
Suade: Topology-Based Searches for Software Investigation

Frédéric Weigand Warr and Martin P. Robillard
School of Computer Science

McGill University
Montréal, QC, Canada

{fwwarr, martin}@cs.mcgill.ca

Abstract

The investigation of a software system prior to a mod-
ification task often constitutes an important fraction of the
overall effort associated with the task. We present Suade, an
Eclipse plug-in to automatically generate suggestions for
software investigation. The goal of Suade is to increase the
efficiency with which developers explore the source code by
recommending locations that are likely to be relevant to the
task. Based on a context of software elements (fields and
methods) explicitly specified by a developer, Suade auto-
matically generates other elements that are likely to be rel-
evant given the context, by analyzing the topology of struc-
tural dependencies in a software system.

1. Introduction

When trying to understand a software system in the con-
text of a modification task, standard search features, such
as the Eclipse1 Search, typically provide an initial way for
developers to discover program elements related to the task.
However, basic lexical search tools are often insufficient to
identify all the code and artifacts that need to be investi-
gated to complete the task. As an example, we can con-
sider the case of jEdit 4.1,2 an open-source text editor that
supports line folding.3 For a developer wishing to discover
how the folding feature is implemented, a natural first step
would be to search the code base for elements whose iden-
tifier contains the string “fold” or some variant. However,
such a search returns well over one hundred types, meth-
ods, and fields, less than half of which are actually related
to the folding feature. In the case of jEdit, this number of
false positives is due in part to the large number of elements
containing the word “folder”. Another limitation of lexical

1www.eclipse.org
2http://www.jedit.org
3We explain the folding feature in Section 5.

searches is that they do not identify relevant elements that
do not have the input keywords in their identifier.

Developers typically complement lexical searches by
performing manual investigation of the code through cross-
reference queries [7]. For instance, after having identified
method expandFold, a developer might use the Eclipse
Java Search to obtain all of the callers of expandFold.
However, this single-step, manual process can be tedious
and effort-intensive, especially in cases where there are
few lexical cues to help the developer choose which of the
search results are likely to be related to the task.

A potential strategy to help guide developers as they ex-
plore source code is to provide them with recommendations
that could help steer them towards code elements relevant
to a task. One solution, proposed by Robillard [6] and im-
plemented in the Suade plug-in, is to analyze the topology
of the structural dependencies of elements that have already
been identified as relevant. Given a set of elements deemed
relevant (the “context”), Suade will (1) search the code
base for elements that have a structural relation to these el-
ements, (2) analyze the patterns of interactions involving
these elements, and (3) rank the related elements accord-
ing to heuristics applied to the topology of program depen-
dencies involving these elements. Our hypothesis is that in
many cases relevant elements can be identified more effi-
ciently through a single Suade topology-based search than
through multiple, iterative cross-reference queries. Empir-
ical evaluation has provided initial evidence in support of
this hypothesis [6].

2. Related Work

Tool support for program investigation and understand-
ing was initially developed in the form of standalone lex-
ical search tools (e.g., grep [1]) and program databases
(e.g., CIA [2], and XREFDB [4]). Basic program search
and cross-referencing tools have also been provided as part
of integrated development environments for many decades
(e.g., in Interlisp [9], Smalltalk [3], and Eclipse [5]).



Using such basic tools effectively, however, requires a
certain familiarity with the source code. Furthermore, the
effectiveness of the tools depends upon the investigation
skills and intuition of the user.

Over the years, a number of approaches have been pro-
posed that increase the level of automated support for pro-
gram investigation. Repository mining techniques (e.g.
Zimmermann et al. [12]) provide recommendations for soft-
ware investigation based on the principle that code loca-
tions that were modified together in the past are probably
related. Dynamic feature location approaches (e.g. Wilde
and Scully [10]) can help determine which elements are
part of the implementation of a certain feature by inspect-
ing which elements are called during the execution of the
program when the feature is used. Other methods analyze a
textual description of a feature to find elements with related
identifiers in the code base (e.g. and Zhao et al. [11]). A
more complete coverage of related work is presented in a
previous paper [6].

Our topology-based search technique complements ex-
isting approaches by offering developers a middle-ground
between basic search tools and highly-automated tech-
niques. It also expands the range of search techniques avail-
able to developers by analyzing a type of information latent
in a software project: the topology of dependencies between
program elements.

3. Specifying Context with ConcernMapper

To generate suggestions for software investigation,
Suade needs a certain amount of “context” information. In
our case, the context is a set of program elements (methods
or fields) explicitly specified as relevant by the user. This set
of elements can be discovered using any method available.
Based on our experience and observations, an initial con-
text for software investigation is often formed by selecting
elements from the results of a text search. However, other
avenues are also possible (e.g., using cues present in a bug
report, advice from a colleague, etc.). The usage scenario
for Suade assumes the presence of a “starter set”, or context,
but is independent from the method used to produce the set.

