
Recovering Traceability Links between an API and Its Learning Resources

Barthélémy Dagenais and Martin P. Robillard
School of Computer Science

McGill University
Montréal, QC, Canada

{bart,martin}@cs.mgill.ca

Abstract—Large frameworks and libraries require extensive
developer learning resources, such as documentation and mail-
ing lists, to be useful. Maintaining these learning resources is
challenging partly because they are not explicitly linked to the
frameworks’ API, and changes in the API are not reflected in
the learning resources. Automatically recovering traceability
links between an API and learning resources is notoriously
difficult due to the inherent ambiguity of unstructured natural
language. Code elements mentioned in documents are rarely
fully qualified, so readers need to understand the context in
which a code element is mentioned. We propose a technique
that identifies code-like terms in documents and links these
terms to specific code elements in an API, such as methods. In
an evaluation study with four open source systems, we found
that our technique had an average recall and precision of 96%.

I. INTRODUCTION

Reusable assets such as frameworks and libraries are
generally provided with resources to help software devel-
opers learn how to use these assets. Learning resources for
developers typically include tutorials, reference manuals, and
various mailing lists and forums. Writing, moderating, and
maintaining such resources require a considerable effort [1].
For example, the Spring Framework reference manual [2]
has more than 200 000 words and the Hibernate framework
forum [3] has more than 180 000 messages. Even a smaller
library such as HttpComponents [4], which contains 619
classes, has a developer documentation of 28 900 words
divided in two manuals, and a mailing list that includes more
than 8 500 messages.

Ideally, developer learning resources should be both ex-
tensive (covering all parts of the framework’s API) and
detailed (explaining many low-level programming patterns),
while being continually maintained to keep up with feature
additions, API usability problems, and community requests.
For instance, we observed in a recent study on developer
documentation that when a question is repeatedly asked on a
mailing list, framework contributors see this as an indication
that the documentation needs to be clarified [1]. In cases
where there are multiple support channels (chat, mailing
lists, forums) and multiple contributors operating in different
time zones, the contributors are often unaware that the same
code element (e.g., function) is the root cause of several
questions. Specifically, because the support channels and
the documentation are not explicitly linked to the API, it is

difficult for a contributor to determine which code elements
cause the most problems and need to be further explained
in the documentation.

The main challenge in linking code elements with existing
learning resources comes from the inherent ambiguity of
unstructured natural languages. For example, the user guide
of the Joda Time library [5] mentions in the middle of the
Date fields section: “... such as year() or monthOfYear()”.
Although it is clear from this sentence fragment that a
method named year is mentioned, there are 11 classes, not
all in the same hierarchy, that declare a year method in
Joda Time. The code-like term year could also refer to a
method declared in an external library frequently used with
Joda Time (e.g., Java Standard Library). In this particular
case, a human reader would know that the term refers to
DateTime.year() because the class DateTime is mentioned
at the beginning of the section, i.e., in the context of the
method year(). However, a simple mechanical match based
on the method name and ignoring the context of the term,
would fail. In fact, in the four open source projects we
studied (Section IV), we found that a mechanical match
would have failed to find the correct declaration of 89% of
the methods mentioned in the learning resources because the
methods were declared on average in 13.5 different types.

Several techniques have been previously proposed to link
project artifacts. However, there is currently no technique
that precisely links the documentation, the support chan-
nels and the API together at a fine level of granularity.
For example, Hipikat links coarse-grained project artifacts
such as code commits, emails, and bug reports based on
bug numbers [6]. Bacchelli et al. devised a technique that
identifies source code (e.g., code snippets) in emails and that
can link classes mentioned in the email to classes declared
in a codebase [7], but the technique does not work at the
sub-class level of granularity.

We propose a technique that automatically analyzes the
documentation and the support channel archives of an open
source project and that precisely links code-like terms (e.g.,
year()) to specific code elements (e.g., DateTime.year())
in the API of the documented framework or library. Our
technique considers the context in which a term is mentioned
and applies a set of filtering heuristics to ensure that terms
referring to external code elements are not spuriously linked.



We implemented our technique in a tool called RecoDoc
and applied it on four open source systems. We found that
our technique identified on average 96% of the code-like
terms (recall) and linked these terms to the correct code
element 96% of the time (precision). The high accuracy
of our technique will enable the development of reliable
approaches that can improve the learning resources based
on the relationships between these resources and the API.

Our contributions include (1) a meta-model to represent
documentation, support channels, code, and their relation-
ships, and (2) a fine-grained technique to link the contents of
developer learning resources with code elements, validated
on an extensive collection of artifacts from three open source
programs. RecoDoc is open source and publicly available [8].

We begin by presenting a meta-model to represent the
various project artifacts (Section II). Then, we describe the
linking technique we devised to associate the code-like terms
from the learning resources to the code elements of an API
(Section III). We present the evaluation we performed on
four open source projects in Section 4 and we discuss the
related work in Section 5.

II. PROJECT ARTIFACTS META-MODEL

A variety of information is needed to understand the
context in which a code-like term is mentioned. In the
documentation example of Figure 1, the method getParams

is declared in eight types in the HttpClient library. We can
precisely find which method declaration is referred to if we
know that:

1) getParams is mentioned in Section 1.1.
2) Section 1.1 is part of Section 1.
3) HttpGet is mentioned in Section 1, so it is in the context

for getParams.
4) HttpGet does not declare getParams, but inherits it

from HttpMessage, which declares getParams.
Based on our previous study on developer documenta-

tion [1] and on initial prototyping with various releases of the
Spring Framework (a large and complex Java project [2]),
we designed a meta-model to universally represent the doc-
umentation, support channels, and API of any open source
project. We use this meta-model to understand the context
in which a code-like term is mentioned. The main elements
of the meta-model are described in the next paragraphs and
are represented in Figure 2.
Project. A project may have different releases and each
release is associated with a particular codebase and docu-
mentation. For example, the HttpComponents project [4] has
three major releases (2.0, 3.0, and 4.0) with a corresponding
codebase and documentation.
Codebase. We consider that the API of a project consists of
code elements (e.g., class, method, field, parameter, XML
element). RecoDoc currently parses Java codebases, XML
schema files and DTD files. A code element may have

Section 1
HttpGet implements the HTTP GET request in HttpClient.

