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Abstract—Software reuse through Application Programming
Interfaces (APIs) is an integral part of software development.
The functionality offered by an API is not always accessed
uniformly throughout the lifetime of a client program. We
propose Temporal API Usage Pattern Mining to detect API
usage patterns in terms of their time of introduction into
client programs. We detect concepts as distinct groups of API
functionality from the change history of a client program. We
locate those concepts in the client change history and detect
temporal usage patterns, where a pattern contains a set of
concepts that were added into the client program in a specific
temporal order. We investigated the properties of temporal API
usage patterns through a multiple-case study of three APIs and
their use in up to 19 client software projects. Our technique was
able to detect a number of valuable patterns in two out of three
of the APIs investigated. Further investigation showed some
patterns to be relatively consistent between clients, produced by
multiple developers, and not trivially derivable from program
structure or API documentation.

Keywords-API Usage; API Usability; Usage Pattern; Soft-
ware Reuse; Mining Software Repositories

I. INTRODUCTION

Software systems often reuse functionality provided by
libraries and frameworks. The client program reuses func-
tionality through Application Programming Interface (API).
Despite advances in API documentation and assisting tech-
nologies [1, 8, 22], large APIs are still hard to learn [18]. A
major challenge for API users is to discover the subset of
the API that can help complete a task. For large APIs, there
typically exists an overwhelming number of ways to com-
bine different API elements. Hence, it can be particularly
helpful to identify common usage patterns for the API.

Although many approaches have been proposed to detect
common ways to use an API (see Section VII), existing
technology does not provide guidance about when patterns
are relevant in the life-cycle of clients, or whether there exist
temporal relations between different API functionalities.

We propose Temporal API Usage Pattern Mining. Our
notion of temporal API usage is founded on the observation
that references to cohesive subsets of an API are often
introduced in client programs in a specific order. We base
our pattern detection strategy on the analysis of the introduc-
tion of references to API elements in the history of client
programs. Our approach extracts client changes related to
an API and uses a clustering technique to produce concepts,

i.e., groups of API elements (typically methods) that were
added together to implement a functionality. We then analyze
the concepts in terms of the time they were introduced in a
client, thus recovering temporal usage patterns.

Knowledge of temporal API usage patterns can inform
developers of the next possible steps in using an API. The
patterns can also be used to improve developer learning
resources, e.g., by ensuring that tutorials cover each concept
in order. Temporal patterns would thus add a new dimension
to existing API recommendation systems, such as API
Explorer [9] or Intelligent Code Completion Systems [4].

We investigated the potential value of this novel approach
through a collective case study on the usage of three APIs
of diverse nature (HttpClient, java.security, and java.util) in
a total of 19 open source client programs. For HttpClient
and java.security, we found that even if different client
programs did not provide the same features, in many cases
they followed a common set of usage patterns. For example,
in the case of the HttpClient API, we detected that client
programs that implemented cookie support also checked for
the configuration of the host machine where cookie support
was enabled (to determine whether the host is responding
accordingly). Implementing these two concepts required the
instantiation of three different HttpClient types, calls to five
different methods and access to one field. None of these
methods are structurally dependent on each other (i.e., the
invocation of one method does not strictly require that the
other methods be invoked before). The patterns we detect
include not only these temporal relations between concepts,
but also the list of API elements involved in each concept.
We compared our detected concepts against the itemsets
generated by frequent itemset mining. We found that the
concepts detected by our technique are more informative
(e.g., the groups of entities in a concept are more cohesive)
and contain significantly fewer false positives than the
baseline technique. We observed that the patterns generated
are generally consistent across clients and can uncover
interesting temporal dependencies among concepts. Our case
study also shows how the detected patterns could have
helped improve the documentation of the APIs.

A brief overview of a preliminary version of this approach
has been showcased in a 4-page short paper [19]. This
current paper provides the first complete report on our new,



fully-implemented technique which includes conceptually-
significant improvements to the approach, and a detailed
analysis of a multiple-case study that provides evidence of
the value of the approach.

II. TEMPORAL API USAGE

The idea of temporal API usage patterns is best described
through an example. While initializing an HTTP connection
using the HttpClient API,1 a developer might first add a
call to the HttpClient constructor and to the methods
of the class UserNamePasswordCredentials. This API
usage pattern establishes a basic interaction point with the
HTTP server. Once this code is working, the developer
may want to assess the connection status with the server
by calling the HttpMethodBase.getStatusText(...)
and comparing the responses with the API fields such as
HttpStatus.SC_OK. In later development, the developer
may call the methods of GetMethod to retrieve contents
from the server. In both cases, a connection to the HTTP
server should be established first.

For an API and a client, we detect a set of temporal
patterns, where each pattern contains an ordered sequence
of concepts that were implemented together in specific
temporal order. A concept embodies an API functionality
(e.g., establishing an HTTP connection) using some API
elements. A temporal pattern P can be specified as follows:

P = {m1,m2} → {m3,m4}

This pattern indicates that methods m1 and m2 formed a
concept and this concept was introduced before the concept
containing the methods m3 and m4. The sets of concepts
inside a temporal pattern is ordered. A client program may
exhibit more than one temporal pattern.

III. ANALYSIS FRAMEWORK

In this section, we describe our analysis framework to
generate temporal API usage patterns. The input to our
approach is the source history of a client program that uses
the API of interest and the output is a set of temporal
usage patterns as described above. Our approach involves
four steps, each supported by our infrastructure.

1) Processing change history. We convert the unstruc-
tured textual differences between files versions in the
client system into a database of transactions where all
additions of references to methods and fields of the API
of interest are recorded.

2) Detecting concepts. We use a clustering technique to
automatically detect groups of API elements that are
often added together (these groups are called concepts).

3) Linking concepts with transactions. We automatically
link concepts to the transactions where they were im-
plemented in the client program. This step is necessary

1http://hc.apache.org/
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Figure 1: The architecture of the temporal pattern mining system

because step 2 only provides concepts expressed as sets
of API elements, without temporal information.

