
CloneTracker: Tool Support for Code Clone Management

Ekwa Duala-Ekoko and Martin P. Robillard
School of Computer Science

McGill University
Montréal, Québéc, Canada
{ekwa, martin}@cs.mcgill.ca

ABSTRACT
Code clones are generally considered to be an obstacle to
software maintenance. Research has provided evidence that
it may not always be practical, feasible, or cost-effective to
eliminate certain clone groups through refactoring. This pa-
per describes CloneTracker, an Eclipse plug-in that provides
support for tracking code clones in evolving software. With
CloneTracker, developers can specify clone groups they wish
to track, and the tool will automatically generate a clone
model that is robust to changes to the source code, and can
be shared with other collaborators of the project. When
future modifications intersect with tracked clones, Clone-
Tracker will notify the developer, provide support to con-
sistently apply changes to a corresponding clone region, and
provide support for updating the clone model. CloneTracker
complements existing techniques by providing support for
reusing knowledge about the location of clones in source
code, and support for keeping track of clones when refactor-
ing is not desirable.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Design

Keywords
Software Maintenance, Code Clone, Refactoring, Simultane-
ous Editing, Source Code Analysis

1. INTRODUCTION
Code clones — source code regions that match each other

with varying degrees of exactness — have been reported to
account for up to 30% of some large systems [1, 7]. Several
reasons have been suggested for the prevalence of code clones
in software systems, including the difficulty of factoring out

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

functionality using programming language constructs, and
the practice of writing code by example [9].

The presence of code clones in a system means that code
that realizes identical or similar logic is not co-located. This
duplication of implementation logic often leads to a necessity
to modify multiple regions of code consistently. A recent
study by Kim et al. found that up to 38% of code clones
changed consistently with their counterpart at least once in
their history [8]. Oversight to consistently apply changes
to clones may introduce bugs into the system. For these
reasons, much effort has been spent on the detection and
removal (through refactoring) of code clones from software
systems [4, 5, 7].

Figure 1: Example of Locally Unfactorable Clones

Unfortunately, refactoring code clones is not always feasible.
Kim et al. further showed that, in one case, up to 64% of
code clones that changed consistently could not be easily
refactored. For instance, the clone relationship in Figure 1,1

although identical in implementation logic, cannot be easily
removed using standard refactoring techniques because the
return types, and the objects referenced within the methods,
are different. Even when feasible, immediate refactoring is
not always beneficial since up to 72% of the code clones
studied disappeared within an average of eight check-ins in a
source code repository [8]. These observations indicate that,
in certain situations, it might be beneficial to document and
track clones as the system evolves.

Without tool support, developers must maintain a mental
note of these clone dependencies, and keep track of them as
the code base evolves. Consequently, existing clone relation-
ships in need of consistent update might be overlooked. One
possibility is to re-run the clone detection tool whenever the
source code is modified to determine if the changes intersect
with existing clone relationships. Clone detection is time
consuming [3], and when completed, the developer must typ-
ically go through a non-negligible list of clone groups that
possibly includes many uninteresting results. This problem

1Both methods from ...framework.Graph of the Violet UML
editor source code.

is further compounded by the difficulty to reuse previously-
generated data about clone locations since most clone de-
tection tools describe clone regions in terms of line ranges,
which are invalidated when modifications are made to code
regions preceding the clone block.

To address these problems, we developed CloneTracker,2

an Eclipse plug-in with support for robustly documenting
and keeping track of code clones in an evolving code base.
Our tool relies on clone documentation structures called
clone region descriptors (CRD), which we proposed in a
previous paper [3]. CRDs describes clone regions based on
a combination of syntactic, structural, and lexical informa-
tion. CloneTracker takes as input the output of a clone
detection tool, and automatically produces CRDs to repre-
sent clone regions for different clone groups. With Clone-
Tracker activated, clones are automatically tracked as the
code evolves, the developer is notified when modifications
intersect with the documented model, and support to simul-
taneous modify clone regions is provided. This way, software
developers can specify clone groups they wish to track once
and carry on with all their future modification tasks with
the knowledge that modifications to clone regions will be
detected and supported. CloneTracker also provides sup-
port for updating and sharing the clone model with project
collaborators.