Section 1.1
Call getParams() to obtain the parameters of the get
request. You can call RedirectStrategy.getRedirect() to
determine the redirect location from a request.
Figure 1. Documentation Example Loosely Adapted from the HttpClient
tutorial.

Figure 2. Documentation Meta-Model

one or more parents (e.g., a Java class implements multiple
interfaces) and may declare other elements (e.g., a class
declares methods). Additionally, each kind of code elements
is internally represented by a specialized class that keeps
track of its specific attributes (e.g., a MethodCodeElement

has a list of parameters, not shown in Figure 2).

Document. The documentation of a project consists of
one or more documents. For example, the HttpComponents
project has two main documents: the HTTPClient and
HTTPCore tutorials. Each document has a list of pages and
each page has a list of sections (e.g., Section 1.1.2. HTTP
request). A section may be part of a larger section (e.g.,
Section 1.1.). As we explain in Section II, we consider a
documentation page to be equivalent to an HTML page and
not to a printed page.

Support Channel. A project may have one or more sup-
port channels such as a mailing list or a forum. For
example, the HttpComponents project has a mailing list,
httpclient-users. A support channel contains a list of
support threads, which contain a list of messages.

Code-like Terms and Code Snippets. Messages and doc-
umentation sections can refer to code-like terms and code
snippets. A code-like term is a series of characters that
matches a pattern associated with a code element kind (e.g.,
parentheses for functions, camel cases for types, anchors for
XML elements). For example, Section 1.1 in Figure 1 con-



tains three code-like terms: getParams, RedirectStrategy,
and getRedirect. A code-like term list, or term list, is a
sequence of code-like terms. We thus consider that the term
list RedirectStrategy.getRedirect contains two code-like
terms and that the first term is the parent of the second.

A code snippet is a small region of source code that can
be further divided into a list of code-like terms. For example,
in a Java code snippet, all method calls would be represented
by code-like terms.

Finally, a code-like term may refer to one or more code el-
ements in the codebase. For example, the term println from
the term list System.out.println might refer to all over-
loaded declarations of println in java.io.PrintStream.
Context. We consider that there are three levels of context
that can be associated with code-like terms. The immediate
context contains all the code-like terms in a term list. The
local context contains all the terms in the same documen-
tation section or the same support message. The global
context contains all the terms in the same documentation
page or in the same support thread. For example, the
immediate context, the local context, and the global context
for getRedirect in Figure 1 are respectively: {Redirect-
Strategy}, {RedirectStrategy, getParams}, {Redirect-
Strategy, getParams, HttpGet}. We consider that a code-
like term A is closer to a term B than to a term C if B is in a
more specific context than C. For example, getRedirect is
closer to getParams than to HttpGet.
Generating Models. We generate a documentation model
from a set of artifacts and recover the links between code-
like terms and code elements. Figure 3 demonstrates this
process.
Artifacts Collection. Our technique takes as input (1) the
source code of a system, (2) the URL of the documentation
index such as the table of contents of a reference manual,
and (3) the URL of a support channel archive such as the first
page of a forum. We then crawl the documentation and the
support channel archives to download the relevant HTML
pages (i.e., documentation pages, emails, forum threads).
All documentation tools and archives we are aware of can
produce an HTML output.
Model Generation. We use an extensible parsing infras-
tructure to generate the model from the project artifacts.
For example, the HTML output of documentation tool
DocBook [9] differs from the HTML output produced by the
Maven tool [10], so we created a MavenParser and a Doc-

BookParser that both extend a DocumentationParser. We
parse the Java source code using the Eclipse compiler [11].
Content Classification. Once the model is generated, the
parsing infrastructure classifies the content of the docu-
mentation and the support channel: it identifies the code-
like terms, the code snippets, and their probable kind (e.g.,
class, method, XML element, Java code snippet, XML code
snippet). We relied on existing techniques described in the

literature [7] and in our previous work [12] to implement
the content classification step. A brief description of the
classification process and the evaluation of its accuracy is
presented in a technical report [13].
Snippet Parsing. We further parse snippets to identify the
code-like terms within them. For example, we identify all
calls, declarations, and references in Java snippets. We use
Partial Program Analysis (PPA) to parse Java snippets [12].
PPA accepts partial Java programs (e.g., method bodies) and
produces type-resolved Abstract Syntax Trees by inferring
the missing declarations.
Linking. Finally, we attempt to link the code-like terms
to code elements in a specific project release. The linking
process is described in Section III.

Because a code-like term not identified by the content
classification step will not be considered by the linking step,
our parsing infrastructure favors recall over precision.

III. LINKING TECHNIQUE

We define the process of matching code-like terms to code
elements as a traceability link recovery process. We derived
this process by studying the Spring Framework [2] learning
resources and manually linking the code-like terms. The
code-like terms in Spring’s documentation and forum are
very difficult to link and we reasoned that if our technique
was accurate for Spring, it would be accurate for most Java
libraries and frameworks. For example, the class hierarchy
of Spring is deep (maximum depth of 8) and the framework
wraps many external libraries, so numerous code-like terms
actually refer to these external libraries and not to Spring.

While studying Spring’s learning resources, we found that
there are four major sources of ambiguity that make the link
recovery process challenging:
Declaration Ambiguity. Because human readers can gener-
ally infer the precise code elements mentioned in learning
resources by using the context in which the elements are
mentioned, code-like terms are rarely fully qualified. For in-
stance, method names are mentioned without their declaring
type and package imports are omitted.
Overload Ambiguity. A code-like term representing a
method is ambiguous if the method is overloaded and if
the code-like term does not indicate the number or type of
the parameter(s).
External Reference Ambiguity. Learning resources may
refer to code elements declared in external libraries such as
the Java Standard Library, a library used by the system, or
a library commonly used by the users of the system (e.g.,
jUnit). A code-like term may also refer to a technical concept
(e.g., HTTP) that has the same name as the code elements
in the target system. We must avoid incorrectly linking a
code-like term that refers to an external entity.
Language Ambiguity. We expect learning resources to con-
tain errors made by users and documentation writers. These



Figure 3. Parsing Artifacts and Recovering Traceability Links

errors include (1) typographical errors such as HtttpClient,
(2) case errors such as basiclineparser, (3) hierarchy er-
rors (e.g., Collection.add(), does not exist and potentially
refers to List.add()), and (4) parameter errors such as
forgetting a parameter in a call.