4) Generating patterns. We generate temporal API usage
patterns; each pattern describes a set of concepts that
were implemented together in a specific temporal order.

Figure 1 presents an overview of our infrastructure. We
discuss the details of each step in the following sections.
A. Processing Change History

In Figure 1, the left section (Change Extractor) shows
the tool support for processing change history. We use
SemDiff [6] to download change differences from client
program repositories and aggregate them into transactions
using standard practices for mining software repositories. In
Type Analyzer, we resolve lexical tokens that correspond
to changed lines of code into fully-resolved symbols using
Partial Program Analysis (PPA) [5]. We catalog all the
names of the methods and fields of the API of interest (in
API Parser) and then match those against method and field
references added in each transaction. A delta is recorded for
each reference to an API method or field added in the change
history of the client.

The output of this step is a set of transactions R =
{r1, ..., rn}. Each transaction ri = (tsi, {δi,1, ..., δi,m})
consists of a time stamp (ts) and a set of deltas, where a
delta is the name of an API element. In our analysis, we only
consider the addition of API elements to a client program,
because we are interested to know how a new API func-
tionality (also called concept) is introduced/implemented in
a client program. For example, let us assume that during
the change history of a client, two files are modified as part
of a transaction. In the first file, three calls to API method
ma are added, one call to API method mb is added, and
one reference to API field fc is added. This transaction
would then consist of the timestamp along with five deltas:
{ma,ma,ma,mb, fc}.

B. Detecting Concepts

In step 2, we identify the API elements whose references
were added mostly together. We use Principal Component
Analysis (PCA) [11] implemented by the MATLAB library
princomp to detect the co-added elements. The input to
princomp is a MxN daily observation matrix O, with M



Table I: Methods used to implement ‘multi-protocol connection’

API Element (Methods and Fields) Coefficient

HttpClient() 0.24394
protocol.Protocol(String, ProtocolSocketFactory, int) 0.24108
protocol.Protocol.registerProtocol(protocol.Protocol) 0.24108
protocol.SSLProcotolSocketFactory() 0.88275

rows corresponding to M days. Each day maps to N API
elements in N columns, with each column entry containing
the total number of deltas of that API element on that
day. For example, suppose an API has two methods m1

and m2. During all transactions of day D1, m1 was added
3 times and m2 2 times. During all transactions of day
D2, m1 was added 0 times and m2 4 times. We then
define: O = {D1(3, 2), D2(0, 4)}. We group transactions
by day to have a larger set of API elements to facilitate
the detection of concepts that were implemented in more
than one transaction. To construct the observation matrix,
we pick the first day when at least one element of the API
of interest was added in the client program and create a
row for that day, such that each column has the number
additions recorded for that day. Once the row is constructed,
we move to the next available day when at least one element
of the API was added in the client program, and repeat the
row construction process. The output from PCA is a set of
components, with each component representing a set of API
elements that were mostly added together.

Table I shows a concept found in client apachejmeter for
the HttpClient API (see Section IV). In this concept, the
HttpClient and Protocol classes are initialized and a
connection is established. The Coefficient column indicates
that when a call to the Protocol constructor was added,
the registerProtocol(...) method call was also added.
The call to the protocol connection socket factory construc-
tor, SSLProcotolSocketFactory(), has the highest coef-
ficient value, i.e., out of all the possible combinations of the
SSLProcotolSocketFactory() constructor in different
concepts, it appeared 88.2% times with at least one of the
4 methods in Table I. After manual inspection in step 4, we
labelled it as multi-protocol connection.

C. Linking Concepts with Transactions

In the third step, we link each concept with potentially
more than one transaction where the concept was imple-
mented in the client program. To locate the transactions
where a concept was implemented, we determine first the
days where the concept was detected, and second the specific
transactions(s) in the day(s) where the concept was imple-
mented. Algorithm 1 describes the process. The inputs to the
algorithm are the concepts and the transactions. The output is
a set of concepts, each linked with a set of transactions where
the concept was implemented in the client program. Linking
transactions to the detected concepts is not a straightfor-
ward process, because each component in PCA takes into
account the variation in the different number of addition

input : Concepts = {c1, c2, . . . , cm},
Transaction = {r1, r2, . . . , rn}

output: Concepts c with implementing transactions r,
L = {c1(ri . . .), . . . , cm(rk . . .)}.

Total N days in Transactions;1

foreach Concepts cj ∈ Concepts do2

S = ∅;3

foreach day d in N days do4

Compute PCA-Score vj of day d using5

Equation 1;
add the tuple (vj , d) in S;6

if vj > 0 then7

foreach Transaction t ∈ T of day d do8

Compute Similarity st between t and cj9

using Equation 2;
if st > η then add tuple (cj , t) in L;10

Algorithm 1: Linking concepts with transactions

of calls to API elements. A naive linking based on single
occurrences would introduce too much noise (i.e., concepts
would become linked to too many transactions, many of
which not representing an introduction of the concept). We
handle the variations detected by PCA by calculating the
PCA-Score of each day, and then locating the concepts
in transactions by calculating the similarity between the
concepts and transactions (both discussed below).

We iterate over the list of concepts, compute the PCA-
Score (using Equation 1) of a day based on each concept
and determine whether the score is greater than 0, which
indicates that the concept is most likely implemented on that
day according to PCA. In Equation 1, v is the PCA-score
of a day, bi is the coefficient associated with API element
ei, Δi is the number of deltas of ei on that day.

v = b1(Δ1) + b2(Δ2) + . . .+ bn(Δn) (1)

We then iterate over each transaction of that day and
compute the similarity between the concept and the element
lists added during that transaction. We compute similarity
using two metrics: availability and coverage. Availability
determines how much of a concept was actually available
in a transaction, and coverage determines how much of a
transaction was actually covered by a concept. If a concept
was the only one for a transaction, then the concept will
have a value of 1. If two concepts were implemented in
a transaction, then availability will be high for both, but
coverage will be lower in the first scenario.

availability = # of entities in the concept present in the transaction
Total # of entities in the concept

coverage = # of entities in the concept present in the transaction
# of entities in the transaction

Then, we compute the similarity of a concept against the
transaction as follows:

similarity = α ∗ coverage+ β ∗ availability (2)



We gave equal weight to both metrics (i.e., α = β = 0.5) in
the linear combination in the absence of any obvious reason
to do things differently at this stage of our investigation. If
the similarity metric value is above a threshold (η = 0.25),
we assign the transaction to the concept.