To allow developers to specify the context for Suade
searches, we use ConcernMapper [8]. ConcernMapper is an
Eclipse plug-in that allows developers to select a subset of
elements from a project’s code base and organize this subset
into high-level abstractions called concerns. ConcernMap-
per’s main goal is to provide developers with a solution for
performing tasks associated with high-level concerns whose
source code is scattered throughout the software system.

Essentially, ConcernMapper provides a way to map a
subset of the methods and fields in a software project to
individual concerns. ConcernMapper achieves this func-
tionality by providing an Eclipse view that displays the el-

Figure 1. The ConcernMapper view showing
a concern containing three methods from the
JEditTextArea class

ements that are relevant to their respective concerns (Fig-
ure 1). Developers can create concerns, which are simply
labels, and add elements to these concerns by dragging the
elements into a concern from any other view of the Eclipse
platform. Concern models can then be saved to a file, al-
lowing future developers to retrieve at a later stage the list
of elements that are relevant to a task.

Each element belonging to a concern in ConcernMapper
is associated with a degree value that quantitatively repre-
sents the extent to which the element is relevant to its asso-
ciated concern.

4. The Suade Plug-in

The Suade4 plug-in recommends other potentially-
relevant elements in the code based on the elements tracked
by ConcernMapper. The typical usage scenario for Suade
is that of a software developer who does not know what
elements are relevant to a software modification task. Af-
ter adding a few elements that may be of interest to a new
concern in ConcernMapper (or by loading a previously cre-
ated concern associated with a similar task), the developer
can obtain a sorted list of elements that are likely to be of
interest given the elements already specified. Suade gener-
ates suggestions by building a program database, expanding
the context with a list of structurally-related elements, and
sorting the suggested elements according to a pair of heuris-
tics. The process can then be iterated after the most relevant
suggestions are added to the concern, providing further re-
finement to the set of suggestions.

4.1. Creating the program database

At the base of the Suade plug-in is a fact extraction en-
gine that parses the source code of a project and builds a
database of its elements (classes, field, methods), and their
relations (e.g. field accesses, method calls). The fact ex-
traction and program database creation functionalities of

4The name Suade is taken from the Latin verb suadere meaning “to
recommend, to suggest”.



Figure 2. The Suade view containing a ranked list of suggestions

Suade are supported by the JayFX package. 5 Since JayFX
keeps the program database in memory, after an initial load-
ing phase, suggestions can be generated close to instanta-
neously when dealing with a code base that is not modified
between iterations.

4.2. Expanding the context

When the user requests suggestions, the Suade plug-in
uses the program database to retrieve all the elements that
have a direct structural relation to any of the elements in the
context. The relations that are used in the current imple-
mentation of Suade are calling a method, being called by a
method, accessing a field and being accessed by a method.
We call the elements obtained in this phase the related ele-
ments.

4.3. Sorting generated results

Suade ranks the results by their potential interest to the
developer using a dedicated algorithm. We present only a
high-level overview of this algorithm here. The interested
reader can find the detailed description in a separate pa-
per [6]. This algorithm takes into account two main charac-
teristics of the relations between elements: specificity and
reinforcement. Specificity evaluates the “uniqueness” of a
relation between a context element and a related element.
For example, if a context element x is related to five other
elements x1. . . x5, and another context element y is related
to two other elements y1 and y2, then we say that y1 and y2

are more specific than x1. . . x5. Based on the intuition that
specific elements are more strongly related to the context,
our heuristic ranks specific elements as more interesting.

Reinforcement evaluates the strength of the intersection
between the context and a set of related element. For exam-
ple, if a context element x is related to five other elements,
x1. . . x5, and four of these elements (x1. . . x4) are already
in the context, then we say that the remaining element (x5

in our case), is heavily reinforced. On the other hand, if

5www.cs.mcgill.ca/∼swevo/jayfx

none of the elements in the set is also in the context, we do
not consider the elements to be reinforced. Based on the in-
tuition that reinforced elements are more strongly related to
the context than unreinforced elements, our heuristic ranks
reinforced elements as more interesting.

The algorithm starts by analyzing each relation type sep-
arately. First, we obtain, for each element in the context, the
set of all elements related to it by the relation type currently
analyzed. For example, for the relation type “called by”, we
obtain all callers of each method in the context. We then use
a formula to produce, for each related element, a degree of
potential interest for the element that is based on our speci-
ficity/reinforcement criterion. We then merge the results of
the analysis of each relation, taking into consideration that
if elements are related by several types of relations, their
potential interest is greater.