Given these sources of ambiguity and based on our experi-
ence with the Spring Framework, we make two assumptions
that guide our link recovery strategy:

1) Two code-like terms mentioned in close vicinity are
more likely to be related than terms mentioned further
apart.

2) Members like methods and fields are unlikely to be
mentioned without their declaring type also being men-
tioned in their context (as described in Section II).

A. Link Recovery Process

Our link recovery process takes as input a collection of
code-like terms. Each code-like term is associated with a
kind (e.g., method, field, class, annotation) and the other
terms present in its context (immediate, local, and global,
see Section II). The output of the link recovery operation is
a ranked list of code elements that are potentially referred
to by each code-like term. Given a collection of code-like
terms, we perform the following steps:

1) Link code-like terms that are classified as types (e.g.,
class, annotation).

2) Disambiguate types.
3) Link members (fields and methods).
4) Link misclassified terms.

Linking Types. Given a code-like term, we find all types
in the codebase whose name matches the term. We use the
fully qualified name if it is present in the term. Otherwise,
we search for code elements using only the simple name.

Disambiguating Classes. A code-like term that refers to a
type may be ambiguous if multiple types share the same
simple name (declaration ambiguity). For example, in the
Hibernate library, there are two Session classes: one is
declared in the org.hibernate package and the other in the
org.hibernate.classic package.

When a term can be linked to multiple types from different
packages, we count the number of types from each package
mentioned in the same support message or documentation
section. If a package is mentioned more frequently, the type
from that package is ranked first. Otherwise, we rank the

types by increasing order of package depth: we assume
that deep packages contain internal types that are less often
discussed than types in shallow packages.

Linking Members. Given a code-like term referring to a
member (method or field), we find all code elements of the
same kind that share the name of the term. For example, for
the term add(), we find all methods named add in the API.
Then, the potential code elements go through a pipeline of
filters that eliminate some elements or re-order the list of
potential elements. These filters rely on the types identified
in the previous steps and we describe them in Section III-B.

Linking Misclassified Terms. Our parser may occasionally
misclassify code-like terms. For example, the term HTTP in
the HttpClient tutorial may be classified as a field (e.g., Java
constants are written in uppercase). Although there is no
such field in the HttpClient codebase, there is a class with
that name (org.apache.http.protocol.HTTP).

In this step, we take all terms that were not linked to
any code elements in the previous steps. Then, we search
for any code element that have the same name as the term.
We group the potential code elements by their kind and we
attempt to link them in this order: types, methods, fields.
The linking technique is the same as in the previous steps.

No Fixed Point. Even though we discover new links at
each step and these links can potentially influence previous
linking steps, we stop after executing the fourth step. A
variation of our link recovery process would be to go through
all the linking steps until no more link can be discovered
or changed. We found during initial prototyping that the
additional complexity introduced by reaching a fixed point
is not warranted because in practice, further link recovery
passes don’t improve the linking accuracy. We confirmed
this early observation during the evaluation of our technique:
none of the linking errors could have been prevented by
executing another pass, but a more accurate parser and
better filtering heuristics would have improved the results
(Section IV).

B. Filtering Heuristics

Because of the four sources of ambiguity mentioned in
Section III, it often happens that a code-like term may be
linked to many potential code elements. For example, in the
evaluation of our technique, we found that on average, each



term classified as a method could be linked to 16.8 methods
declared in 13.5 different types.

We devised a pipeline of filtering heuristics that attempt to
resolve these ambiguities. The input of each filter is a code-
like term, its context, and a list of potential code elements.
Each filter eliminate potential code elements before passing
the term, its context, and the remaining code elements to
the next filter. Two filters, context name similarity filter
and abstract type filter, reorder the potential code elements
instead of eliminating them.

We say that a filter was activated if it modifies the list
of potential code elements. All filters are thus executed, but
they may not be activated if a previous filter removed all
potential code elements.

We describe each category of filters in the order they are
executed in the pipeline. Each category is represented in
Figure 3. We indicate the type of ambiguity these filters
address at the end of each filter.

1) External Reference Filter: This filter identifies code-
like terms that are likely referring to elements outside the
system’s codebase or concepts with names similar to code
elements. This filter considers that all types of the Java
Standard Library are external references. Then, the filter tries
to match the terms to a list of words that is specific to the
system being analyzed. For example, the term HttpClient

is both the name of a type and of a system. In the HttpClient
mailing list, this term is almost exclusively used to refer to
the system, unless the term appears in a code snippet. When
this filter identifies an external reference, it eliminates all the
potential code elements and the subsequent filters are never
activated. Although the list of system-specific words need
to be provided by the user, the number of words per system
is generally low (e.g., 5 words for HttpClient) and it does
not significantly impact the accuracy of our approach (see
Table V in Section IV-B) (External Reference Ambiguity)

2) Kind-Specific Filters: We implemented two filters that
are only activated for certain kinds of terms (methods).

Parameter Number. If the term includes the number of
parameters (e.g., put(key,value)), the filter eliminates po-
tential code elements that do not have the same number of
parameters. (Overload Ambiguity)

Parameter Types. If the code-like term includes the types
of the parameters, this filter eliminates the potential code
elements whose parameter types do not match. When the
parameters are given as arguments instead of types (e.g.,
put(obj,obj) vs. put(Object,Object)), we match the pa-
rameter types based on the name similarity: if the name
of a parameter in the term matches 80% of the name of
the parameter type and if more than half of the parameters
match, we consider that the term matches the code element.
The name similarity of two parameters is obtained by com-
puting the number of common pairs of characters divided by
the number of possible pairs. This is a metric that has been

found to be robust for assessing the similarity of code-related
strings [14, p.4]. We determined the thresholds during initial
prototyping of the approach. (Overload Ambiguity).