We showed the concept multi-protocol connection in Ta-
ble I. When we applied Algorithm 1 in the client apachejme-
ter, the algorithm pointed at two transactions committed
on day ‘2007-02-03’ (at 02:57:00 and 02:58:00). The first
transaction added one call to HttpClient() and 3 calls to
SSLProcotolSocketFactory(). The second transaction
added one call to the Protocol constructor and one to the
registerProtocol(...) method. Therefore, the score
of day ‘2007-02-03’ for this concept was (0.24394 ∗ 1 +
0.24108 ∗ 1 + 0.24108 ∗ 1 + 0.88275 ∗ 3) = 3.37435. The
availability values for both the transactions are 0.5 (each
transaction contained two of the 4 entities found in the
concept). The coverage values for both the transactions are
1 (each transaction contained only the entities found in the
concept and no other entities from other concepts). Thus the
similarity of both the transactions were (0.5 ∗ 0.5 + 0.5 ∗ 1)
= 0.75. References to these API elements were added in
two other days as well (i.e., they had PCA-score above 0).
However, no transactions other than the two on day ‘2007-
02-03’ were returned above the threshold for this concept,
because not all the API elements of this concept were added
together on any other day. Therefore, we automatically
assigned the concept to the two transactions of the day.

Our algorithm links concepts with transactions to detect
temporal relations between concepts even when multiple
concepts are introduced on a given day. To achieve this, we
must necessarily link concepts with individual transactions.
The trade-off is that we then rely on the assumption that
concepts will mostly be introduced within those transactions.

D. Generating Temporal Patterns

After we locate concepts in transactions, we can find the
sets of concepts that are implemented mostly together, i.e., in
subsequent transactions. Doing so will provide us temporal
usage patterns of an API, where a pattern describes a set of
concepts that were implemented in a given temporal order.
A simple example of such a pattern would be “concept
A is implemented immediately before concept B.” We use
Algorithm 2 to generate such patterns. The input to the
algorithm is the output from Algorithm 1, i.e., the list of
concepts, each linked with a set of transactions in the client
program. The outputs of the algorithm are the temporal
patterns. The algorithm works as follows.

A pattern consists of concepts that have a small temporal
distance between them. Based on the prior experimentation
with different realizations of our approach [19], tolerating
long temporal distances combines more concepts into pat-
terns, but results in a combinatorial explosion of patterns
demonstrating very little consistency between clients. By

input : Concepts with transactions
L = {c1(ri . . .), c2(rj . . .), . . . , cm(rk . . .)}

output: Temporal usage patterns P = {p1, p2, . . . , }.
B = ∅;1

foreach Concepts cj ∈ L do2

foreach Transaction t where cj was implemented3

do
Pattern pt = {cj};4

foreach Concepts ci ∈ L except cj do5

Find the neighbor concept ci with temporal6

distance of 1 or 2;
Include ci with transaction timestamp ts in7

pt;
add pt in B;8

foreach pattern p ∈ B do9

sort concepts in p in ascending temporal order;10

support = # of times p observed in P

# of patterns in P involving all the concepts of p
;11

if support > τ then Add pattern p in P ;12
Algorithm 2: Generating temporal API usage patterns

Conf get & post method
GetMethod(), PostMethod()
PostMethod.addParameter()

Establish http conn
HttpClient()
UsernamePasswordCredentials()

Multi−protocol conn
Protocol.registerProtocol()
Protocol.ProtocolSocketFactory()

Setup proxy conn
HttpClient.getHostConfiguration()
HostConfiguration.setProxy()

Temporal 
pattern 2

Temporal 
pattern 1

Legends
Pattern
Concept

Setup URI
URI.getHost()
URI(String, boolean, String)

Figure 2: Temporal patterns of HttpClient in client apachejmeter

constraining the introduction time between concepts to a
short period, we detect fewer concepts, but more meaningful
ones. The temporal distance between two concepts will be
1 if they were implemented in subsequent transactions. For
example, if concept A was implemented in a transaction
committed at ‘2010-01-01 09:45:00’ and concept B in the
next transaction at ‘2010-01-01 11:20:00’, we will say the
two concepts have a temporal distance of 1 between them. A
concept can be implemented in more than one transaction.
For each transaction where a concept is implemented, we
find the set of concepts that are within a temporal distance
of 1 or 2. We consider each such set as a pattern. Thus, for
each concept, we find a set of patterns, from which we pick
the final temporal patterns whose support (discussed below)
is above a predefined threshold (τ ). 2 We calculate support as
follows. Suppose we found 10 patterns involving four con-
cepts A, B, C, D. The pattern with order A → B → C → D

was found 4 times among those 10 patterns. Then this pattern
has a support of 4/10 = 40%.

Figure 2 shows two representative temporal usage patterns
observed in client apachejmeter while studying the API Http-
Client. Inside each concept, we present two representative
methods added in the client to implement the concept. For
example, the first concept establishes an HTTP connection
by calling the HttpClient constructor and providing it the

2We used the value 0.3 for τ in our experiment. This value has been
chosen based on our empirical observation of the data.



necessary credentials. The second concept is the configura-
tion of GET and POST methods to read from a web page
(using GET) and to submit values to a web page. The second
pattern starts with the concept multi-protocol connection.
The first pattern in Figure 2 showed a support of 100% (i.e.,
the two concepts in the pattern were always implemented
together in the same order in the client program.). The
second pattern showed a support of 75%. The three concepts
in the second pattern appeared together 4 times, where 3
times they were implemented in the presented order.

