. It displays the
current progress and provides access to a concise form of the
annotation guide.

The annotation process for each portion of data is an anno-
tation session. During an annotation session, two participants
(the annotators) independently annotate the same data and
then meet to reconcile disagreements. At the beginning of
each annotation session, the annotators were introduced to the
annotation guide and annotation tool. Each session began with
10 warm-up examples so that the annotators could get used
to the task. The amount of work was divided so that it would
not take more than one hour to complete an annotation task.
Shortly after completing the task, the two annotators discussed
their disagreements to reach a common decision for each
data item. The kappa inter-annotator agreement score for each
session is presented in Table VI. The annotators were two of
the authors, a post-doctoral fellow, a Ph.D. student, a Master’s
student and an intern of the same lab, and two Master’s
students from two different groups at McGill University. As
the table shows, some of the sessions led to poor initial
agreement. However, we accepted the results because post-
session discussions revealed that most of the disagreements
were due to the different levels of conservatism from the
annotators rather than sloppy annotation work. A particular
case was the first annotation session for the official Collections
tutorial (κ = 0.29). Given the utility nature of the related API,
it is far from obvious to estimate whether a section explains a
type for certain scenarios. This observation can be confirmed
by looking at the tutorial.

Table VII summarizes the annotation results. The second
column contains the total number of tutorial sections and API
type pairs preceded by the number of relevant pairs. The third

TABLE VI
KAPPA AGREEMENT SCORES

Tutorial # pairs Kappa

JodaTime 68 0.31
Math library 98 0.51

Col. Official 107 0.29
113 0.61

Col. Jenkov 150 0.57
Smack 86 0.63

TABLE VII
TUTORIAL STATISTICS

Tutorial (Section,Type)- Unique API Types
(Relevant/Total) (Relevant/Total)

JodaTime 30/68 21/36
Math Library 54/98 45/74
Col. Official 56/220 31/58
Col. Jenkov 42/150 21/28
Smack 56/86 29/40

column contains the number of distinct API types preceded
by the number of relevant distinct API types. For example,
Col. Official, annotated in two sessions, has 107+ 113 = 220
pairs from which only 56 (25%) were annotated as explaining
the type in question. However, the third column shows that
of the 58 distinct API types mentioned in the tutorial, 31 had
at least one matching explanatory section. This means that
the tutorial covered 53% of the mentioned API types with
information judged to be explaining the type.

Finally, we note that experiments conducted with this corpus
have the following threats to validity: different people will
differ in their judgment of whether a section explains an
API type, and tutorials can vary greatly in length, style, and
quality. Different results can be expected for tutorials with
characteristics markedly different from those of the tutorials
in our sample.

VI. CLASSIFICATION EXPERIMENTS

A. Basic Classification Results

For evaluating the performance of the system for each tuto-
rial, we performed leave-one-out cross validation (LOOCV).
For each section-type pair, we trained the classifier on the
rest of the corresponding tutorial and tested on the held-out
pair, using the oracle to determine if our classification yielded
a true positive (TP), true negative (TN), false positive (FP),
or false negative (FN). We then computed the aggregated
precision (P=#TP/(#TP+#FP), recall (R=#TP/(#TP + #FN),
and F1 measure (2PR/(P+R)) for all the section-type pairs in
a given tutorial. Table VIII shows the results.

We investigated the classification details for the Math Li-
brary and Col. Official tutorials, which were the hardest ones
to classify. For the Math Library tutorial, out of 31 incorrect
classifications (false positives + false negatives), 18 cases had
very few features present. In the case of Col. Official, the cases
with few applicable features were only 5 out of 35 incorrectly
classified cases. However, the Col. Official differs from other



TABLE VIII
LEAVE-ONE-OUT CROSS-VALIDATION RESULTS

Tutorial Precision Recall F1

JodaTime 0.81 0.73 0.77
Math Library 0.69 0.74 0.71
Col. Official 0.71 0.62 0.67
Col. Jenkov 0.84 0.76 0.80

Smack 0.87 0.80 0.83

tutorials because of its large number of negative cases. In
this case, more positive evidence is needed to classify the
data into the positive category, which explains the low recall
value for this tutorial. Math Library and Col. Official are also
the tutorials with the biggest average section lengths, which
creates some challenges related to sentence-level features. For
example, because more sentence-level features will fire in a
larger section fragment, it may become more important to
devise advanced strategies to combine them.