Although we introduced CloneTracker in a previous pub-
lication [3], this paper provides a detailed description of the
most recent version of the tool, which is now released and
which has been improved (e.g., integrating change notifica-
tion with the Eclipse warning mechanism) and significantly
expanded with new features such as the model updating sup-
port described in Section 2.3, and the support for sharing
the model amongst collaborators described in Section 2.2.

2. THE CLONETRACKER PLUG-IN
As an example, we describe a usage scenario in which

a developer working on a modification to release 0.5.1 of
JasperReport 3 (30kLOC) informally observes a number of
code clones and decides to leverage the clone management
support of CloneTracker.

2.1 Generating the Clone Model
To provide support for code clone management, Clone-

Tracker needs as input the clone relationships to document
and monitor in a given code base. It relies on a clone detec-
tion tool that scans the source code of a system and iden-
tifies code regions of varying similarity represented as clone
groups. The current version of CloneTracker relies on Sim-
Scan,4 but can easily be adapted to use other tools.

Using CloneTracker, the developer sets a number of search
options for SimScan (Volume=“medium”, Similarity=“fairly
similar”, Quality/speed=“fast”) and runs the tool. After
approximately 21 minutes (WindowsVista, Intel Core2Duo-
2GHz, 2GB), the detection completes and returns a list of
258 clone groups comprising between 2 and 35 clone regions
(or individual clones). The output of Simscan is stored in a
comma-separated-values file, and each clone region is repre-
sented in terms of a file name and a line range. To show the

2CloneTracker is available at:
www.cs.mcgill.ca/∼swevo/clonetracker
3jasperforge.org
4blue-edge.bg/simscan

results of SimScan, and to allow the developer to indicate
which groups to track, CloneTracker provides a view with
two top-level nodes (Figure 2). The results of the clone de-
tection tool are displayed as children of the Clone Detector
node, and the documented clone groups as children of the
Clone Documentation node.

Figure 2: Clone Documentation View

Browsing the results, the developer notices a clone group of
potential interest (Group72): in class ...engine.base.JRBase-

ElementGroup, a large for block in method getElements is
a clone of a similar region in method getElements of class
...engine.fill.JRFillElementGroup. The developer observes
that these clone regions, although identical in control logic
and return type, cannot be easily refactored because they
manipulate different types of objects. To generate the clone
model, the developer transfers Group72 from the Clone De-
tector node to the Clone Documentation node through a
drag-and-drop operation. CloneTracker then automatically
translates the location (i.e., file name and a line range) of
the clone regions in the group into CRDs. A CRD describes
a clone region based on the characteristics (syntactic, struc-
tural, and lexical) of each block in which it is enclosed. For
instance, the CRD for code block A in Figure 3 is:

Figure 3: Block Represented by a CRD

...engine.fill/JRFillElementGroup.java,JRFillElementGroup
getElements()
if,this.children!=null
for,this.children.size()

In other words, this CRD points to the block corresponding
to the for statement with the“...children.size...” termination
predicate, nested within the if statement with the “...chil-
dren!=null...” predicate, within the scope of the getElements

method, etc. The clone model now describes clones in a way
that is resilient to changes in code blocks preceding the doc-
umented clone regions, or changes within the clone regions

Figure 4: Change Notification in CloneTracker

themselves. A detailed description of the CRD model, the
related algorithms, and an evaluation of the approach, can
be found in a previous paper [3]. To support team collab-
oration, CloneTracker persists the clone model within the
project under investigation, which can then be shared with
other developers. On start-up, the tool automatically de-
tects and loads the model.

2.2 Change Notification
Some time in the future, a different developer (with access

to the clone model) is assigned a modification task that in-
volves the method getElements of class ...engine.base.JRBase-
ElementGroup. Unbeknown to him, this code region is part of
a clone group that requires consistent modification. With-
out dedicated tool support, the developer can either repeat
the clone detection and investigation process that was per-
formed by the other developer, or risk introducing bugs by
modify only this clone region.

