
Asking and Answering Questions about Unfamiliar APIs:

An Exploratory Study

Ekwa Duala-Ekoko and Martin P. Robillard

School of Computer Science

McGill University

Montréal, QC, Canada

{ekwa, martin}@cs.mcgill.ca

Abstract—The increasing size of APIs and the increase in
the number of APIs available imply developers must fre-
quently learn how to use unfamiliar APIs. To identify the
types of questions developers want answered when working
with unfamiliar APIs and to understand the difficulty they
may encounter answering those questions, we conducted a
study involving twenty programmers working on different
programming tasks, using unfamiliar APIs. Based on the screen
captured videos and the verbalization of the participants, we
identified twenty different types of questions programmers ask
when working with unfamiliar APIs, and provide new insights
to the cause of the difficulties programmers encounter when
answering questions about the use of APIs. The questions we
have identified and the difficulties we observed can be used
for evaluating tools aimed at improving API learning, and in
identifying areas of the API learning process where tool support
is missing, or could be improved.

I. INTRODUCTION

Modern-day software development is inseparable from the

use of Application Programming Interfaces (APIs). Software

developers make use of APIs as interfaces to code libraries

or frameworks to help speed up the process of software

development and to improve the quality of the software.

Before leveraging the benefits of an API, a developer

must discover and understand the behavior and relationships

between the elements of an API relevant to their task.

Given the increase in the size of APIs and the increase in

the number of APIs developers have to work with, even

experienced developers must frequently learn newer parts

of familiar APIs, or newer APIs when working on new

tasks. Recently, researchers started investigating how design

choices common to several APIs affect the API learning

process. For instance, Ellis et al. observed that the Factory

pattern hinders API learning [1], and a study by Stylos

et al. observed that method placement — for instance,

placing a “send” method on a convenience class such as

EmailTransport.send(EmailMessage), instead of hav-

ing it on the main-type such as EmailMessage.send()

— hinders API learning because convenience methods are

difficult to discover when learning to use an API [2].

In this paper, we expand on the body of work on API

learning by investigating the different types of questions

developers ask when working with unfamiliar APIs, in-

vestigating why some questions are difficult to answer,

and researching the cause of the difficulty. Our study was

inspired by the work of Sillito et al., who looked at the

different types of questions developers ask when working on

maintenance tasks [3]. To investigate those questions about

the use of APIs that are difficult to answer, we conducted

a study in which twenty participants worked on two pro-

gramming tasks using different real-world APIs. The study

generated over twenty hours of screen captured videos and

the verbalization of the participants spanning 40 different

programming sessions. Our analysis of the data involved

generating generic versions of the questions asked by the

participants about the use of the APIs, abstracting each

question from the specifics of a given API, and identifying

those questions that proved difficult for the participants to

answer. Based on the results of our analysis, we isolated

twenty different types of questions the programmers asked

when learning to use APIs, and identified five of the twenty

questions as the most difficult for the programmers to answer

in the context of our study. Drawing from varied sources

of evidence, such as the verbalizations and the navigation

paths of the participants, we explain why they found certain

questions hard to answer, and provide new insights to the

cause of the difficulties.

The different types of questions we have identified and

the difficulties we observed can be used for evaluating tools

aimed at improving API learning, and in identifying areas

of the API learning process where tool support is missing,

or could be improved. As an example, we identified some

areas where support is limited from existing tools including

the need for tools that would assist a developer in easily

identifying types that would serve as a good starting point

for searching for code examples, or for exploring the API

for a given programming task.

II. RELATED WORK

API Usability Studies: Previous studies on API usability

sought to identify factors that hinder the usability of APIs

and to understand the trade-offs between design options.

Ellis et al. conducted a study to compare the usability of

the Factory pattern in contrast to constructors for object

creation [1]: they observed that the participants experienced

difficulty and required significantly more time to construct

objects with a Factory than with a constructor. Stylos

et al. conducted a user study in which the usability of

parameterless constructors was compared to constructors

with parameters: they reported that programmers strongly

preferred, and were more effective with, APIs that provide

parameterless constructors [4]. In another study examining

the placement of methods (that is, the class to which a

method belongs), Stylos et al. reported that participants were

significantly faster at identifying relevant dependencies and

combining objects when the methods of a starting class

referenced its dependencies [2]. Clarke uses the “Cognitive

Dimensions” [5], [6], a framework for describing API us-

ability problems, to identify specific usability issues with

Microsoft APIs, and to help inform the design of more

usable APIs. Other studies have looked at the role of web

resources in learning how to use APIs: in a lab study

involving twenty participants and five tasks, Brandt et al.

observed that programmers used the Web primarily for just-

in-time learning of new skills, and to clarify or remind

themselves of previously acquired knowledge [7]. Prior

studies have either focused on the usability of different API

design choices (e.g., Factory pattern versus constructors),

or the usability issues of a specific API, or a learning

resource. Our study complements previous efforts by looking

at the types of questions developers ask when working with

unfamiliar APIs, investigating the cause of the difficulties

they encounter answering these questions, and providing

suggestions on how tool support for learning how to use

APIs could be improved.

Information Needs of Programmers: Several contributions

have been made in the area of the information needs of

programmers in general. Ko et al. conducted a study in

which forty novice programmers were asked to complete

several tasks using Visual Basic .NET [8], and identified

learning barriers and information needs that must be satisfied

for the programmers to compete the tasks. In a different

study, Ko et al. observed and transcribed the activities of

seventeen developers working on different tasks during a

ninety minutes session [9]. Ko et al. analyzed the transcripts

for the type of information that developers sought, the

sources they used, and the situations that prevented them

from acquiring information. They identified twenty one

different information needs of programmers, grouped into

seven categories: writing code, submitting a change, triaging

bugs, reproducing a failure, understanding execution be-

havior, reasoning about design, and maintaining awareness.