E. User Involvement

While the detection and linking of concepts and the
generation of patterns are fully automatic, the understanding
of a pattern requires human judgement. Using Algorithm 2,
we get temporal patterns, such as {C1 → C10}, which
puts two concepts C1 and C10 in temporal order. We must
apply manual judgment to determine how, together, the API
elements of a concept can be added to achieve a specific
functionality. In this process, we find false positives in con-
cepts (i.e., some concepts are not informative as explained in
Section V-A). We consider all patterns valid if they have at
least two distinct concepts. We experienced patterns, such as
{C1 → false → C1}, where C1 appeared two times, before
and after a spurious concept. Because this pattern contains
only one concept, we consider it uninformative and discard
this pattern. Labeling each concept is a short task when the
concepts are cohesive. On average, it took the first author
1-2 minutes to label each concept.

IV. CASE STUDY

This paper reports on our initial attempts at detecting
API usage patterns in terms of their introduction in client
programs. As such, our initial investigation focused on the
feasibility of the idea and potential value of the approach.
For this reason, we investigated temporal API usage pattern
mining through a collective case study [20]. In a collective
case study, an issue is selected and analyzed using multiple
cases. The issue for this study is “Whether the temporal
usage analysis of an API in different clients will provide
useful insights to learn and use the API”. We selected three
cases (i.e., APIs). We adopted an embedded design approach
by mining temporal patterns from multiple units of analysis
(i.e., clients). We studied the following research questions:

• RQ1: What is the precision of the concept detection?
• RQ2: Are patterns consistent between clients?
• RQ3: Can the patterns show dependencies that are not

apparent from the structure?
• RQ4: Do patterns represent the decisions of more than

one developer?
• RQ5: How can temporal patterns guide improvements

in developer documentation?
We selected three APIs that satisfied the purposeful max-

imal sampling process (i.e., they differ enough to illustrate

Table II: Client programs used in the case study

Name Description KLOC Y API deltas

Http Sec Util

ant Build tool 128.3 11 0 60 17638
drools Rule generator 597.2 5 0 0 2343
groovy Agile language 110.9 7.5 0 0 1436
spring App fmk 910 7.5 0 0 20569
jdt Java IDE 764 8.5 0 0 50550
cdt C/C++ IDE 963.5 8.5 0 0 53989
eclipsecs Check style 44.6 7.5 0 0 1269
jadclipse Decompiler 5.9 9 0 0 248
vuze Torrent client 465 5.5 0 0 5671
subclipse SVN client 82.6 6.5 0 0 2373
mylyn Task manage 128.4 5.5 0 0 27868
htmlunit Functional test 105.2 10 635 49 9205
rssowl RSS newsread 100.8 5 34 50 11656
cactus Unit test 22 11 101 40 2121
jmeter Load test 2991.8 8 270 23 5309
xsmiles XML Browser 191 10 340 110 5325
mule Middleware 1032 6.5 966 220 26617
heritrix Web crawler 201.7 8.5 484 100 17626
openlaszlo Web app fmk 91.2 5 30 0 4058

Util =java.util, Http = HttpClient, Sec = java.security
KLOC = Thousand Lines Of non-blank Java Codes, Y = Years active

different perspectives on the issue), that were too large to
learn within a short time, and that were widely used in
different clients. The three APIs, java.util (3030 methods
and fields), java.security (1058 methods and fields), and
HttpClient (1706 methods and fields) meet these criteria:
HttpClient is used to process HTTP,3 java.security provides
functionality to implement secured access to digital re-
sources, and java.util4 provides collection and utility classes
for a wide range of activities.

We selected 19 open source client systems (see Table II)
that used at least one of the three APIs, were active for
at least 5 years, and that comprised at least 5K non-blank
lines of Java code. The clients were developed for a variety
of domains, which allowed us to study the properties of
the patterns for diverse development needs. We applied our
technique on all the clients, e.g., we generated patterns
in htmlunit three times, once for each API. On average
(unweighted), for HttpClient and per client, our technique
produced 30 concepts after step 2 (Section III-B) and 10
patterns after step 4 (Section III-D). After discarding the
uninformative patterns (as described in Section III-E), the
numbers were 7 patterns per client, each pattern with 2-3
concepts. For java.security, the numbers were 15 concepts,
4 patterns (5 before discarding the uninformative patterns),
each pattern with 2-3 concepts. For java.util, the numbers
are 58 concepts, 21 patterns (30 before discarding the unin-
formative patterns), each pattern with more than 5 concepts.
However, the java.util concepts and patterns were mostly
indistinguishable from each other (discussed in Section V).

3We analyzed both the new and old versions, org.apache.-
commons.httpclient and org.apache.http.client

4Includes all the packages with the prefix java.util



Threats to validity. Our evaluation method, the case study,
favors in-depth and multifaceted analysis over statistical
generalizability (which requires abstracting away the details
of the phenomenon). Hence, our assessment will explain how
and why the approach provides value (or not) in three cases,
but will not carry the automatic implication that the same
results can be expected in general. Transposing the results to
other contexts requires analytic generalization [20], namely
reasoning about the similarities and contrasts between the
cases and other cases of interest. Important factors to con-
sider include whether the API is used in combinations with
other APIs, unusual events in the development cycle of the
client programs, and the structure of the API.

V. RESULTS

In this section, we present evidence from our three cases
to answer our five research questions.