With CloneTracker activated, the developer is given im-
mediate notification upon modifying the clone region. Change
notification in CloneTracker is integrated with the Eclipse
warning mechanism. Our plug-in adds a warning to the
Eclipse Problems View (for easy access to the clone region),
and attaches an Eclipse warning marker at the beginning
of the clone region. The message of the warning describes
the clone group to which the modified region belongs (Fig-
ure 4). In our example, the developer is informed that the
modified code region has a cloning relationship with a re-
gion in the class ...engine.fill.JRFillElementGroup, and is
provided three QuickFix options.

The Show Me option points the developer to the group
to which the clone region belongs by highlighting the back-
ground of the row in the Clone Documentation node to yel-
low (Figure 2). The number of documented clone groups
may be non-trivial, and this functionality effectively elim-
inates the need to repeat the clone detection and investi-
gation process. Once identified, the developer can reason
about the cloning relationship of the group (e.g., to deter-
mine if consistent modification is necessary), and to consider
refactoring.

The Link/Unlink option provides support for consistently
modifying clone regions when necessary. When selected,
CloneTracker opens a corresponding clone region, and mod-
ifications made within common sub-regions of both clone re-
gions are echoed from the active clone region to the sibling
clone region. Details of the simultaneous editing algorithm,
its evaluation, and limitations are discussed in our previous
paper [3].

Figure 5: Updating the Clone Model

The Ignore/Resolved option is used to inform CloneTracker
to ignore the clone region. Once selected, the plug-in re-
moves the marker from the clone region and from the Eclipse
Problems View for the duration of the Eclipse session. Mod-
ifications to regions of this clone group during the current
session are not communicated to the developer.

2.3 Updating the Clone Model
Future modifications such as the copy-and-paste reuse of

a clone region, or its elimination, may invalidate the state of
the documented clone relationships; hence, periodic updates
of the clone model are necessary for it to remain accurate.
To provide this functionality, CloneTracker maintains a set
of all the source code files that were modified during a de-
velopment session. We define a development session as the
time between two updates to the clone model. The set of files
modified during this session is called the change-set, and the
list of files formed when the change-set is combined with the
files tracked by the clone model is called the delta. To update
the model, a developer invokes the clone detection tool with
the delta as parameter. Once the clone detection is com-
pleted, the plug-in generates CRDs for all the clone regions
identified in the delta, and performs a two-phase comparison
against the CRDs in the model to determine the status of
the documented clone relationships.

Determining Clone Group Status. In the first phase,
the plug-in compares past and current clone group informa-
tion, and assigns each group in the model a status based on
the results of the comparison. The status exists is assigned
to documented clone groups that were found in the delta,
and the status disappeared to those that were not. Disap-
pearance may be due to refactoring or divergence of clone
regions. CloneTracker identifies disappeared clone groups
with a Gx icon (Figure 5). To identify new clone groups
not in the model, the developer would have to repeat the
process explained in Section 2.1.

Group Evolution Pattern. In the second phase, the
plug-in determines how clone groups with status exists have
changed in the delta. This is accomplished by comparing
clone groups in the model against their counterparts in the
delta (Figure 6). The changes are described using a mod-
ified version of the evolution pattern of clone groups that
was introduced by Kim et al. [8].

• Group Unchanged : all the clone regions of the group
remained unchanged in the delta, and no new regions
were introduced.

• Group Expansion: at least one new clone region was
introduced in its counterpart in the delta (Figure 6).
For example, in Figure 5 (Group72), the developer is
informed that the clone region in our working example
was cloned in class JRDesignElementGroup in the delta.
CloneTracker identifies such groups with a G+ icon,
and the newly created clone regions with m+. Our tool
does not only inform the developer which clone groups
have changed, but also how each group changed.