They also observed that the most difficult needs to satisfy

were questions about the rationale for design decisions, and

that questions about APIs that could not be answered using

the documentation or tools, were answered by consulting the

coworkers. Sillito et al. identified forty four different types of

questions asked by programmers when maintaining software

code, and investigated the degree to which existing tools

support the questions programmers ask when modifying the

source code [3]. The contributions of our study are similar to

that of Sillito et al. that looked at the questions programmers

asked when maintaining the source code, but ours is in the

context of API learning. In addition, we utilized a more

objective criterion for determining hard-to-answer questions,

provide a catalog of qualitative evidence explaining why

developers find certain questions hard to answer, and used

more varied sources of evidence (such as navigation paths,

verbalizations, and the time spent on various micro tasks) in

our analysis than either Sillito et al., or Ko et al.

III. PROGRAMMING STUDY

A. Participants

We recruited participants from the student population of the

department of Computer Science at McGill University using

on-campus posters and mailing lists, and promised a mon-

etary compensation of $20. Respondents were prescreened

using a questionnaire about their programming experience

and their knowledge of Java and Eclipse.

We selected 20 participants from the respondents for

our study. The participants reported a minimum of 1 year

programming experience with Java, 1 year experience with

the Java API documentation (i.e., Javadoc), and some expe-

rience programming with Eclipse. Our participants reported

between 1 and 6 years of experience programming with Java,

with a median of 3.5 years, and an average of 1.5 years of

paid programming experience. Five of the 20 participants

were female; our participant pool included 4 Ph.D. students,

11 M.Sc. students, and 5 senior undergraduate students.

Although all of our participants were students, they are

representative of the population of interest and their expertise

level is comparable to that of recent graduates in software

development positions, which is our target population since

our work aims to support novice programmers.

B. Tasks

We asked each participant to complete two programming

tasks: the first task using the JFreeChart1 API, and the sec-

ond task using the Java API for XML Processing (JAXP)2.

JFreeChart is a popular open-source API for generating

charts. We used version 1.0.13 of the JFreeChart API, which

has 37 packages and 426 non-exception classes. JAXP is an

API for validating and parsing XML documents, developed

by Sun Micosystems. We used version 1.4 of the JAXP API,

which has 23 packages and 207 non-exception classes.

We selected tasks that involved combining multiple ob-

jects because previous work on API usability observed that

1www.jfree.org/jfreechart/
2http://jaxp.java.net

developers experienced the most difficulty performing such

tasks [2]. We reasoned that tasks requiring the combination

of multiple objects are more likely to reveal a variety of

questions developer want answered and typical challenges

they encounter when learning to use APIs. The participants

were given a maximum of 35 minutes per programming task.

All the 20 participants were unfamiliar with the APIs used

in the study.

Chart-Task.

We asked the participants to use the JFreeChart API to

construct a pie chart with three slices (45% Undergrads,

35% Master’s, and 20% Ph.D.s), and to save the chart to a

file in a graphic format. To complete this task, a participant

needed to construct and configure at least five API types

(JFreeChart, PiePlot, PieDataset, ChartFactory,

and ChartUtilities), and had to discover key relation-

ships between the types: for instance, the relationship be-

tween JFreeChart, the type for representing charts, and

ChartUtilities, the type needed to save the chart.

XML-Task.

We asked the participants to use the JAXP API to verify

whether the structure of an XML file conforms to a given

XML schema. The participants were provided with both

an XML file and an XML schema file, and were asked

to implement a solution that returns true if the XML file

conforms to the given XML schema, and false otherwise.

This task required the combination of at least four API types

(Schema, Validator, SchemaFacotry, and Source) and

was selected because of the unique challenges it presents

to object construction — all the required types are abstract

with no subtypes; the types must be created from factory or

public methods.

C. Study Setting

Participants completed the study using the Eclipse IDE

(version 3.4) and were permitted to use any of the features

of the IDE. Two main information sources were used in

the study: the documentation of the APIs and the Web,

which provides access to example usages of the APIs.

These information sources have been reported to be the

primary learning resources for API users [10], [11]. We

provided the participants with the Firefox browser to access

these information sources, and disabled the browser’s history

feature to prevent any learning effect between participants.

The programming studies were conducted individually

in our research lab. The participants began each study

by watching a four-minute video tutorial about the think-

aloud protocol. Participants were then given time to practice

thinking aloud while working on a web search task. Soon

after, the participant was given the instructions for the

Chart-Task and was given a maximum of 5 minutes to go

over the task requirements and to ask questions relating to

the requirements. To avoid influencing the strategy of the

participants, we did not identify the classes or packages of

the APIs required to complete the tasks, as was the case with

previous studies [2]. Also, the participants were advised to

proceed as they would typically do when learning a new

API.

Once the participant was satisfied with the task require-

ment, we loaded an Eclipse project which contained a

class with an empty main method and the libraries of the

relevant API. We then showed the participant how to use

the Firefox browser to access the Javadoc pages of the

APIs from the bookmark menu. At this point, the screen

and voice recording software — Camtasia, version 4 —

was started, and the participant was asked to begin the

task. The participant was asked to move to the next task

upon completion of the Chart-Task, or once the 35 minutes

allocated for the task elapsed. The tasks were completed in

the same order by all the 20 participants.

D. Data Collection

We used three data collection techniques in our study: the

think-aloud protocol, screen captured videos, and interviews.

In the think-aloud protocol [12], participants are asked to

verbalize their thought process while solving a given task.

Having participants think-aloud was particularly useful in

our study as it permitted us to obtain an insight into the

participants’ understanding of the structure of the APIs,

to identify the types of questions participants ask when

learning to use APIs, and to understand why a participant

may have difficulty answering a given question. We also

conducted semi-structured post-study interviews in which

the participants were asked to comment about the challenges

experienced during the programming study. The interviews

lasted 5 minutes.

The screen contents, the verbalizations of the participants,

and the interview sessions were captured using Camtasia.