A. What Is the Precision of the Concept Detection? (RQ1)

Mining usage patterns requires tolerating irregularity in
the data. Different data mining techniques all offer different
trade-offs in how they interpret data to tolerate such irregu-
larity. To study whether PCA offers an appropriate trade-off,
we compared our detected concepts against a more general
clustering technique, Frequent Itemset Mining (FIM). FIM
can be used to group API elements that are introduced
mostly together (e.g., in a day). While PCA clusters elements
by analyzing the variation in the data (e.g., how two API
elements e1 and e2 are correlated based on their number
of additions into a client in different days), FIM clusters
elements based on how frequently the items were introduced
together (e.g., whether e1 was introduced when e2 was also
introduced into the client irrespective of their number of
additions). Because our goal is to identify useful patterns,
and not to identify all possible valid API usage patterns (for
which, there exists no oracle), we focus on precision, and
do not take recall into account in our investigation.
Experimental Setup. We ran PCA for each of the client
programs as described in Section III-B. Therefore, we ran
PCA 35 times (8 client programs for HttpClient, 8 client pro-
grams for java.security and 19 client programs for java.util).
We ran FIM 35 times on the same data set.5 For FIM, we
pre-processed each of the data sets as follows. For each
API, as used in each client program, we created a matrix
of dimension M × N (following the same principle of
the algorithm proposed by Agrawal and R. Srikant [2]).
Each row corresponds to a day, and each column to an
API element. For each element and for each day when the
element was added we put a 1 in the column (i.e., element)
for that row (i.e., day), otherwise we put a 0. This is different
from PCA, in that in PCA we put the total number of times
an API element was added in a day. We provide the matrix

5We used the FP-Growth library from rapidminer (http://rapid-i.com/)

as input to FIM, and the output is a set of itemsets. Each
of the itemsets contains a set of API elements (methods and
fields) that were introduced mostly together. Following our
definition in Section III, we call these itemsets concepts.
Comparison. For both PCA and FIM, we first removed all
concepts of cardinality one from the results, because we
do not consider those as concepts (a single API element
is unlikely to represent an entire API functionality). Then,
for each client, we assessed how many generated concepts
represented unique and cohesive concepts and how many
were spurious clusters of API elements (false positives).
For clients where more than 20 non-singleton concepts were
generated, we limited our analysis to the top 20 concepts.
If a detected concept is not a false positive, we consider the
concept as informative. We compute precision as follows.

precision = |Concepts Detected∩Concepts Informative|
|Concepts Detected|

PCA automatically ranks the concepts, where concept 1
accounts for the most variability, i.e., the specific combi-
nation of API elements in concept 1 was the most distinct
among all concepts, based on their addition into the client
program. FIM ranks concepts based on their support, i.e.,
out of the days, how many introduced a given concept.

We present the precision values for both PCA and FIM
in Table III. The manual selection of concepts in our
calculation of precision introduces a threat of investigator
bias. In practice, we found that spurious concepts are easy
to identify. For independent review, we also provide the
complete output of both approaches, as well as the result of
the manual selection, in an on-line appendix.6 We computed
precision values for each client program for each API, and
then took the (unweighted) average of all precision values.
For both PCA and FIM, the average precision was the
highest for java.security and the lowest (by far) for java.util.
In java.util, the precision value was excessively low because
almost all the concepts were bloated with collection methods
and the usage of other methods was hardly visible. The re-
sults clearly show that PCA outperforms FIM for generating
concepts. The difference is considerable for HttpClient and
java.security, but not for java.util. For both HttpClient and
java.security, more than 80% of the top concepts produced
by PCA contained 3 to 5 API elements, whereas more than
80% of the FIM top concepts were of length 1 to 3. The
precision value of FIM was lower than PCA, because the
FIM concepts were mostly grouping API elements as they
appeared in the day, instead of accounting for their variance
in the data (e.g., if a set of API elements was added in only
one transaction, it will have lower support based on FIM,
whereas the set may be added to implement an important
concept). For example, we present the concept setup proxy
in Figure 3. We show three versions of the concept, where
(A) contains all the appropriate API elements, (B) and (C)

6http://www.cs.mcgill.ca/∼swevo/icse2012g.zip



Table III: Precision values for PCA and FIM
PCA FIM

API Avg StdDev Max Avg StdDev Max

HttpClient 0.77 0.08 0.85 0.49 0.09 0.60
Security 0.78 0.14 1 0.63 0.13 0.80
Util 0.26 0.08 0.40 0.20 0.08 0.35

HostConfiguration(HostConfiguration)
HostConfiguration.getProxyPort()
HostConfiguration.getProxyHost()
HostConfiguration.setProxy(String, int)

HostConfiguration.setProxy(String, int)
Cookie(String, String,...)

HttpMethodBase.getResponseHeader(String)
HostConfiguration.setProxy(String, int)
URI.normalize()

A

B

HttpClient.getHostConfiguration()

C

Figure 3: The API elements added to construct the concept setup
proxy. (A) is the ideal candidate. (B) and (C) are false positives.
(A) and (B) were detected by PCA and (C) was detected by FIM.

do not contain all the API elements. (A) and (B) were
detected by PCA and (C) was detected by FIM. We found
that the API elements of (A) were added together in a
transaction, whereas the API elements of (B) and (C) were
added together more than once in different transactions.
Even though PCA incorrectly detected the concept (B), it
also detected that API elements of (A) were added strictly
together in one transaction, and thus that may represent an
interesting data variation point. Because FIM relies on the
support of a group, it ignored the group (A).

B. Are Patterns Consistent Between Clients? (RQ2)

We consider a pattern as consistent if the same set of
concepts were implemented in the same temporal order in
more than one client program. We calculate consistency as
follows. For each such pattern of an API,

consistency = # of clients exhibiting the pattern
Total # of clients that used the API

For example, if the establishment of an HTTP connection
always precedes an HTTP status error checking in all client
programs, then it has a consistency of 100%. In Table IV,
we summarize our findings about the consistency of the
patterns (after discarding uninformative patterns as discussed
in Section III-E). For each API, we show how many patterns
were found consistent and how many were inconsistent. We
consider a pattern as consistent, if the pattern was visible
in at least two client programs. We provide statistics on the
consistency for the three APIs in the client programs by
presenting the unweighted average of the consistencies of all
the patterns, the standard deviation of the consistency values,
their minimum and maximum values. The consistency values
are generated by taking into account the consistency values
of only the consistent patterns.