• Group Shrinkage: at least one clone region does not
exist in its counterpart in the delta. For example, a
clone region was refactored or diverged from the rest
of the group. CloneTracker identifies such groups with
a G- icon, and the missing clone regions with m-.

• Group Substitution: an equal number of clone regions
are found in the delta, but some regions are not the
same as in the documented model. CloneTracker iden-
tifies such groups with a G* icon, the substituted re-
gion with m-, and the replacement with m+.

Figure 6: Evolutionary Patterns of Clone Groups

Once completed, the developer can update the model to re-
flect the desired status of the clones being tracked (e.g., the
developer would update the clone relationship of Group72

with the new relation in the delta).

3. RELATED WORK
Jablonski et al. proposed a tool for preventing errors that

might be introduced when renaming identifiers in code re-
gions formed through copy-and-paste operations [6]. Their
tool captures copy-and-paste operations, groups common
identifiers within the clone region from the AST of the code
base, and provides support for consistently modifying a group
of identifiers. Clonescape [2] is another clone management
approach based on intercepting copy-and-paste operations,
and generating clone relationships during a programming
session. With this approach, the copied and pasted code
forms, what the authors have called, a clone family, and are
forever linked even when they eventually diverge. To com-
pensate for diverging clone families, the tool provides a sim-
ilarity metric that indicates how far the child has diverged
from its parent. Clonescape also provides support for change
notification. Both tools describe clone regions based on file
name and line ranges, and are therefore unable to handle
clones introduced outside an IDE extended by their tool. In
addition, their tools’ reliance on copy-and-paste actions to

capture clone relationships implies they cannot be applied
to existing source code. In contrast, CloneTracker describes
clone regions using a combination of the structural, syntac-
tic, and lexical information of their enclosing code block,
and is therefore more resilient to changes than simple file
name and line ranges descriptions. In addition, the use of
external clone detection technology in CloneTracker implies
it can be applied to both existing and future source code.

The interested reader can find a discussion of the work
related to clone detection, Clone Region Descriptors, code
clone analysis, and simultaneous editing in our previous pa-
per [3].

4. CONCLUSIONS
The elimination of code clones through refactoring is not

always feasible or cost-effective. We described CloneTracker,
an Eclipse plug-in that provides support for code clone man-
agement in evolving software. Given the output of a clone
detection tool, CloneTracker automatically generates a clone
model based on Clone Region Descriptors, and provides sup-
port for change notification and simultaneous editing when
future modifications intersect with tracked clones. Clone-
Tracker is intended to complement refactoring and clone de-
tection tools by providing support for reusing the knowledge
acquired during clone detection and investigation activities,
and the long-term management of clones when refactoring
is not desirable.

Acknowledgments
The authors are grateful to Barthélémy Dagenais and the
anonymous reviewers for their valuable comments on this
paper. This work was supported by the Natural Sciences
and Engineering Research Council of Canada.

5. REFERENCES
[1] B. S. Baker. On finding duplication and near-duplication in

large software systems. In Proceedings of the Second Working
Conference on Reverse Engineering, pages 86–95, 1995.

[2] A. Chiu and D. Hirtle. Beyond clone detection.
www.cs.uwaterloo.ca/∼dhirtle/publications-
/beyond clone detection.pdf.

[3] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in
evolving software. In Proceedings of the 29th International
Conference on Software Engineering, pages 158–167, 2007.

[4] M. Fowler. Refactoring—Improving the Design of Existing
Code. Addison-Wesley, 2000.

[5] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring
support based on code clone analysis. In Proceedings of the
5th International Conference on Product Focused Software
Process Improvement, pages 220–233, 2004.

[6] P. Jablonski and D. Hou. CReN: A tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the IDE. In Proceedings of the Eclipse
Technology Exchange at OOPSLA, 2007.

[7] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multi-linguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[8] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An
empirical study of code clone genealogies. In Proceedings of
the Joint European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 187–196, 2005.

[9] B. M. Lange and T. G. Moher. Some strategies of reuse in an
object-oriented programming environment. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, pages 69–73, 1989.