The study produced a total of 40 different programming

sessions and about 20 hours of screen-captured videos and

verbalizations of participants working with unfamiliar real-

world APIs.

IV. DATA ANALYSIS AND RESULTS

Our analysis focused on the questions the participants want

answered about the use of an API. Our goal was to identify

those questions that are difficult to answer, to understand

why these questions proved difficult to answer, and to

recommend programming tools that could facilitate the API

learning process. Our method for analyzing the data involved

three phases: identifying the different types of questions

asked by the participants, categorizing the questions, and

coding the exploration patterns used by the participants

when searching for answers to these questions. We refer

to a participant by their ID (for instance, P5 for the fifth

participant) and to the tasks as T1 (for the Chart Task) and

T2 (for the XML Task).

Table I
DIFFERENT TYPES OF QUESTIONS OBSERVED DURING THE PROGRAMMING STUDY

Generic questions, with specific examples in italics # of occurrences # of participants

Q.1 Which packages or namespaces of an API provide types relevant to my task? “I’m trying to find out

which package has classes for creating a pie chart” — P5,T1
31 16

Q.2 Is there an API type that provides a given functionality? “the task says I should create a pie chart;
I’m expecting some sort of a PieChart class to be available” — P18,T1

11 7

Q.3 Does an API type provide a method for performing a given operation? “Is there a method on

BufferedImage that helps to save?” — P10,T1
58 19

Q.4 What is the functionality of a given API type? “Let’s look at what the Validator class does”
— P18,T2

32 17

Q.5 Can a method intended to perform operation A be used to perform operation B? “I’m hoping that the

draw method can be used to save to a file, but I’m not too optimistic about it” — P6,T1
3 2

Q.6 Which keywords best describe a functionality provided by the API? “I’m going to use the Firefox

search to look if there’s any thing involving[containing the word] “schema”” — P9,T2
38 13

Q.7 How is the type X related to the type Y? “How is Validator related to Schema?” — P18, T2 8 7
Q.8 How do I get an object of type X from the type Y? “I need to figure out how to get a
BufferedImage from a PiePlot” — P6,T1

2 1

Q.9 Which elements of the API are of the type X? “Which classes of the API are Comparable?”
— P11, T1

4 4

Q.10 Is the object X of the type Y? “let’s see if RenderedImage takes BufferedImage” —
P1,T1

2 2

Q.11 Does the API provide a helper-type for manipulating objects of a given type? “let’s see if there

are classes related to BufferedImage which can give me the possibility to write the image to a file”
— P10,T1

19 13

Q.12 How do I create an object of a given type without a public constructor? “the constructor is protected;

so how do I create a Graphics2D object?” — P11,T1
57 19

Q.13 Which other API elements are necessary to use a given API type? “I think I need something else that
would save the chart to an image” — P1,T1

6 5

Q.14 Which subtype of an interface or class is the most appropriate for my task? “I don’t know exactly

which subtype of Source to use for reading an XML file” — P6,T2
29 17

Q.15 Which types of a given domain (package, namespace) are relevant to my task? “Which classes of the

“parsers” package could be used for validation?” — P18, T2
27 17

Q.16 Which method from a list of overloaded methods is relevant to my task? “I’m trying to find the

appropriate create-piechart method because it seems to be overloaded” — P16,T1
4 4

Q.17 What role do the arguments of a given method play in its usage? “we have a

newInstance(String) method that takes a String argument and I have no idea what this

String is suppose to be” — P9,T2

23 17

Q.18 What is the valid range of values for a primitive argument, such as an integer, of a given method?
“I don’t know if this [double] value should be between 0 and 1” — P10,T1

3 3

Q.19 Is NULL a valid value for a non-primitive argument of a given method? “let’s use NULL for

Comparable and see if the method throws an exception” — P1,T1
4 4

Q.20 How do I determine the outcome of a method call? “[the method]

Validator.validate(Source) returns void; how do I know the results of the validation?” —
P12,T2

15 13

A. Identification of Questions

In this phase, we went through the screen-captured videos

and the verbalizations to produce a list of specific ques-

tions asked by each participants, and to identify segments

of the videos, which we called episodes, corresponding

to each question. Each episode also captured the specific

approach used by a participant to answer a given ques-

tion. Some questions were explicit: for instance, partic-

ipant P11 asked “How do I create a Graphics2D ob-

ject?” while working on the Chart-tasks. Other questions

were easily inferred from the actions and verbalizations of

the participants: for instance, P1 came across the method

ImageIO.write(RenderedImage, ...), and said “let’s

see if RenderedImage takes BufferedImage”, then

went ahead and used a BufferedImage object where

RenderedImage was expected. The actions and verbaliza-

tion of P1 in this example is phrased into the question:

“Is BufferedImage of the type RenderedImage?”. After

identifying the list of specific questions for each participant,

we then developed generic versions of the questions that

slightly abstract from the specifics of a given API. For

instance, the question “Is BufferedImage of the type

RenderedImage?” can be stated more generally as “Is the

object X of the type Y?”. Based on these generic questions,

we identified twenty different types of questions asked by the

participants across both tasks (see Table I). We also provide

a specific instance for each generic question as an example,

in italics. The generic questions highlight, to a certain extent,

the type and scope of the information developers need

when learning how to use APIs. The number of times each

type of question was observed (# of occurrences) and the

number of participants that asked each type of question (#

of participants) are listed in Table I.

B. Abstraction of Developer Behavior

We needed a high-level abstraction of the actions of the

participants to facilitate the analysis of their behavior and

the challenges they experienced when learning to use APIs.

Since our analysis is centered around the questions asked

about the use of the APIs, we transcribed the segments

of the videos corresponding the time frame during which

a participant asked and searched for answers to a given

question. Specifically, for each participant and for each

episode corresponding to a specific question, we transcribed

the video into a series of actions that summarizes the

steps taken by the participant to answer the question. We

considered the following actions:

• Browse: the participant looked through a list of API

elements (packages, types, or methods) either within

Eclipse, or in the documentation, before making a

selection. The Browse action has a target to denote

the items (either packages, classes, methods, or search

result) the participant was browsing through.