The maximum consistency value of all the patterns in the
two APIs HttpClient and java.security is 1, i.e., at least one
consistent pattern in each API was found in all the client
programs where the API was used. The number of consistent
patterns in java.util was the lowest (only 1). For instance,
java.util concepts mostly contained the collection framework

Table IV: Pattern consistency across client programs
Patterns Consistency

API #Cons #Incons Avg StdDev Min Max

HttpClient 12 5 0.56 0.29 0.25 1
Security 5 4 0.68 0.26 0.38 1
Util 1 >100 0.16 0 0.16 0.16

methods (ArrayList and HashMap methods) in no specific
order. Thus, most of the patterns in java.util described
different combinations of concepts, where the concepts only
involved the collection framework methods. These methods
are so general-purpose that it is impossible to find the
rationale behind using those concepts (e.g., why was this
array created and this item was added into the array?). The
one consistent pattern was related to the implementation of
regular expression functionality based on the regex library
methods, which was mostly preceded and followed by the
implementation of array or hash data structures (in 3 out of
19 clients).

In Figure 4, we show the 8 most consistent patterns for
HttpClient, where each pattern was found at least in 50% of
its client programs. Each pattern is separated by a horizontal
line. The patterns are placed in the relative order based on
how they appeared in the client programs. For example,
pattern 1 appeared every time the API was first introduced
in a client program. Pattern 2 appeared after pattern 1 in 5
out of 7 client programs, etc. The rectangle to the left of
each pattern shows the consistency of a pattern in the client
programs. For example, pattern 1 was found in 8 out of
the 8 client programs that used the HttpClient API, pattern
2 was found in 7 out of 8 client programs. We show 2
representative API elements for each concept, although a
concept can have more than 2 elements. The client programs,
mule, heritrix, xsmiles and jmeter implemented most of
these patterns which, we note, are from three different
domains (enterprise middleware, web crawler, and testing
frameworks). We show similar patterns for java.security in
Figure 5, where again the client programs xsmiles, mule,
heritrix and jmeter implemented all these patterns.

C. Can the Patterns Show Dependencies That Are Not
Apparent From the Structure? (RQ3)

When manually inspecting an API, a developer can
sometimes figure out the order in which certain elements
must be added. For example, if the developer wants to call
method B.m1(A a), it is clear that an instance of type A
must be obtained before calling B. As partial evidence that
the patterns we detected could be useful, we investigated
whether they included relations between elements that were
not directly apparent from the structure. For example, in
Figure 4, 50% of the clients exhibit pattern 8, which involves
three concepts, setup cookie, setup session and setup proxy.
According to the pattern, the setup of a HTTP-based session
should follow an initial setup or check of cookie. This



Setup GET and POST
GetMethod(String)
PostMethod(String)

Establish HTTP con
HttpClient()

UsernamePasswordCredentials(...)

3
8/8

Execute HTTP methodProxy with session

HttpState.setProxyCredentials(...)
HttpState()

HttpClient.executeMethod(...)
PostMethod(...)

Multi−protocol con
protocol.Protocol(...)

Protocol.registerProtocol(...)

Header group parse
HttpParser.readLine(...)
HttpParser.parseHeaders(...)

Header group setup
HeaderGroup()

HeaderGroup.setHeaders(...)

6
4/8

4
4/8

Multi−protocol con
protocol.Protocol(...)

Protocol.registerProtocol(...)

Handle URI
URI(...)
URI.encode(...)

Setup proxy
getHostConfiguration(...)
HostConfiguration.setProxy(...)

5
4/8

Handle URI
URI(...)
URI.encode(...)

Validate URI
URI.getScheme()
URI.preValidate(...)

Setup cookie
Cookie(...)�

Cookie.setExpiryDate(...)

Check cookie config
Cookie.getPath()
Cookie.isPathAttributeSpecified(...)

Check cookie version
Cookie.getVersion()
Cookie.isDomainAttributeSpecified()

Setup cookie
Cookie(...)�

Cookie.setExpiryDate(...)

Setup session
HttpState.addCookies(...)
HttpClient.setState(...)

Setup proxy
getHostConfiguration(...)
HostConfiguration.setProxy(...)

8
4/8

7
8/8

Check credentials
HttpClient()
CredentialsNotAvailableException(...)

Establish HTTP con
HttpClient()

UsernamePasswordCredentials(...)

Check HTTP status
StatusLine.getStatusCode()
HttpStatus.SC_OK

2
7/8

1
8/8

Figure 4: Most consistent patterns for the HttpClient API.

Generate PKI

KeyPairGenerator.generateKeyPair()
Principal.toString()

Access control
AccessController.doPrivileged(...)
KeyPair.getPrivate()

7/8
2

8/8
1

Context−based access control
ProtectionDomain(...)

AccessControlContext(...)

5/8
4

Random security key
SecureRandom()
SecureRandom.setSeed(long)

Secure hash key
MessageDigest.digest()
MessageDigest.getInstance(String)

Context−based access control
ProtectionDomain(...)

AccessControlContext(...)

X.509 certificate
X509Certificate.getIssuerDN()
X509Certificate.getSubjectDN()

3
4/8

Access encoded location
ProtectionDomain.getCodeSource()
CodeSource.getLocation()

Get security policy
Policy.refresh()
Policy.getPolicy()

Figure 5: Most consistent patterns for the API, java.security

dependency is not evident from the structure of the two cor-
responding classes, Cookie(...) and HttpState(...).
However, the pattern shows that the setup of session also
adds cookies (HttpState.addCookies(...)). This pat-
tern shows that temporal patterns can describe non-obvious
dependencies.