3) Context Filters: These filters look at the context for the
code-like term to determine which potential code element is
most likely being referred to. These filters all try to find the
declaring type of a term in the term’s context.

Context. Types that declare a member are often mentioned
in the vicinity of the member. Given a term classified as a
member (e.g., method, field), this filter tries to find in the
immediate context a type declaring the member. If it fails, it
tries to find such type in the local context. Finally, it tries to
find a type declaring the member in the global context. When
the filter finds one or more type that declares the member,
the filter eliminates all potential code elements that are not
declared by these types. (Declaration Ambiguity)

Context Hierarchy. This filter is similar to the Context filter,
but instead of looking for a type that declares a member, it
looks for a type whose ancestors or descendants declare the
member. As with the previous filter, the context hierarchy
filter first searches the immediate, the local, and then, the
global context. Context hierarchy filters are interleaved with
context filters, so, for instance, the local context hierarchy
filter is applied before the global context filter.

As an example of this filter, consider the section
“Using a MutableDateTime” of the JodaTime user
guide [5]. This section contains a snippet with the
following code-like term: toMutableDateTime().
There are three potential code elements whose
name match the term: {Instant.toMutableDateTime,
ReadableDateTime.toMutableDateTime, Abstract-

Instant.toMutableDateTime}. The filter thus looks in the
context for the term and finds that the local context contains
the following types: {MutableDateTime, DateTime}. None
of these types declares the toMutableDateTime method,
but one of their ancestors, ReadableDateTime does, so
the filter eliminates all potential code elements except
ReadableDateTime.toMutableDateTime

The context hierarchy filter takes into account that hier-
archy errors (a form of Language Ambiguity) can happen.
This is why we consider both ancestors and descendants of
a type. (Declaration and Language Ambiguity).

Context Name Similarity. In many cases, a code-like term
is prefixed not by its declaring type, but by a variable name.
In such cases, we can rely on name similarity between the
variables and the type names to disambiguate the term being
linked. For example, consider the term list ehcache.put()

from the Hibernate framework. ehcache does not match
any type name in Hibernate and there are more than 100
put methods declared in various types. The Context Name
Similarity filter would go through all the potential methods
and rank the methods according to how similar the name
of their declaring type is to ehcache. In this case, this filter



would rank first the method EhCache.put(). We use the
same similarity measure as the Parameter Types filter. This
filter is used only for code-like terms mentioned in English
sentences: code-like terms in snippets contain the declaring
type inferred by PPA. (Language Ambiguity)
Order of Execution. The context filters are executed in
this sequence: immediate, immediate hierarchy, local, local
hierarchy, global, global hierarchy, and context name simi-
larity. As soon as one of the context filter is activated, the
remaining filters are skipped. These filters try to find the
declaring class of a term in its context. Hence, when a filter
finds a declaring type close to a term, it ignores potential
types that are mentioned further apart.

4) Abstract Type Filter: This filter ranks the potential
code elements according to the number of descendants of
their declaring type. The rationale is that a member from the
most abstract type is likely to be more representative of the
code-like term than the member from the most specific type.
This filter privileges members from top-level types such as
interfaces over intermediate types such as abstract classes
implementing part of an interface. (Declaration Ambiguity)

5) Strict Filter: After we have executed all the filters,
there are three potential outcomes: (1) the filters eliminated
all potential code elements, so the term is not linked, (2)
only one potential element remains and it is linked to the
term, and (3) more than one potential element remains.

If there are more than one potential code element, we
select the first element from the ranked list if at least one of
the context filter was activated. This condition is based on
our second assumption that a member is rarely mentioned
without its declaring type. The context filters are thus highly
important in our filtering pipeline: they eliminate potential
code elements based on the context for a code-like term, and
they also determine whether a term will be linked at all.

We refer to this last filter as strict filtering because it
ensures that we do not spuriously link code-like terms that
look like code elements. (External Reference Ambiguity)

IV. EVALUATION

We implemented an infrastructure that retrieves, analyzes,
and classifies the content of developer learning resources,
and that recovers the links between these learning resources
and the codebase of a framework or a library. To link code-
like terms to code elements, we devised a pipeline of filtering
heuristics that are based on the hypothesis that code elements
referenced closer to each other are more likely to be related
than code elements referenced further apart. These filters are
responsible for resolving the four sources of ambiguities that
may occur when trying to link a term to a code element. We
designed this infrastructure based on our manual inspection
of the Spring Framework learning resources.

We conducted a study to assess the validity of our
hypothesis and the effectiveness of our filtering pipeline. The
following research questions guided our evaluation efforts:

Table I
TARGET SYSTEMS VERSION

System Version Support Channel Dates

Joda Time 1.6 4/1/2002-12/1/2010
HttpComponents 4.1 1/1/2008-12/1/2010
Hibernate 3.5 1/1/2005-12/1/2010
XStream 1.3.1 1/1/2005-12/1/2010

1) Can we correctly link code-like terms to code elements
with a high precision and recall?

2) What is the usage profile of the filtering heuristics? Are
they all necessary and do they resolve all ambiguities?

In the context of fully-automated linking approaches, we
consider a precision and recall of 90% to be necessary for
the approach to be workable. This threshold is arbitrary, but
reflects its intended use, where there is little opportunity to
manually correct errors.

A. Study Design

We answered the above questions by analyzing the code,
documentation, and support channels of four open source
systems (one release for each). For each project, we ran-
domly selected a list of documentation sections and support
messages that we then manually inspected. For each section
or message, we manually identified the code-like terms and
the code element the terms referred to. Finally, we executed
RecoDoc on the four projects: RecoDoc parsed the docu-
ments and the support channels, generated the corresponding
model, and linked the terms to the code elements. We then
compared our manual inspection to the results of RecoDoc.