• Select: the participant selected an item from a list of

API elements, or the results of a search query after

browsing. The Select action has a target — the name

of the item selected, and a flag (Yes/No) to indicate if

the selected element was relevant to the question being

answered. The target of the Select action could also be

None, if no item was selected.

• Read: the participant focused on a portion of text or

code. The Read action has a target — the name of

the element being read, and a section (e.g., either the

introduction section, constructor section, or the method

description of an API element) to indicate the location

the participant focused on.

• Navigate: the participant followed a dependency or a

link to another element. The Navigate action has a

target — the name of the item navigated to, a flag

(Yes/No) to indicate if the target led to information

relevant to answering the question.

• Search: the participant performed a search of the

documentation or the Web. The Search actions has a

target (Documentation/Web), and a flag (Yes/No) to

indicate if the search query contained the name of an

API element.

• Switch: the participant moved from the documentation

to the Web, or IDE, and vice versa.

• Use: the participant attempted to use an API element

or code example found on the Web. This action has a

target — the element or code the participant attempted

to use, and a flag (Yes/No) to indicate if the participant

was successful.

• Backtrack: the participant stepped back to a previous

location of certainty, then decides to explore a different

path. This action has a target — the location the

participant backtracked to.

As an example, Table II shows a partial transcript3 of

the participant P15 looking for information on how to

save a BufferedImage; the transcribed actions is shown

under the “Action Sequence” column. P15 started by nav-

igating to the documentation page of BufferedImage,

browsed through its subtypes, and then selected the sub-

type WritableImage, not relevant to saving an image.

P15 read the introduction section of WritableImage,

then backtracked to BufferedImage. P15 then browsed

through the methods of BufferedImage, focusing on

the createGraphics method, before switching to the

Web. P15 then searched the Web with a query con-

taining an API element, selected the third results,

read through the code example and discovered the

ImageIO.write(RenderedImage, ...) method. P15

then used ImageIO.write(RenderedImage, ...) suc-

cessful to save the image to a file.

Table II
TRANSCRIPT EXCERPT FOR PARTICIPANT P15 — CHART TASK

Time Question Action Sequence

0:18:10 How do I save a
BufferedImage?

Nav[BufferedImage]:
Browse[subtypes]:
Select[WritableImage,No]:
Read[WritableImage,Intro]:
Backtrack[BufferedImage]:
Browse[methods]:
Read[createGraphics,description]:
Switch[web]:Search[web,Yes]:
Select[3rd,Yes]:
Read[ImageIO.write,code]:
Use[ImageIO.write,Yes]

What is a Difficulty?

As part of our analysis, we intended to identify questions

that proved difficult for the participants to answer and to

understand the cause of the difficulty. To accomplish this,

we needed an objective measure as to what constitutes a dif-

ficulty in the context of API learning. We decided not to use

the amount of time taken to answer a question as the main

measure of difficulty since significant performance variations

have been observed amongst developers with similar level

of experience [13]. At a higher-level, we observed that

some of the actions, or sequence of actions, of a participant

that reflected a lack of progress in the search for answers

to a given question would serve as a good measure for

capturing difficulty. We used the following action sequences

as a definition of the difficulty participants encountered when

answering questions about the use of the APIs:

• Use[target, No]: This action sequence captures in-

stances in which a participant attempted to use an

API element but was unsuccessful because the API

does not support the given usage. For instance, the

participants P6 and P8 commented “How can I get an

3The entire transcripts for both tasks, and for all the participants are
available as an online appendix: http://www.cs.mcgill.ca/∼eduala/apistudy/

Table III
A SUMMARY OF THE DIFFICULTIES PARTICIPANTS EXPERIENCED

ANSWERING DIFFERENT TYPES OF QUESTIONS ABOUT THE USE OF

APIS.

Question
ID

#times #instances #participants #difficulty

Q.1 31 1 16 1
Q.2 11 5 7 3
Q.3 58 14 19 13
Q.4 32 3 17 3
Q.5 3 1 2 1
Q.6 38 17 13 7
Q.7 8 5 7 5
Q.8 2 1 1 1
Q.9 4 2 4 2
Q.10 2 0 2 0
Q.11 19 17 13 12
Q.12 57 35 19 17
Q.13 6 1 5 1
Q.14 29 8 17 8
Q.15 27 5 17 4
Q.16 4 0 4 0
Q.17 23 1 17 1
Q.18 3 2 3 2
Q.19 4 1 4 1
Q.20 15 11 13 11

instance of Validator?” after their attempt to instantiate

Validator, an abstract class, from the default constructor

failed. This object instantiation difficulty is captured by

the action sequenceUse[Validator.Constructor, No]. We

observed that participants often had expectations about

the design of an API and expressed frustration when the

structure of an API did not match their expectations.

• Browse[list], Select[target, No], ..., then Back-

track[list], or Navigate[target, No], ..., then Back-

track[...]: The Select[target, No] and Navigate[target,

No] action sequences capture instances in which a

participant went down an irrelevant information search

path. Once a participant realized the information on a

given path was not relevant to answering their question,

they backtracked to previous location of certainty, and

then chose a different path to explore: captured by

the Backtrack action. We consider action sequence

Select[target, No], or Navigate[target, No], followed

by a Backtrack as an indication of difficulty in search-

ing for answers to a given question. The participants

relied on cues in the documentation or code examples

when looking for answer to a given question. At times,

the clues were not available or perceivable. In the

absence of strong cues, participants were left to guess

which search paths to follow, and some participants

inadvertently went down irrelevant search paths.

We summarize the difficulties the participants experienced

answering the different types of questions in Table III. For

each question, we provide the number of times the question

was observed (#times), the number of instances with a diffi-

culty (#instances), the number of participants who posed the

question (#participants), and the number of participants who

experienced a difficulty answering the question (#difficulty).