Formally, we determine whether a pattern exhibits hid-
den order as follows. First, we determine the number of
dependencies in a pattern. For example, if pattern P is
C1 → C2 → C3, then P shows two dependencies between
the three concepts. We consider that a method m2 in C2 is
related to a method m1 in C1 if the set {target type, param
types} of m2 intersects with the return types of m1. If the
methods of C1 and C2 are related, we consider the depen-
dency between them as structural, otherwise the dependency
is hidden. We investigated two options: we consider two
concepts as structurally dependent only when 1) at least
50% methods are related between them, or 2) at least one
method was related between them. We implemented this
procedure in a script7 and ran the script on the consistent
patterns of HttpClient (Figure 4) and java.security (Figure 5)
using options: threshold = 0.5 and threshold = 0. We did
not investigate java.util further, because it had only one
consistent pattern, so its result will not provide us useful
insight. In Table V, we present the results. For HttpClient,

7Available in our online data (See footnote 6)

Table V: Surprisingness values of the APIs
API Threshold Structural Hidden Surprisingness

HttpClient 0.5 1 12 0.92
0 6 7 0.54

Security 0.5 0 5 1
0 3 2 0.4

Table VI: Diversity values of the APIs
Pattern M D S Pattern M D S

H1 (Conn) 2 1 7 H7 (Cookie) 3 2 6
H2 (Method) 2 1 6 H8 (Session) 3 2 2
H3 (Proxy) 4 1 7 S1 (Secure key) 2 2 6
H4 (Protocol) 3 2 2 S2 (PKI) 5 3 5
H5 (URI) 3 2 2 S3 (Access) 3 2 2
H6 (Header) 3 3 1 S4 (X.509) 3 2 2

P = Pattern ID (H for HttpClient, S for java.security)
M = Maximum # developers implemented the pattern in a client
D = # clients implemented the pattern using multiple developers.
S = # clients implemented the pattern using one developer.

there were 13 dependencies in the 8 consistent patterns, 12
of which were found as hidden for the threshold = 0.5. The
column ‘Surprisingness’ was calculated as follows.

surprisingness = # Hidden Dependencies
# Total Dependencies

The surprisingness value was the highest for java.security
(5 out of the 5 dependencies were hidden with threshold =
0.5). When applied with no threshold, 3 out 5 dependencies
of java.security and 6 out of 13 of HttpClient dependencies
were found structural. Nevertheless, the results show that
non-obvious relations do exist between API functionality
and temporal patterns can uncover such useful information.

D. Do Patterns Represent the Decisions of More Than One
Developer? (RQ4)

The patterns we detect would not be of general interest
if they only represent a single developer’s idiosyncratic
use of an API. To ensure that this is not the case, we
also investigate whether our patterns were introduced by
more than one developer. If a pattern was introduced by
more that one developer, we consider it further evidence
of the generalizability of the pattern. We find the number
of developers implementing a pattern by first determining
how many developers have implemented each concept of
the pattern and then summing the total number of distinct
developers thus associated with the pattern.

In Table VI, we present the results for all consistent
patterns of HttpClient (Figure 4) and java.security (Figure 5).
Each of the patterns is denoted by an ID and a short descrip-
tion. For example, the first pattern of Figure 4 is denoted
as ‘H1’ with a description of its primary functionality (i.e.,
establishing HTTP connection). The column ‘M’ shows the
maximum number of developers found in a single client
program to implement the pattern, ‘D’ shows how many



client programs used more than one developer to implement
the pattern and ‘S’ shows how many client programs used
only one developer. The results show that all the patterns
were implemented by more than one developer in at least
one client program. For example, for HttpClient, H3 was
implemented by the most number of developers (4) in a
client program (mule), whereas for java.security, S2 has the
maximum number of developers (5).

E. How Can Temporal Patterns Guide Improvements in
Developer Documentation? (RQ5)

We compared the documentation of HttpClient8 and
java.security9 with the temporal patterns of Figure 4 and
Figure 5, respectively. Our focus was to investigate whether
the documentation correctly represents the API usage found
through our temporal patterns and whether and how it has the
potential to improve the learnability of the documentation.
We located in which section of the documentation each
pattern was described. Then, we compared the order in
which the concepts were presented in the documentation
with the order in which they were implemented, as found
by our temporal patterns. Ideally, the documentation should
refer to all concepts in the same section in the same order
as the temporal pattern. If at least 50% of the API elements
of a concept were found in a section, we determine that
the concept was discussed in the section. If the concept is
part of a pattern, we say that we can map the pattern to the
section. If more than one concept is found in the section, we
investigate whether the concepts are mentioned in the same
order as in the pattern. Finally, if the concepts of a pattern are
discussed in many sections, we say that the documentation
of the pattern is scattered.

In Figure 6, we show a high-level overview of the
comparison between the HttpClient patterns generated as
shown in Figure 4 and the HttpClient documentation. For
the documentation, we only show the sections that present
different API functionality with clear rationale in the title(s)
(e.g., section 1 is shown because it specifically discusses the
establishment of an HTTP connection with credentials). We
observe that 50% of the patterns (1, 3, 7, 8) presented in
Figure 4 were matched in the documentation. The patterns
found could be used to improve the organization of the
documentation. For example, pattern 2 was briefly discussed
using examples in section 11. The pattern 1 was scattered
in three sections (1, 4, 11). Because this pattern was always
implemented when the HttpClient API was introduced in a
client, it may be best to present this pattern in section 1.

The java.security documentation maps to two patterns (1,
4) of Figure 5 and provides a theoretical overview of the
other two patterns, without referring to specific API types.
The concept 1 of pattern 2 was discussed as a separate

8http://hc.apache.org/httpclient-legacy/index.html
9http://download.oracle.com/javase/6/docs/technotes/guides/security/

overview/jsoverview.html

(1, 2) Authentication & con

(4) Exception Handling
(5) Logging

temporal pattern

(6) Configure HTTP Header

(7, 8) Setup cookie and caching

(4, 5) Configure URI

(3) Handle proxy−based session

(1) Connect and authenticate
(3) Cookies

(2) Send receive HTTP−based contents

(6) Methods

(10) SSL 
(11) Sample code
(12) Threading

HttpClient doc

(9) HTTP redirects

Figure 6: Comparison of HttpClient temporal patterns (ref: Fig-
ure 4) and their corresponding sections in the documentation.

section (5). The access control mechanism was part of 3
patterns in Figure 5, but it was covered in one single section
(6).