Target Systems. We selected four open source systems writ-
ten in Java that vary in size, domain, documentation style,
and support channel types. Of the four target systems, only
the first system can be considered as focusing exclusively
on the Java programming language, i.e., the documentation
and support channel only contain references to the Java API.

Joda Time is a Java library that aims to replace the Date

and Calendar Java API classes [15]. Joda Time has more
than 79 KLOC. Its documentation has 13 761 words and
is written using Maven Doxia [16], and its main support
channel is a mailing list hosted on SourceForge. This library
does not need any configuration file to be used and is mostly
used by calling methods and instantiating classes.

HttpComponents is a Java library that simplifies the
communication with a web server [4]. HttpComponents is
split in two main components, HttpCore and HttpClient. It
has more than 85 KLOC. Its documentation is written in
DocBook [9] and it is split in two documents. The document
we studied, HttpClient Tutorial, has 15 275 words. The main
support channel for HttpComponents is a mailing list hosted
on Apache. The documentation and the support channel
often mention various protocols (e.g., HTTP). The library
is used by calling methods, instantiating classes and by
implementing interfaces.



Table II
UNITS OF ANALYSIS: RANDOM SAMPLE (S) AND POPULATION (P) CHARACTERISTICS

System Samp. Avg. Samp. Min Samp. Max Pop. Avg. Pop. Std. Dev. Samp. Avg. Pop. Avg. Samp. Avg. Pop. Avg
Words Words Words Words Words Terms Terms Elems Elems

Joda Doc. 142.4 2 951 157.5 176.2 14.8 17.2 7.9 8.3
Joda Chan. 229.6 14 1156 294.5 290.2 10.7 11.2 2.9 2.5
HC. Doc. 157.1 3 612 157.1 110.7 19.7 19.7 13.1 13.1
HC. Chan. 332.7 23 2041 373.5 592.0 12.3 13.3 2.7 1.5
Hib. Doc. 256.0 3 1155 249.8 203.2 16.5 15.4 3.9 5.7
Hib. Chan. 128.3 2 1095 116.02 253.3 19.2 11.4 2.6 1.4
XSt. Doc. 65.3 1 358 86.9 135.9 11.6 17.3 1.8 3.3
XSt. Chan. 208.8 25 800 210.2 176.6 14.1 14.1 2.6 2.1

Hibernate is an Object-Relational Mapping framework
(ORM) written in Java: it enables clients to persist objects
to a relational database [3]. It has more than 905 KLOC.
Its documentation is split in three main documents (it was
merged into two documents when we finished the study)
and the document we analyzed, the main reference manual,
has 70 900 words. The support channel is a forum. This
framework usually requires a configuration file written in
XML or a property file. Hibernate is used by calling meth-
ods, instantiating classes, making queries written in a custom
language (HQL), and using Java annotations.

The fourth project, XStream, is a Java library that enables
the persistence of object graphs into XML files. It has more
than 14 KLOC. Its documentation is written manually in
HTML and contains 25 560 words. The support channel is a
mailing list hosted on Gmane. The library does not need any
configuration file, but since it generates and reads XML files,
many XML snippets are presented in the learning resources.
The library is used by calling methods, instantiating classes,
and, in some rare scenarios, by implementing interfaces.

Table I shows the version of the target system we stud-
ied and the date range we used to randomly select mes-
sages from their support channel. Although JodaTime and
XStream have stayed backward compatible throughout their
history, the two other systems have undergone significant
changes (from 3.1 to 4.0 for HttpComponents and from 2.1
to 3.0 for Hibernate) so we only selected messages that
were posted after the first beta release had been published.
We wanted to make sure that a support message randomly
selected had a chance to contain a term referring to a code
element existing in the releases we studied. For all systems,
we selected the last available message at the time of the
evaluation study.

Unit of Analysis. We randomly selected 100 support mes-
sages and 100 documentation sections for each target sys-
tem: we will refer to these as units. We inspected each
unit and we manually identified the code snippets and the
code-like terms that might refer to a code element in the
system’s codebase. We linked each code-like term to the
most specific code element in the API, unless the code-
like term was referring to a set of code elements (e.g., all
implementations of the save() method), in which case, we

Table III
RESULTS OF LINK RECOVERY EVALUATION

System Inspection Recodoc Prec. Recall

Joda Doc. 807 763 (772) 96.2% 94.5%
Joda Chan. 291 279 (283) 96.5% 95.9%
HC. Doc. 1288 1272 (1273) 98.7% 98.8%
HC. Chan. 266 257 (260) 95.2% 96.6%
Hib. Doc. 361 349 (349) 89.7% 96.7%
Hib. Chan. 265 247 (247) 93.9% 93.2%
XSt. Doc. 175 170 (170) 95.5% 97.1%
XSt. Cha. 267 244 (255) 92.4% 91.4%

Total 3720 3581 (3609) 95.9% 96.3%

selected the most general code element such as a method
declared in an interface. We read the entire page or support
thread of each unit to select the code element that was the
most likely being referred to. Each unit took on average 5
minutes to inspect.

We did not identify and link code-like terms from Java
exception traces because they contain many code-like terms
that are more often related to bugs, and they introduce too
much noise. For example, a stack trace may contain more
than one hundred code-like terms whereas, on average, an
email message from our four target systems contains only
11.6 code-like terms.

Following our manual inspection, we lauched RecoDoc,
which analyzed all support messages and documentation
sections of the four projects. RecoDoc has to analyze all the
sections and support messages in the same page or support
thread as the units in our random sample because RecoDoc
may need to analyze the global context of a code-like term
(see Section III-B3).

Table II shows the characteristics of the units for each
target system: the average, the minimum, and the maximum
number of words, per selected unit (sample), the average
number of words and standard deviation for all units (popu-
lation), the average number of code-like terms for the sample
and the population, and the average number of code-like
terms that RecoDoc linked to a Java code element for the
sample and the population. The length (in words) of the units
in our random sample was always within 0.2 of the standard
deviation of the population. The wide range of units RecoDoc
analyzed provide an evidence that our approach can be used
in practice, for small or large units.