As a baseline, we considered a question difficult to answer

if all of the following conditions apply:

• At least half of the participants who posed a question

experienced some difficulty answering the question.

• At least five participants experienced some difficulty

answering the question.

• A difficulty was observed in about half the total number

of the instances in which a question was asked.

For instance, we considered the participants to have

experienced difficulty answering question Q.20 since

eleven of the thirteen participants who posed the question

experienced difficulty answering it, and since a difficulty

was observed in eleven of the fifteen instances in which

the question was asked. We identified five questions that

proved difficult for the participants to answer (boldfaced in

Table III):

Q.6 Which keywords best describe a functionality provided

by the API?

Q.7 How is the type X related to the type Y?

Q.11 Does the API provide a helper-type for manipulating

objects of a given type?

Q.12 How do I create an object of a given type without a

public constructor?

Q.20 How do I determine the outcome of a method call?

C. Observations

We present our findings as observations of the challenges a

developer may encounter when learning to use an API, along

with the supporting evidence for each observation. These

observations are supported by the results of our analysis of

the data from the study, and by the verbalizations of the

participants.

Observation 1 (Discovering Relevant Dependencies). Dis-

covering relevant API types not accessible from the type

a developer is working with is a major challenge to API

learners.

Three questions (Q.7, Q.11, and Q.12) of the five we

identified as being difficult to answer involved a partic-

ipant either looking for types related to, and relevant to

the use of a type they were working with (“let’s see if

there are classes related to BufferedImage which can

give me the possibility to write the image to a file” —

P10, T1), or a participant seeking to discover the rela-

tionship between API types (“How is Validator related

to Schema?” — P18, T2). Although different, these three

questions illustrate a common problem: the participants

experienced significant difficulty when relevant API types

were not accessible from the type they were working

with (i.e., these helper-types were not referenced or reach-

able from any of the public members of the type the

Table IV
A COMPARISON OF THE SEARCH QUERIES WITH, AND WITHOUT, AN

API ELEMENT.

Search Queries With an API Element

Total Queries: 25
Reformulated Queries: 4
Successful Queries: 21

Search Queries Without an API Element

Total Queries: 13
Reformulated Queries: 12
Successful Queries: 1

developer was working with). For instance, in the Chart

Task, the participants could save the JFreeChart object

using ChartUtilities.saveChart(JFreeChart,...),

but most experienced difficulty locating ChartUtilities

because it is not accessible from JFreeChart. Twelve of

the 20 participants in our study experienced some difficulty

finding ChartUtilities (Q.11, Table III), and three of

the participants were unable to complete the Chart-Task

because they could not locate this relevant dependency. This

observation corroborates the findings of Stylos et al. [2]

that method placement — the class on which a method

is placed — affects API usability. However, Observation 1

extends beyond method placement: the participants also had

difficulty discovering the relationships between types (Q.7,

Table III), or creating objects for types without a public

constructor (Q.12, Table III) because the relevant helper-

types were not accessible from the type they were working

with. Participant P4 attributed this difficulty to the lack of

a “cross-reference in the API that says get a Validator

instance from a Schema”.

Observation 2 (Query Formulation). In the context of our

study, having an API element as one of the keywords in a

search query was an effective strategy for locating relevant

code examples.

We analyzed the queries the participants formulated when

searching for code examples on the Web and observed that

queries that contain an API element were more successful

(that is, led to a relevant code example) than those without an

API element (see Table IV). There were a total of 25 queries

containing an API element, and of those, only four were

reformulated, and 21 of the 25 queries containing an API

element led to a relevant code example. On the other hand,

there were a total of 13 queries without an API element: 12

of the 13 queries were reformulated, and only one of the

13 queries led to a relevant code example. As an example,

participant P18 started the XML-Task with the search query

“java xml processing tutorials” but found no relevant code

example. He then turned to the documentation where he

identified the Schema class as relevant to the validation

task. Participant P18 then reformulated the search query

to “java xml validation against schema” from which he

found a relevant code example. Our observation about query

formulation corroborates the finding from the analysis of

the Koders’ search engine logs where queries with code

elements lead to the most downloads [14].

A complementary observation about query formulation is

the difficulty of guessing keywords that correspond to word

usage in APIs, or their documentation. This difficulty was

captured by the question Q.6 (Which keywords best describe

a functionality provided by the API?): up to seven of the

thirteen participants who asked this question experienced

some difficulty guessing a correct keyword.

void validate(File) throws FileNotValidException

ReturnStatus validate(File)

 vs.

(A)

(B)

Figure 1. Two possibilities for communicating method-level execution
failures.

Observation 3 (Exceptions). The use of an exception to

communicate the outcome of a method execution hinders

API comprehension.

There is a long standing debate in the software development

community regarding whether an exception (as in Figure 1

(A)), or a return-status-object4 (as in Figure 1 (B)) should

be used to communicate method-level execution failures,

and when each design choice may be appropriate [15]–[17].

When an exception is used to communicate the failure of

the validate(File) method, the implication is that the

File is considered valid if the method does not throw

an exception. In other words, the exception is used to

communicate the return status (failure or success) of the

validate(File) method: the validation is said to have

failed if the method validate(File) throws an exception,

and successful otherwise. However, the extent to which this

implication is apparent to a developer learning to use an API

remains uncertain. In the XML tasks, the participants had to

use the method Validator.validate(Source), that used

an exception to communicate outcome, to validate an XML

file. We observed that the use of an exception to communi-

cate outcome was problematic to the participants: 11 of the

20 participants experienced significant difficulty realizing

the implication that if the method validate(Source) does

not throw an exception, then the Source file is consid-

ered valid (Q.20, Table III). The 20 participants spent an

average of 4.2 minutes each before becoming aware of

the implication that the XML file is considered valid if

4We used the word return-status-object to represent either an error code
(a primitive such as a boolean or an integer), or an object that contains the
return status of a method execution.

the validation method does not throw an exception; the

average time spent to make this discovery increases to 6.7

minutes if we consider just the 11 participants that faced

a difficulty. Participants P5, P14, and P20 were unable to

make the discovery within the alloted time for the task,

even after spending 14 minutes, 9 minutes, and 21 minutes,

respectively, on this part of the task.