We also analyzed the results per API types because this
information gives us a notion of the coverage of a system
using our classification. In other words, for how many different
API types can we discover relevant information? Table IX
presents coverage information per API type. The second
column (# Types) shows the number of distinct API types
mentioned in each tutorial. The third column (Min One) shows
the distinct number of types that had at least one relevant
section according to the annotation. The fourth column (Rec)
indicates the number of types for which at least one section
was annotated as relevant and at least one relevant section
was recommended. The next column (FP) shows the distinct
number of API types which did not have any relevant sections
but nevertheless had (falsely) recommended sections. Overall
73% of API types that had at least one relevant section would
have at least one valid link to a tutorial section. The last two
columns show information about the average number of linked
sections per type including or excluding API types with no
linked section.

TABLE IX
COVERAGE PROVIDED BY CLASSIFICATION PER API ELEMENT

Tutorial # Types Min One Rec FP Avg(+0s) Avg

Joda 36 21 17 3 0.78 1.47
Math 74 45 30 17 0.78 1.23
Col. Official 58 31 22 7 0.79 1.70
Col. Jenkov 28 21 16 5 1.36 1.73
Smack 40 29 22 5 1.55 1.94

B. Results for Different Sets of Features

Features for the classifier can be conceptually divided into
groups as shown in Table IV. We explored the effect of each
group of features on the classification results. For this purpose
we considered dependency and relation-based features to be
in separate groups.

Table X presents the results of leave-one-out cross-
validation for each tutorial by different sets of features. The

first six rows are the classification results for feature groups
considered individually. Afterwards, features are added group
by group, in decreasing order of detail.

According to these results, one of the weakest groups of
features is the group of tutorial-level features. This can be
simply explained by the small number of features in the
group. However, real-valued features combined with tutorial
level features already shows improvement for the majority of
tutorials.

Col. Official is the most difficult to classify also for separate
groups of features. The same relation can be observed for the
Smack tutorial, which has the overall highest performance,
and accordingly, separate groups of features have the highest
performance among other tutorials. In other words, there is no
dominant or weak feature group. If a tutorial is well-served
by our choice of features then all features work well, and vice
versa. It is also worth mentioning that adding features based
on their level of detail usually improves the performance. The
only level of features which causes problems, for example for
JodaTime, is sentence-level features.

Another interesting observation is the effect of the depen-
dency and relation features. Including dependency features,
in the case of JodaTime and Math Library, improves recall
and pulls down the precision. In the case of the other three
tutorials, both scores go down. In contrast, the addition of the
relation feature always improves or does not change precision
and recall. Surprisingly, the combination of these two always
improves or does not change the performance. For example,
for Col. Official the addition of the dependency feature brings
down both precision and recall. However, the dependency fea-
ture combined with the relation feature improves performance,
compared to using the feature sets without dependency.

C. Generalizing Across Tutorials

We investigated to what degree a classifier would generalize
to an unseen tutorial. For this purpose we trained a classifier
on four tutorials and tested on the fifth one. Table XI presents
the results, where each line corresponds to the case in which
a tutorial was used as testing and the other tutorials were
used for training. As usual, we calculated precision, recall and
F1 score using the accumulated false positives, true positives,
false negatives, and true negatives for all API tutorial section-
type pairs from a given tutorial.

TABLE XI
CROSS TUTORIAL RESULTS

Test Tutorial Precision Recall F1

JodaTime 0.94 0.57 0.71
Math Library 0.87 0.48 0.62
Col. Official 0.74 0.76 0.75
Col. Jenkov 0.80 0.68 0.73
Smack 0.87 0.64 0.74

Here recall is overall lower compared with the LOOCV
results. However, for the JodaTime, Math library, and Col. Of-
ficial tutorials the precision actually improves and for Smack
it stays constant. One of the main reasons for the observed



TABLE X
CLASSIFICATION RESULTS FOR DIFFERENT SET OF FEATURES. RELATION-BASED (R), DEPENDENCY-BASED (D), SENTENCE-LEVEL (ST),

SECTION-LEVEL (SC), TUTORIAL-LEVEL (T), AND REAL-VALUED (RV).