Table IV
CONTEXT FILTERS ACTIVATION DISTRIBUTION

System Immediate Immediate Local Local Global Global Ctx Name Total
Context Hierarchy Context Hierarchy Context Hierarchy Similarity

Joda Doc. 40.1% 6.3% 44.0% 7.6% 1.0% 0.0% 1.0% 100.0%
Joda Chan. 34.2% 7.3% 35.3% 7.2% 7.9% 2.5% 1.0% 95.4%
HC. Doc. 75.3% 14.0% 9.0% 0.2% 0.2% 0.5% 0.5% 99.7%
HC. Chan. 44.7% 7.5% 20.3% 5.4% 5.1% 2.2% 5.9% 91.1%
Hib. Doc. 44.9% 0.3% 33.9% 4.0% 15.8% 0.1% 0.0% 99.0%
Hib. Chan. 51.8% 1.1% 26.2% 6.0% 4.9% 0.7% 1.0% 91.7%
XSt. Doc. 59.8% 0.0% 31.1% 2.9% 5.0% 0.6% 0.6% 100.0%
XSt. Chan. 62.4% 0.7% 18.1% 5.4% 6.3% 0.1% 1.4% 94.4%

Total 51.7% 1.5% 25.8% 5.9% 5.1% 0.8% 1.2% 92.0%

B. Results

During our inspection of the units, we manually linked
code-like terms with code elements. We then compared our
findings with the results from RecoDoc. There were five
possible cases for each code-like term that we identified: (1)
we linked the term with the same code element as RecoDoc
(exact match), (2) we linked the term with a code element
that was a descendant, an ancestor, or an overloaded version
of the code element linked by RecoDoc (similar match), (3)
RecoDoc failed to link a term that we manually linked (false
negative), (4) RecoDoc linked a term that we did not link
(false positive), (5) RecoDoc linked a term that we linked to
another term (false negative and false positive).

Table III shows the results of our evaluation. The second
column, Insp., gives the number of code-like terms that
we linked to a code element during our inspection. The
third column, Recodoc, gives the number of terms that
RecoDoc correctly linked to a code element (exact matches).
The number in parentheses adds the similar matches to
the number of exact matches. The fourth column, Prec.
gives the precision of RecoDoc (exact matches divided by
number of links found by RecoDoc). Finally, the fifth column,
Recall, gives the recall of RecoDoc (exact matches divided
by number of links found by our inspection).

RecoDoc Accuracy. The results from Table III clearly
indicate that our technique can correctly link code-like terms
to code elements with a high precision and a high recall (all
over 90%, except the Hibernate documentation). RecoDoc
practically always linked code-like terms in snippets to
a correct code element because Partial Program Analysis
recovered most of the necessary type information.

More than half of the false positives (98 out of 123 code-
like terms that were incorrectly linked to a code element)
were caused by code-like terms referring to a concept that
had the same name as a code element (e.g., a Session).
These cases were often difficult to judge during our manual
inspection because it was not always clear if the writer was
referring to a concept or a code element. The other false
positives were caused by the linker not being able to resolve
a declaration ambiguity, i.e., more than one type declaring a
member were mentioned in the member’s context. In these

cases, the linker selected the first declaration in the list of
potential declarations. This also resulted in a false negative.

The majority of the missed code elements (54 out of 104
false negatives) were caused by the parser not identifying the
code-like terms in the first place. For example, in the support
channels, the parser missed code-like terms mostly because
of formatting inconsistencies such as words that appeared to
be in a quoted message but that were in the reply.

The remaining missing code elements were caused by
the linker selecting the wrong declaration because of a
declaration ambiguity (25) or because the strict filter and
the external reference filters were too conservative (25).

Filtering Heuristics. Of the 300 228 code-like terms that
RecoDoc linked in all units (not just the sample), 160 970
were type members such as a method. On average, each
of these code-like terms could potentially be linked to
16.8 members declared in 13.5 different types. This is an
evidence that linking members is technically challenging.
After going through all the filtering heuristics introduced
in Section III-B, each code-like term could potentially be
linked to only 0.7 member on average. This is an evidence
that our filtering heuristics are effective at reducing the
number of potential matches.

As we mentioned in Section III-B5, the context filters are
the most important filters of our pipeline because (1) they
eliminate potential code elements based on the context for a
term, and (2) at least one contextual filter must be activated
to link a term. Only one context filter can be activated for
each term. Table IV shows how often each context filter
was activated in the target systems (the numbers are only
for the 160 970 type members). For example, in the Joda
Time documentation, RecoDoc found the declaring class in
the immediate context of 40.1% of the code-like terms
representing methods or fields.

The sum of the usage profile of the context filters does not
reach 100% because our technique can link a code-like term
to a member without using any context filter. For example, in
the Joda Time Channel, RecoDoc found the declaring class
of 95.4% of the code-like terms in their context. RecoDoc
did not find the declaring class of the other 4.6% code-
like terms, but because these code-like terms could refer to



Table V
CAUSES OF CODE-LIKE TERMS NOT BEING LINKED

System Terms No Match Ext. Ref. Strict

Joda Doc. 386 89.1% 4.7% 6.2%
Joda Chan. 10059 76.8% 5.8% 17.3%
HC. Doc. 354 73.4% 10.7% 15.8%
HC. Chan. 46885 76.6% 7.0% 16.4%
Hib. Doc. 2080 41.4% 22.5% 36.1%
Hib. Chan. 885123 65.4% 8.0% 26.6%
XSt. Doc. 1250 90.4% 3.0% 6.6%
XSt. Chan. 25440 86.5% 5.0% 8.5%

Total 971577 66.6% 7.9% 25.5%

only one code element in the codebase, RecoDoc linked them
nonetheless (see Strict Filtering in Section III-B).

Our technique found the declaring class of 86.1% (51.7 +
1.5 + 25.8 + 5.9 + 1.2) of the terms in their immediate
or local context. This indicates that most documentation
sections and support messages are self-contained and can
be understood by readers without scanning the entire docu-
mentation page or support thread.