We looked at the verbalizations of the participants and

the post-study interviews in an attempt to understand why

they could have missed the implication that the XML file

is considered valid if the validation method does not throw

an exception. We identified two possible reasons for this

difficulty.

The Expectation of the Participants. The partici-

pants expected the API to provide a validation method

with a return-status-object (such as in Figure 1 (B)),

but validate(Source) had no return-status-object:

“validate(Source) does not give us something like true

or false; I better look for a method that gives us a boolean”

— P1. Not finding the expected method (that is, a vali-

date method with a return-status-object), participants would

initially assume that validate(Source) is not the right

method to use, instead of making the connection that an

exception is used to communicate the success or failure of

the validation. They would then spend time looking for other

methods in the API with a return-status-object that could be

used to validate the XML file. Not finding an alternative, the

participants would then return to the validate(Source)

method, re-read its documentation, and realize that the XML

file is considered valid if the validation method does not

throw an exception.

Disagreement between API Designers and Participants as

to what Constitute an “error condition”. The second rea-

son expressed by the participants as to why they experienced

difficulty associating exceptions to the success, or failure, of

the validation relates a disagreement as to what constitute

an error condition. According to expert API designers: “if

a member [method] cannot successfully do what it was

designed to do — what the member name implies — it

should be considered an execution failure, and an exception

should be thrown” [15, p. 218]. In other words, an execution

failure is said to have occurred if the validate(Source)

method cannot validate the XML file, and an exception

should therefore thrown. Our participants, on the other hand,

seem to associate the throwing of an exception to something

catastrophic:

“if you’re just trying to validate something why would

it throw an exception; It doesn’t make sense; I expected it

[validate(Source)] to return an object” — P14.

“in my experience ... I find consensus that you throw

exceptions only when you find an error. In a Validator you

expect some thing to be valid or invalid. And if its invalid

that should be a common occurrence just as much as it is

valid. So throwing an exception for common occurrence is

not a good idea” — P11.

This disagreement between API designers and our partic-

ipants reflects the debate as to when exceptions should

be used. Some argue that exceptions are for “exceptional

conditions”; others argue that “exceptions should be used to

report all errors” [15, p. 212]. The software development

community has yet to agree on what constitutes an excep-

tional condition. Our study indicates that this disagreement

has the potential for influencing API comprehension.

Observation 4 (Web versus Documentation). The use of

the Web had no effect on the number of tasks successfully

completed or the time taken to complete a task.

In designing the study, we had ten of the participants use

the Web and the API documentation as learning resources

(the Web Group — WG), and the other ten using just

the documentation (the Documentation Group — DG). We

reasoned that partitioning the participants into two groups

would help us identify the challenges programmers faced

when looking for answer to the questions using both learning

resources. We expected the participants in the Web Group

to be significantly more successful since the Web provides

several code examples for both tasks. However, we observed

no significant advantage, either in terms of the number

of tasks successfully completed or the average time taken

to complete a task, between the participants of the Web

Group over the participants of the Documentation Group.

Six participants from the Documentation Group and seven

participants from the Web Group successfully completed

task T1, and six participants from the Documentation Group

and five participants from the Web Group successfully

completed task T2. We obtained a chi-squared statistic of

0 when we compared the number of tasks successfully

completed between the two groups.
Looking at the task completion times, the participants

of the Documentation Group spent an average of 29 (±7)

minutes on task T1 while participants from the Web Group

spent an average of 25 (±9) minutes. We observed similar

results for task T2: participants of the Documentation Group

spent an average of 29 (±8) minutes while participants from

the Web Group spent an average of 26 (±8) minutes. We

used the Rank test to compare the task completion time

between the two groups and obtained a p-value of 0.45 for

task T1 and a p-value of 0.26 for task T2. But why were the

participants who used the Web not significantly better than

those who used the API documentation?
We observed that some participants often underestimate

the time required to find code examples on the Web, extract

the relevant code snippets, and to customize the snippets into

the context of a task. Some participants spent a significant

amount of time extracting and customizing relevant snippets.

For example, participant P13 found a code example for task

T2 at the 16 minutes mark, but was unable to complete

the task in the remaining 19 minutes because of difficulties

in extracting and customizing relevant code snippets. When

asked about this in the post-study interview, participant P13

commented that “the example had a different context from

our task, so I had to translate their ideas to ours and that

takes some time”. Other participants started with the Web but

soon realized the difficulty of finding relevant code examples

with no knowledge of the types in the API. For instance,

P18 started with the Web but soon abandoned the Web

for the API documentation after two unsuccessful searches,

commenting “having some knowledge of the classes in the

API may actually be able to help me understand the infor-

mation provided by the tutorials”. In general, we observed

that both learning resources provide complementary support

to programmers learning to use APIs. Also, the absence of

a significant difference between the two groups suggests

that the time required by novice API users to find, extract,

and customize code snippets from code examples may be

comparable to the time needed to learn how to use APIs

from the API documentation for basic tasks such as the ones

in our study.

V. IMPLICATIONS

A. API Design and Documentation

Proponents of the debate on how to communicate method-

level failures typically endorse either the use of an ex-

ception, or the use of a return-status-object, but seldom

both: “exceptions should be used to report all errors for

all code constructs” — [15, p. 212]. Our results explain

and document why the use of an exception to communicate

the outcome of an operation may be problematic from

an API-comprehension perspective. In such situations, it

seem reasonable for API designers to consider providing

both a return-status-object (to provide status information in

the case of a successful operation) and an exception (to

communicate method execution failure). Steven Clarke of

the user experience group at Microsoft Research, and a

pioneer of the work on API usability, echoed this view in a

book on Framework Design Guidelines: “although return

codes should not be used to indicate failures, you can

still consider returning status information in the case of a

successful operation” [15, p. 213].