Tutorial JodaTime Math Library Col. Official Col. Jenkov Smack
P R F1 P R F1 P R F1 P R F1 P R F1

R 0.70 0.70 0.70 0.65 0.78 0.71 0.72 0.32 0.44 0.65 0.48 0.55 0.70 0.96 0.81
D 0.67 0.67 0.67 0.67 0.69 0.68 0.40 0.07 0.12 0.68 0.40 0.51 0.70 0.96 0.81
ST 0.76 0.63 0.69 0.76 0.54 0.63 0.55 0.20 0.29 0.61 0.83 0.71 0.69 0.91 0.78
SC 0.66 0.63 0.64 0.65 0.81 0.72 0.62 0.43 0.51 0.56 0.45 0.50 0.91 0.77 0.83
T 0.72 0.43 0.54 0.61 0.89 0.72 0.33 0.04 0.06 0.62 0.31 0.41 0.70 0.96 0.81
RV 0.77 0.77 0.77 0.58 0.78 0.67 0.50 0.21 0.30 0.79 0.52 0.63 0.68 0.91 0.78

RV,T 0.84 0.87 0.85 0.56 0.65 0.60 0.62 0.23 0.34 0.84 0.62 0.71 0.73 0.73 0.73
RV,T,SC 0.82 0.77 0.79 0.62 0.74 0.68 0.66 0.48 0.56 0.83 0.81 0.82 0.85 0.79 0.81
RV,T,SC,ST 0.81 0.70 0.75 0.70 0.69 0.69 0.70 0.55 0.62 0.85 0.79 0.81 0.87 0.80 0.83
RV,T,SC,ST,D 0.81 0.70 0.75 0.68 0.74 0.71 0.68 0.54 0.60 0.82 0.79 0.80 0.86 0.79 0.82
RV,T,SC,ST,R 0.81 0.73 0.77 0.73 0.76 0.75 0.68 0.61 0.64 0.84 0.76 0.80 0.85 0.79 0.81
All 0.81 0.73 0.77 0.69 0.74 0.71 0.71 0.62 0.67 0.84 0.76 0.80 0.87 0.80 0.83

changes was the difference in positive and negative examples
ratios between training and testing sets. For example, for
JodaTime the number of positive examples is almost the same
as the number of negative examples, but in the training set for
JodaTime the percentage of positive examples is around 35%.
As a result the negative class has a slightly higher weight.
Therefore, fewer sections are classified as relevant, which
lowers the recall, but improves the precision. One possible
reason for the observed changes can also be the different
training set sizes for each of the tutorial, but this hypothesis
needs further study.

D. Comparison with Information Retrieval

We use a MaxEnt classifier for determining relevant sections
of an API tutorial for a particular API type. A MaxEnt
classifier requires training data and our assumption was that
the cost of training the classifier could be justified by better
precision over a classical unsupervised approach. As a basic
test of this assumption, we conducted an experiment to see
whether it was possible to achieve similar results by using
information retrieval (IR). Intuitively, the more common words
exists between a section and an API type description (e.g.
JavaDoc), the more similar the section is to the API type
description, and thus, the more focused is the section on the
API type.

For this experiment we considered API tutorial sections and
complete Javadoc blocks as documents in a corpus. For each
API type-section pair, we calculated the similarity between the
section text (lemmas excluding code snippets) and the API
type documentation using the cosine similarity metric with tf-
idf term weighting [10, p.111].

We consider an API type relevant if the similarity value
is higher than a certain threshold. The algorithm is based
on threshold and is not top-n-based because the number of
relevant API types per section has a large variance and can
even be 0. For each tutorial, we calculate a threshold according
to the following procedure: For each API type ti, the top ni

most similar sections are retrieved, where ni is the number
of relevant sections for ti according to the annotation results.
The lowest similarity value of the retrieved sections for all API

TABLE XII
MAXENT VS. COSSIM

Tutorial MaxEnt CosSim
P R F1 P R F1

JodaTime 0.94 0.57 0.71 0.73 0.73 0.73
Math 0.87 0.48 0.62 0.67 0.65 0.66
Col. Official 0.74 0.76 0.75 0.30 0.94 0.45
Col. Jenkov 0.80 0.68 0.73 0.33 0.88 0.48
Smack 0.87 0.64 0.74 0.74 0.52 0.61

types is averaged for a tutorial and considered the threshold.
Based on the calculated threshold, sections were selected for
each API type. Here again we calculated precision, recall
and F1 score as described in Section VI-A. The results are
presented in Table XII and contrasted with the results obtained
with text classification across tutorials (see Section VI-C).

As can be seen, the cosine similarity technique is not
as precise, especially in the cases where there are many
irrelevant examples, such as in the Col. Official and Col.
Jenkov tutorials. However, generally the performance of cosine
similarity approaches that of MaxEnt if we consider recall
an important factor. Its major limitation is however that it
relies on the presence of high-quality Javadocs to serve as an
anchor to discover relevant sections. In contrast, its advantage
is that it does not require training. In the future, it may be
worth investigating the potential of this approach as part of a
compound solution.

VII. RELATED WORK

This work is multi-disciplinary as it relies on results in
natural language processing (NLP), information retrieval (IR),
text classification, and software archive mining. In the space
available, we discuss the main influences on the work and
closely related projects on traceability and text classification
in software engineering.