Unlinked Code-Like Terms. RecoDoc correctly chose to not
link 971 577 code-like terms that looked like a method or
a field, but that did not refer to any code element. Table V
shows the reasons why RecoDoc did not link these code-
like terms: (1) we did not find a code element whose name
matched the code-like term, (2) an external reference filter
was activated and eliminated all potential code elements of
a term, or (3) the strict filter was activated. For example,
for the Joda Time documentation, 89.1% of the 386 code-
like terms that RecoDoc correctly did not link did not match
any code element in the Joda Time codebase. 4.7% of these
unlinked terms were eliminated by the external reference
filters, and 6.2% were eliminated by the strict filtering pass.

Our technique did not link most code-like terms because
it could not find a code element with the same name. For
example, in HttpClient, the parser identified code-like terms
such as PUT, and GSSAPI, but the linker correctly ignored
these terms because they did not exist in the API.

The external reference filters were particularly useful in
the Hibernate documentation because the API declares many
methods whose name are the same as the methods in the
Java standard library. For example, in section 20.5.4 of
the Hibernate documentation, the term list.clear() refers
to the interface method java.util.List.clear() and the
Standard Library Classes filter correctly eliminated this term
even though Hibernate declared methods with a similar name
such as PersistentList.clear().

The strict filter ensured that a code-like term, which
looked like many potential members, was not linked if the
member’s declaring class was not in the term’s context.
This strategy was again useful when linking terms from the
Hibernate documentation because the Hibernate codebase
declares many methods that have a common name and that
are declared in example code. For instance, section 1.1.3

of the Hibernate documentation mentions the term getId().
This term refers to the code snippet presented earlier in the
section, but it can also be linked to 11 methods from 11 types
in the Hibernate codebase. Because none of these types are
mentioned in the page, the strict filter was correctly activated
and eliminated all potential code elements.

C. Threats to Validity

The accuracy of the results is subject to the investigators’
assessment of each benchmark code-like term. In some
cases, the exact target of a code-like term in the learning
resources was not perfectly clear. It is thus possible that
we erroneously linked some benchmark terms during our
manual inspection. However, every time our our manual
inspection and RecoDoc results diverged on these unclear
terms, we conservatively assumed that RecoDoc was wrong.
Hence, the accuracy of the reported results should represent
a lower-bound of the accuracy of RecoDoc. In addition, our
detailed classification is publicly available for inspection [8].

We avoided the issue of overfitting by evaluating our
technique on a different system than the one we used to
develop and test RecoDoc. Specifically, we developed the
parser and the linker based on our observations of the Spring
Framework project. Although our technique works well on
this large and complex system, we did not use it in our
evaluation to ensure that our results were not biased.

The external validity of our evaluation is limited by the
characteristics of target systems we analyzed. We selected
four different systems that vary widely in their choice of
documentation and support channel infrastructures, size,
domain, and usage patterns (e.g. calls to a Java API vs.
inheritance of a Java API and configuration files), but we
did not cover all kinds of systems, such as GUI toolkits.

We executed RecoDoc on the four target systems with
the same parameters. Only their parser extension and a
small subset of the external reference filter differed. As we
showed in the previous section, the external reference filters
eliminated only 7.5% of the code-like terms, so external
reference filters did not significantly impact the results.
Moreover, it would be possible to reduce the usage of
these custom filters by considering only the public API. For
example, in Hibernate, most classes and methods are never
used by users, but RecoDoc still tried to link code-like terms
to elements that were named after technical concepts (e.g.,
Select). We chose to consider the entire codebase because
there was no objective way to determine whether a type was
part of the public or internal API. However, it is likely that
a Hibernate developer could do this easily.

V. RELATED WORK

A variety of techniques have been proposed to link code
elements to natural language queries or general project
artifacts such as documents and bug reports.



For example, Natural Language Processing (NLP) and
information extraction techniques frequently rely on the
context of a term or the distance between two terms to
extract relevant relationships [17]. The presence of a term in
the context of another term is called a discourse feature. As
opposed to our technique, users of general NLP techniques
typically need to train the techniques on a corpus first to
develop a reliable classifier for a specialized task.

Antoniol et al. applied two information retrieval tech-
niques, the probabilistic model and the vector space model,
to find the pages in a reference manual that were related to a
class in a target system [18]. The authors found that the ac-
curacy of both approaches was limited. Information retrieval
techniques work best when the entities to be linked can be
expressed by several words. Information retrieval technique
are thus usually used to link coarse-grained artifacts like
entire documents and classes [19], [20], [21] whereas our
technique attempts to link single code-like terms to fine-
grained code elements.

Hipikat is a tool that generates a project memory from
a set of coarse-grained artifacts: bug reports, support mes-
sages, source code commits, and documents [6]. The tool
stores and indexes the artifacts and then determines whether
the artifacts are related. Hipikat uses several strategies to
recover the links between the artifacts: presence of bug
numbers, textual similarity (using a vector space model), etc.
The tool enables developers to query the project memory by
returning a set of artifacts related to the query.

XFinder is a tool that matches the steps of a tutorial
to the code elements that implement each step [22]. For
example, a tutorial might describe how to implement a text
editor using the Eclipse platform: implement interface X and
call method Y. Given a codebase implementing several text
editors, XFinder will find all the text editors and will map
the code elements implementing each editor to the steps of
the tutorial. As opposed to our technique, XFinder expects
the tutorial to be encoded in a specific format that identifies
the kind of the step and the artifacts.

Dekel and Herbsleb devised eMoose, a tool that enables
framework developers to annotate the API documentation
of a framework to highlight “directives” such as precondi-
tions [23]. When a developer writes code that calls a method
with an annotated directive, eMoose highlights the method
call in the code editor. Contrary to our technique, the links
between the documentation and the API must be encoded
manually by the framework developers.

Hill et al. built a technique that links query terms to
a set of matching methods in a codebase [24]. The NLP-
based technique analyzes the methods and their parameters
by tokenizing their identifiers and determining their part-
of-speech (POS) tags to compute multiple propositional
phrases (e.g., addItem(BookItem) becomes “add item” and
“add book”). Our technique could potentially try to match
sentence fragments with these propositional phrases.