In general, our study underscores the need to investigate

the impact of API design choices on API learning and usabil-

ity before adopting a given design choice. APIs are provided

to improve programmers’ productivity, but poorly designed,

or poorly documented, APIs may produce a counter effect. In

our work with APIs, we have observed situations where pro-

grammers had to re-invent the wheel because APIs designed

for their task were difficult to understand [18]. API usability

studies provide a venue for identifying and fixing usability

and comprehension problems before an API is made public.

B. Tool Design

The primary motivation for our study was to understand the

nature of API learning and how best to support programmers

learning to use a new API. We have identified 20 different

types of questions the programmers asked about the use of

APIs and also five questions that proved the most difficult

for the programmers to answer. We believe these questions

could help evaluate existing tool support, and identify areas

where support is lacking. As an example, we present three

areas of difficulty where support is currently limited.

Discovering Relevant API Elements not Accessible from

the Type a Programmer is Working With. Jadeite [11]

uses a concept known as a “placeholder” to allow a de-

veloper to annotate the documentation of an API type with

other API types or methods not accessible, but relevant to its

use. Given a particular function, Altair [19] and FRIAR [20]

use heuristics and structural relationships to find other re-

lated functions. Jadeite is the only tool, to our knowledge,

aimed at helping programmers discover types or methods

not accessible from a main-type. We consider Jadeite a

precursor to an ideal tool for making relevant API elements

not accessible from a type discoverable. Our ideal tool

would automatically generate and recommend placeholders

and would be integrated with the IDE, preferable with the

content assist feature of the IDE.

Discovering the Types of an API Relevant to Imple-

menting a Task. The names of API types and methods

provide a common vocabulary between API users and API

designers; consequently, the use of types and methods for

query formulation proved to be an effective strategy (in the

context of our study) for locating code examples relevant

to implementing a task. Surprisingly, support for helping

programmers discover the types of an API relevant to a

task is limited. In fact, most code recommendation tools are

based on the premise that programmers already know the

types of an API relevant to their tasks [21]–[24], but this

is not often the case. Sourcerer helps programmers locate

relevant API elements by suggesting words from open source

systems that share concepts that are related to the terms in

a search query [25]. Jadeite leverages usage statistics from

code examples on the Web to display commonly used types

of an API more prominently. Jadeite and Sourcerer have

one drawback: they are unusable in the absence of a corpus

of code examples; consequently, APIs without a corpus of

examples, or less commonly used parts of an API, may not

be supported. There is a need to further explore comple-

mentary approaches (such as the relationships between API

elements used by Prospector [26]) for recommending API

types relevant to a task.

Unmasking the Relationships between API Types. Some

of the difficulties we observed occurred when the dependen-

cies between related API elements were not obvious, or not

properly documented. For instance, although the Validator

class and Schema are related (a Validator object is created

from a Schema object), this relationship cannot be inferred

from the Validator class. Participant P4 referred to this as

the absence of a “cross-reference in the API documentation

that says get a Validator instance from a Schema” when

commenting about the difficulty experienced relating these

types. One potential solution would be to explicitly docu-

ment such hidden dependencies. Alternatively, tools could be

developed to automatically identify and reveal such hidden

relationships between API elements to developers through

the content assist feature of IDEs.

C. Threats to Validity

The results of our study are based on a systematic obser-

vation of programmers working with real-world APIs in a

laboratory environment. Given this setting, there are factors

which limit the generalizability of our observations.

The types of questions we observed in the study, the

process of answering the questions, and the challenges the

participants experienced are related to a certain extent to the

tasks and the experience of the participants. Some of the

questions and the difficulties we observed in the study have

been observed in previous API usability studies in different

settings [1], [2], [4], [8]; However, given that our study was

exploratory in nature and intended to probe why developers

experience difficulties, and also given the lab setting and pre-

defined tasks, the catalog of questions cannot be considered

complete, but a starting point.

The difficulty the participants experienced in associating

the throwing of an exception to the success, or failure,

of the validation could have been a result of their limited

programming experience. This threat was mitigated by our

use of the think-aloud protocol which showed that our partic-

ipants had no apparent confusion with the validation domain

(they could implement a solution to validate the XML file).

Rather, the difficulty they encountered was well isolated to

the use of exceptions to communicate method-level failures:

the implication that an operation is considered successful if

the method does not throw an exception was not apparent

to our participants. Furthermore, Steven Clarke is quoted

as reporting similar observations amongst professional pro-

grammers in a book on Framework Design Guidelines: “In

one API usability study we performed, developers had to call

an Insert method to insert ... records into a database. If

the method did not throw an exception, the implication was

that the records had been inserted successfully. However,

this was’t clear to the participants in the study. They

expected the method to return the number of records that

were successfully inserted” [15, p. 212]. The results of

our study closely corroborate Clarke’s observation amongst

professional programmers; the extent and reasons for the

difficulty for the population of professional programmers

would have to be determined by another study.

The size of our tasks, the number of tasks, and the

number of participants also limits the generalizability of our

observations. Although our tasks represented real usages of

real-world APIs, they were limited in size to permit our

participants to complete a task within the 35 minutes time

frame. With only two tasks and 20 participants, the questions

and the challenges observed in our study could be limited.

However, our use of 20 participants is equal or above the

current standard of evidence in user studies of software

engineering tools [7]. Furthermore, given the observation

that “programmers often approach larger programming tasks

by focusing on smaller subtasks” [2], we believe that the

different types of questions and the challenges we observed,

possibly limited, would generalize to other API learning

tasks.

Lastly, our study involved only Java APIs and the Java

API documentation. Some of our observations may be

different for APIs and documentation in other languages.