Text Processing

By trying to determine if a section explains an API type, we
are in fact asking the question of whether a given API type is
an important topic for the section. In this way the problem we



address is a bit similar to the task of text summarization. In
particular, extractive text summarization techniques attempt to
form a summary by extracting important sentences or phrases
from the text [11]. Positional features (e.g. position of a
sentence or paragraph) have long been an important feature for
selecting part of the text to summarize [10], [11]. Similar to
positional features in text summarization, we used the location
of the API types as features for our classifier. Although text
summarization has not yet been employed for traceability
purposes, it has been used to support a variety of software
engineering tasks, such as summarizing bug reports [12].

In the last decade numerous applications of text processing
have been proposed in software engineering. We illustrate the
richness of the field by discussing projects representative of
different sub-problem spaces.

For example, NLP techniques have been used to support
the discovery of new requirements by mining the text of on-
line forums [13], or to support quality control by identifying
missing objects and actions in requirements documents [14].
NLP also supports techniques to discover undocumented
software specifications in natural language artifacts such as
documentation [15]–[18] or comments in source files [19].
Text-processing techniques such as topic modeling are also
useful for helping developers sift through software develop-
ment information, for example by semi-automatically building
summaries of forum posts in the form of “Frequently Asked
Question” (FAQ) documents [20]. Finally, text classification
has also been used in a software engineering context, for
example to automatically tag forum posts [21]. This last work
used a Naive Bayes classifier applied to word features for
multinomial classification. Our work advances the state of the
art in classification of software documents by investigating
more semantic features and the relations between code and
normal language words in sentences.

The potential of text processing techniques to support soft-
ware engineering activities is now well recognized, and the
growing body of work in this area means that many lessons
learned in one project can carry over other projects. In our
work we have employed and extended many useful domain
adaptation ideas from previous work, for the example to assist
with part-of-speech tagging [22].

Software Traceability and Feature Location

Our new approach for discovering relevant section integrates
an existing body of work on software traceability. The problem
of software traceability is to link conceptually related software
elements (e.g., requirements with source code) when such links
are not explicitly provided.

Many researchers have experimented with the use of infor-
mation retrieval techniques to recover the links between source
code elements and free-text documents. Early attempts include
the work of Antoniol et al., who applied two information
retrieval techniques, the probabilistic model and the vector
space model, to find the page in a reference manual that were
related to a class in a target system [23], and the work of
Marcus and Maletic, who experimented with latent semantic

indexing (LSI) for similar purposes [24]. That approach was
later refined by Poshyvanyk and Marcus, who added For-
mal Concept Analysis to cluster the results obtained through
LSI [25]. More generally, finding tutorial sections shares some
techniques with work on the problem of locating features in
source code, a challenge that has been investigated by many
researchers [26].

Another common problem in software traceability is linking
source code elements with mailing list message or bug reports
that refer to them (e.g., [27], [28]). Bacchelli et al. compared
both the vector space- and LSI-based information retrieval
techniques with a simple pattern-matching approach [29].
They concluded that, for the purpose of linking emails with
type-level source code entities, the lightweight approach was
consistently superior. The problem with LSI and its successors
is that indexing is based on latent semantic features that are
automatically learned without any control on their meaning
and potential for expressing relevance. Recently, Tathagata
et al. showed that enhancing source code document models
with related documentation can improve the precision of
requirements-to-source traceability [30].

RecoDoc [6], ACE [4], and Baker [31] are three recent
traceability techniques designed to precisely resolve code-like
terms found in various types of natural language documents
into the specific API elements they refer to. In our approach
we used RecoDoc as a means to obtain the list of API elements
mentioned in a section.

The various API linking techniques mentioned above are
discrete in the sense that they link a section to an element
if any mention of the element is present in the document. In
contrast, with this work we are tackling the more approximate
question of determining, when an element is present, whether
it is really the focus of the document. This problem had been
attempted by Rigby and Robillard for forum posts with only
limited success [4]. This paper shows that much better results
can be obtained for tutorials with a richer set of features and
the use of text classification technology.

VIII. CONCLUSION

We proposed a technique for discovering API tutorial sec-
tions that help explain API types. Experiments conducted on
five tutorials for Java APIs showed that it is possible to get
meaningful results with just a small amount of training data:
when a classifier was trained on four out of five experimental
tutorials and tested on the fifth, precision varied between 0.74
and 0.94, and recall between 0.48 and 0.76. The results show
good generalization and encourage further investigation of text
classification for traceability between software elements and
various types of software documents.
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