Identifying Code Snippets. The need to identify code
elements in natural language documents is not recent and
several techniques have been devised to this end. One
technique and one study have particularly influenced our
parsing infrastructure.

Island Grammars is a general technique that enables the
identification of structured constructs such as code elements
in arbitrary content (e.g., an email message) [25]. The
main idea is to separate the content into small recognizable
constructs of interest (islands) and everything else (water).
Our parser implements a similar approach by first identifying
the code snippets (big islands) and then, by identifying
the smaller code elements (small islands) in the English
paragraphs (water).

Bacchelli et al. compared various techniques to identify
code elements and code snippets in email messages and
found that lightweight techniques based on regular expres-
sions performed better than information retrieval techniques
such as latent semantic indexing [7]. We implemented our
documentation and support channel parsers with regular
expressions based on the observations of this study.

VI. CONCLUSION

We presented a technique for precisely linking code-
like terms in developer documentation and support channels
to fine-grained code elements in a system’s codebase. We
designed our technique based on the assumption that code
elements mentioned in close vicinity are more likely to
be related than code elements mentioned further apart. We
identified four sources of ambiguity inherent to linking code-
like terms in unstructured natural language documents, and
we devised a pipeline of filtering heuristics to resolve these
ambiguities.

In an evaluation study with four different open source
systems, we showed that our technique could link code-
like terms to code elements with a high precision and recall
(96%). Additionally, our study showed that linking code-like
terms in documentation sections and support messages was
a difficult problem because each code-like term representing
a method could be associated on average with 16.8 methods
declared in 13.5 different types.

We plan to use the parsing and linking infrastructure we
built to analyze developer documentation and automatically
recommend improvements. For example, we can now easily
detect whether a code-like term referenced in a documen-
tation section is often mentioned in support messages: this
situation could indicate that the section needs to be clarified.

ACKNOWLEDGMENTS

The authors thank David Kawrykow and Tristan Ratchford
for their valuable comments on the paper. This project was
supported by NSERC and FQRNT.



REFERENCES

[1] B. Dagenais and M. P. Robillard, “Creating and Evolving
Developer Documentation: Understanding the Decisions of
Open Source Contributors,” in Proceedings of the Interna-
tional Symposium on Foundations of Software Engineering,
2010, pp. 127–136.

[2] “Spring Framework,” http://www.springsource.org/, accessed
31-Aug-2011.

[3] “Hibernate,” http://www.hibernate.org/, accessed 31-Aug-
2011.

[4] “HttpComponents,” http://hc.apache.org/, accessed 31-Aug-
2011.

[5] “Joda Time User Guide,” http://joda-time.sourceforge.net/
userguide.html, accessed 31-Aug-2011.

[6] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth,
“Hipikat: A Project Memory for Software Development,”
IEEE Transactions on Software Engineering, vol. 31, pp. 446–
465, 2005.

[7] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails
and source code artifacts,” in Proceedings of the 32nd In-
ternational Conference on Software Engineering, 2010, pp.
375–384.

[8] “Recodoc,” http://www.cs.mcgill.ca/∼swevo/recodoc,
accessed 31-Aug-2011.

[9] “DocBook,” http://www.docbook.org/, accessed 31-Aug-
2011.

[10] “Maven,” http://maven.apache.org/, accessed 31-Aug-2011.

[11] “Eclise Java Compiler,” http://www.eclipse.org/jdt/, accessed
31-Aug-2011.

[12] B. Dagenais and L. Hendren, “Enabling Static Analysis for
Partial Java Programs,” in Proceedings of the 23rd Conference
on Object-Oriented Programming Systems Languages and
Applications, 2008, pp. 313–328.

[13] B. Dagenais and M. P. Robillard, “Recovering Traceability
Links between an API and its Learning Resources,” School
of Computer Science, McGill University, Tech. Rep. SOCS-
TR-2011.6, 2011.

[14] Z. Xing and E. Stroulia, “Umldiff: an algorithm for object-
oriented design differencing,” in Proceedings of the Interna-
tional Conference on Automated Software Engineering, 2005,
pp. 54–65.

[15] “Joda Time,” http://joda-time.sourceforge.net/, accessed 31-
Aug-2011.

[16] “Maven Doxia,” http://maven.apache.org/doxia/index.html,
accessed 31-Aug-2011.

[17] M.-F. Moens, Information Extraction: Algorithms and
Prospects in a Retrieval Context. Springer, 2006.

[18] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo, “Recovering traceability links between code and
documentation,” IEEE Transactions of Software Engineering,
vol. 28, no. 10, pp. 970–983, 2002.

[19] X. Chen, “Extraction and visualization of traceability rela-
tionships between documents and source code,” in Proceed-
ings of the International Conference on Automated Software
Engineering, 2010, pp. 505–510.

[20] A. De Lucia, R. Oliveto, and G. Tortora, “Adams re-trace:
traceability link recovery via latent semantic indexing,” in
Proceedings of the 30th International Conference on Software
Engineering, 2008, pp. 839–842.

[21] J. Hsin-Yi, T. N. Nguyen, C. Ing-Xiang, H. Jaygarl, and C. K.
Chang, “Incremental latent semantic indexing for automatic
traceability link evolution management,” in Proceedings of
the 23rd International Conference on Automated Software
Engineering, 2008, pp. 59–68.

[22] B. Dagenais and H. Ossher, “Automatically locating frame-
work extension examples,” in Proceedings of the International
Symposium on Foundations of Software Engineering, 2008,
pp. 203–213.

[23] U. Dekel and J. D. Herbsleb, “Improving API Documentation
Usability with Knowledge Pushing,” in Proceedings of the
International Conference on Software Engineering, 2009, pp.
320–330.

[24] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically
capturing source code context of nl-queries for software main-
tenance and reuse,” in Proceedings of the of the International
Conference on Software Engineering, 2009, pp. 232–242.

[25] L. Moonen, “Generating robust parsers using island gram-
mars,” in Proceedings of the of the Working Conference on
Reverse Engineering, 2001, p. 13.