Also, since our study focused on programmers learning how

to use unfamiliar Java APIs, our observations may not be

applicable to programmers working with familiar Java APIs.

Further studies on API usability are required to verify the

generalizability of our observations to these contexts.

VI. CONCLUSION

To understand the difficulties programmers encounter when

working with unfamiliar APIs, the cause of the difficulties,

and to investigate how best to support API learning, we

conducted a study in which 20 programmers worked on

programming tasks using two real-world APIs. The study

generated over 20 hours of screen captured videos and

the verbalization of the participants spanning 40 different

programming sessions. Our analysis of the data involved

generating generic versions of the questions asked by the

participants about the use of the APIs, identifying those

questions the proved difficult to answer, and investigating the

cause of the difficulty using the verbalization and the actions

of the participants. Based on the results of our analysis, we

identified 20 different types of questions programmers ask

when learning to use APIs. We also identified five of the 20

questions as being the most difficult for the programmers

to answer, and provide observations to explain the potential

causes of the difficulties. We believe the questions we have

identified and the difficulties we observed can be used

for evaluating tools aimed at improving API learning, and

to identify areas of the API learning process where tool

support is lacking, or could be improved. As an example, we

identified some areas where tool support is currently limited

including the need for tools that would assist a programmer

easily identify the types of an API that would serve as a good

starting point for searching for code examples, or a starting

point for exploring the API for a given programming task.

REFERENCES

[1] B. Ellis, J. Stylos, and B. Myers, “The Factory pattern in API
design: A usability evaluation,” in Proceedings of the 29th
International Conference on Software Engineering, 2007, pp.
302–312.

[2] J. Stylos and B. A. Myers, “The implications of method place-
ment on API learnability,” in Proc. of the 16th International
Symposium on Foundations of Software Eng., 2008, pp. 105–
112.

[3] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and
answering questions during a programming change task,”
IEEE Transactions on Software Engineering, vol. 34, no. 4,
pp. 434–451, 2008.

[4] J. Stylos and S. Clarke, “Usability implications of requir-
ing parameters in objects’ constructors,” in Proceedings of
the 29th International Conference on Software Engineering,
2007, pp. 529–539.

[5] S. Clarke, “Measuring API usability,” Dr. Dobbs Journal, pp.
S6 –S9, 2004.

[6] ——, “Evaluating a new programming language,” in Proceed-
ings of the 13th Workshop of the Psychology of Programming
Interest Group, 2001, pp. 275–289.

[7] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and
S. R. Klemmer, “Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code,” in
Proceedings of the 27th International Conference on Human
factors in computing systems, 2009, pp. 1589–1598.

[8] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning
barriers in end-user programming systems,” in Proc. of Visual
Languages and Human Centric Computing, 2004, pp. 199–
206.

[9] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in
collocated software development teams,” in Proceedings of
the 29th International Conference on Software Engineering,
2007, pp. 344–353.

[10] J. Stylos and B. A. Myers, “Mica: A web-search tool for
finding API components and examples,” in Proc. of the Visual
Languages and Human-Centric Computing, 2006, pp. 195–
202.

[11] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving
API documentation using usage information,” in Extended
abstracts on Human factors in computing systems, 2009, pp.
4429–4434.

[12] T. Boren and J. Ramey, “Thinking aloud: reconciling theory
and practice,” IEEE Transactions on Professional Communi-
cation, vol. 43, no. 3, pp. 261–278, 2000.

[13] B. Curtis, “Substantiating programmer variability,” in IEEE,
ser. 7, vol. 69, 1981, pp. 846–846.

[14] S. Bajracharya and C. Lopes, “Analyzing and mining a code
search engine usage log,” Empirical Software Engineering,
pp. 1–43, 2010.

[15] K. Cwalina and B. Abrams, Framework design guidelines:
conventions, idioms, and patterns for reusable .Net libraries,
2nd ed. Addison-Wesley Professional, 2009.

[16] D. Katz, “Error codes or exceptions? Why is reliable
software so hard?” April 2006. [Online]. Available: http:
//damienkatz.net/2006/04/error code vs e.html

[17] J. Spolsky, “Exceptions,” October 2003. [Online]. Available:
http://www.joelonsoftware.com/items/2003/10/13.html

[18] E. Duala-Ekoko and M. P. Robillard, “The information
gathering strategies of API learners,” TR-2010.6, School of
Computer Science, McGill University, Tech. Rep., 2010.

[19] F. Long, X. Wang, and Y. Cai, “Api hyperlinking via structural
overlap,” in Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering,
ser. ESEC/FSE ’09, 2009, pp. 203–212.

[20] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird, “Recommend-
ing random walks,” in Proceedings of the the 6th joint meeting
of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software
engineering, ser. ESEC-FSE ’07, 2007, pp. 15–24.

[21] O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer:
Pulling reusable software out of thin air,” IEEE Software,
vol. 25, pp. 45–52, 2008.

[22] R. Holmes and G. C. Murphy, “Using structural context to
recommend source code examples,” in Proceedings of the
27th International conference on Software Engineering, 2005,
pp. 117–125.

[23] S. Thummalapenta and T. Xie, “Parseweb: a programmer
assistant for reusing open source code on the Web,” in Pro-
ceedings of the 22nd International conference on Automated
software Engineering, 2007, pp. 204–213.

[24] T. Xie and J. Pei, “MAPO: mining API usages from open
source repositories,” in Proceedings of the workshop on
Mining software repositories, 2006, pp. 54–57.

[25] S. Bajracharya, J. Ossher, and C. Lopes, “Searching API us-
age examples in code repositories with sourcerer API search,”
in Proceedings of 2010 ICSE Workshop on Search-driven
Development: Users, Infrastructure, Tools and Evaluation,
2010, pp. 5–8.

[26] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
mining: helping to navigate the API jungle,” in Proceedings
of the International conference on Programming language
design and implementation, 2005, pp. 48–61.