Temporal patterns can help identify deficiencies in the
documentation such as sections that should mention con-
cepts that are added together or temporal patterns that are
frequently used but that are not documented at all. Overall,
comparing the documentation with the temporal usage pat-
terns took us less than one hour. This review process is more
efficient than collecting subjective user opinions on mailing
lists over years, as it is the case in open source projects [7].

VI. DISCUSSION

Detecting API usage patterns in terms of their introduction
into client programs is an ambitious goal. In particular, given
the inexact nature of the patterns detected, the development
of the technique is open to an endless number of potential
design decisions and optimizations. Our initial exploration
into the matter demonstrated the basic feasibility of the idea.
In addition, it has taught us a number of useful lessons for
the further development of the technique.
Sliding window. Because the grouping of transactions
by day is only a temporary step to improve the PCA-
performance, we opted for simplicity and used an absolute
classification based on the system clock (as opposed to a
sliding window [23]). For our preliminary investigation, we
did not deem necessary the additional conceptual complexity
of a sliding window, since in step 3 we trace concepts back to
individual transactions. In practice, we found less than 1% of
the API-transactions fell in the midnight-region (±3 hours),
so midnight was a natural boundary for the vast majority of
development days in our cases. Moreover, in our particular
cases, there was often a considerable gap between the days
when transactions were committed. For systems with a much
denser stream of transactions, it may be worth investigating
the use of a sliding window for initial clustering.
Concept detection window and thresholds. While we
grouped transactions in days to form a better detection
of concepts, we could have used different window sizes.
We experimentally applied our technique with 5 and 7-day
windows. We found that the concepts are (predictably) more



scattered and indistinguishable for these window sizes. This
was because when bundled in 5 or 7 day windows, many
concepts were indistinguishable from each other based on
their data variation. We also tried to detect concepts in
individual transactions, but that returned too many concepts
which were just clones of each other. In the end, a 1-
day window produced the best results. Again, for systems
with radically different transaction streams, preliminary in-
vestigation may determine that a different window size is
better suited. The other two thresholds (η and τ ) were also
established experimentally, and as part of our future work
we plan to systematically study their impact on the results.

The nature of the API. Even though we studied the
API java.util in 19 client programs, we were unable to
find particularly useful patterns for it. This API provides
collection framework methods that were added for general
usage. The concepts of this API were so overly bloated
with those methods that it was impossible to determine the
implementation intent of a pattern. We believe our approach
is more suitable for APIs that are focused towards specific
functionality (e.g., security enforcement or HTTP connec-
tions). A possible way to extend our approach to handle
APIs like java.util would be to remove collection framework
methods as stop words (following the IR principle [14]).

VII. RELATED WORK

The automated inference of API usage properties has
benefited from considerable attention in recent years. In the
space available, we must inevitably limit our discussion to
a selection of representative works.
Non-temporal API usage pattern mining. Extensive work
has targeted the inference of patterns from client programs.
Many such techniques consider each function/method as a
data instance with attributes such as methods called, fields
accessed, types used, etc. Machine learning algorithms can
be applied to such data to infer patterns. As representative
examples, we note the use of association rule mining by
Michail [15], research on code example recommenders [4,
10], and programming rules inference tools such as PR-
Miner [12]. In these approaches, the evolution of clients is
not considered and their temporal relations are not analyzed.

Client evolution analysis. A different class of techniques
analyzes the evolution of APIs in target systems. For exam-
ple, Zimmermann el al. [24] and Ying et al. [21] developed
techniques to recommend classes (or methods) that should
be changed together based on the inference of association
rules defined over the transactions stored in the client’s revi-
sion control system. Alam et al. [3] analyzed the insertion,
deletion, and modification of functions in client systems
to discover sets of changes that temporally affect future
development. In this class of work, the unit of analysis is
the transaction, as opposed to individual functions/methods.
This is also the model we follow to detect temporal API

usage patterns. However, the research cited above focuses
on changes in client software, but without consideration for
any API element actually used in the change. In contrast, we
further process the change data to automatically discover the
number and type of references to API elements, and perform
our analysis on the API usage data.
Temporality in API usage analysis. Pattern inference
techniques have also been proposed to analyze temporal
aspects in API usage. As an example of a technique based on
static analysis, Acharya et al. [1] use model-checking tech-
nology to automatically generate static traces representative
of potential program paths through client functions, then
extract scenarios (subsets) from traces, mine the resulting
traces for partial orders, and derive final specifications by
removing spurious patterns through a consistency check
across multiple clients. Temporal usage patterns can also
be detected through dynamic analysis. For example, Lo
et al. [13] generate the traces to be mined for temporal
patterns through the instrumentation and subsequent exe-
cution of client programs. In such rule-mining approaches,
the notion of temporality relates to order within a client
function, e.g., the detection that a lock() method should
precede unlock() on all program paths. In contrast, our
notion of temporality relates to order of introduction in the
development history. A further difference is that we analyze
relations between groups of API elements (concepts), as
opposed to between individual elements.

Finally, Mileva et al. determine the popularity of an API
based on its overall usage in different clients [16]. They also
looked at the different versions of an API to find whether
a version is more popular than other versions [17]. They
study trends in the use of an entire API, whereas our work
analyses usage at the element level.

VIII. SUMMARY

We developed a technique that analyzes the evolution of
API usage in client programs. We identify temporal usage
patterns, i.e., sequences of concepts in the client programs.
We evaluated our technique by analyzing three APIs in up
to 19 open source client programs. We found that client
programs of java.security and HttpClient mostly shared a
consistent set of usage patterns, even if the clients did not
provide similar features. As we discussed in Section V,
these patterns can uncover interesting hidden dependencies
between API functionality (not apparent from their structural
dependencies) and can improve API documentation. We
also observed that an API that did not require complex
interactions between its elements such as java.util, did not
induce common temporal usage patterns in client programs.
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