In the end, our algorithm produces a single fuzzy set of
elements directly related to the context whose correspond-
ing degree (ranging from 0 to 1) represents an estimate of
the element’s potential relevance to the task. Furthermore,
Suade also displays the reasons for which each of the ele-
ments is suggested (i.e. its relations to elements of the orig-
inal context). Suade presents the suggestions are presented
in a table as shown in Figure 2.

5. Example

jEdit’s folding feature allows users to hide portions of
text by collapsing them into single lines with a visual cue
representing the fold and allowing users to expand it. By
clicking on the fold marker, the user can switch between an
expanded or a collapsed state. However, when in the col-
lapsed state, clicking the fold marker will only expand one
level of folding (i.e., if the expanded text has subsections
that were folded, they remain folded). We posit a modi-
fication scenario in which a developer is asked to modify
the folding behaviour to automatically expand every nested
level of folding when a user clicks on the fold marker.

The first step for the developer is to identify a few el-
ements that could be related to the implementation of the
folding feature. In this example the developer does not have



access to information from previous tasks or other develop-
ers, so a new concern is created in ConcernMapper. By
using Eclipse’s Java search feature, the developer executes
a search for elements containing “fold” in their identifiers.
The search returns many results, but several are from the
same class, JEditTextArea. The developer selects meth-
ods from this class that could be related to the task at hand
based on textual cues: methods expandFold(boolean),
selectFold() and selectFold(int).

All the developer has to do now to generate suggestions
is to drag the concern of interest from the ConcernMapper
view and drop it onto the Suade view. When the analysis
completes, an ordered list of elements is presented to the de-
veloper, with the expandFold(int, boolean) method
of the FoldVisibilityManager class as the 4th result in
the list.

Elements suggested by Suade that are deemed of inter-
est by the developer are then added to the initial context
in the ConcernMapper view. In our example, the devel-
oper decides that the FoldVisibilityManager’s method
expandFold(int, boolean) is related to the task, and
adds it to the concern in ConcernMapper. Now that the set
of related elements has changed, the set of elements sug-
gested by Suade will be different. Iterating the process of
generating suggestions and adding elements to the context
is likely to increase the developer’s chances of finding the
right elements quickly. In fact, in our example the developer
would be likely to have been able to complete the task by
analysing the number one element suggested on the second
iteration (Figure 2).

6. Summary and Future Work

To perform software modification tasks effectively, a de-
veloper must first have a good understanding of how the fea-
ture to be modified is implemented, and of where the related
elements are located in the code base. Program investiga-
tion is time-consuming and error-prone. To help develop-
ers quickly find relevant elements and understand their re-
lationships with the other elements that implement the fea-
ture of interest, we developed Suade, an Eclipse plug-in for
automatic generation of suggestions for program investiga-
tion. Suade does not replace traditional program investiga-
tion techniques such as searches, call hierarchies or package
browsing, but, in the absence of strong investigation cues,
it does allow to focus the developer’s attention to elements
likely to be relevant.

We are currently working on providing incremental up-
dates to the program database in order to reduce suggestion
generation time when dealing with a modified code base.
Future work will also include expanding the set of analyzed
relations and providing support for an open ended set of re-
lations.

Availability

The Suade Eclipse plug-in is free and available at
http://www.cs.mcgill.ca/∼swevo/suade.

Acknowledgements

This work was supported by an NSERC Discovery Grant
and an IBM Eclipse Innovation Award.

References

[1] A. V. Aho. Pattern matching in strings. In R. V. Book,
editor, Formal Language Theory: Perspectives and Open
Problems, pages 325–347. Academic Press, New York, NY,
USA, 1980.

[2] Y.-F. Chen, M. Y. Nishimoto, and C. Ramamoorthy. The
C information abstraction system. IEEE Transactions on
Software Engineering, 16(3):325–334, March 1990.

[3] A. Goldberg. Smalltalk-80: The Interactive Programming
Environment. Addison-Wesley Publishing Company, Read-
ing, MA, USA, 1984.

[4] M. Lejter, S. Meyers, and S. P. Reiss. Support for maintain-
ing object-oriented programs. IEEE Transactions on Soft-
ware Engineering, 18(12):1045–1052, December 1992.

[5] Object Technology International, Inc. Eclipse platform tech-
nical overview. White Paper, 2001.

[6] M. P. Robillard. Automatic generation of suggestions for
program investigation. In Proceedings of the Joint European
Software Engineering Conference and ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages
11–20, 2005.

[7] M. P. Robillard, W. Coelho, and G. C. Murphy. How ef-
fective developers investigate source code: An exploratory
study. IEEE Transactions on Software Engineering,
30(12):889–903, 2004.

[8] M. P. Robillard and F. Weigand-Warr. ConcernMapper: sim-
ple view-based separation of scattered concerns. In Proceed-
ings of the 2005 OOPSLA Workshop on Eclipse technology
eXchange, pages 65–69, 2005.

[9] M. Sanella. The Interlisp-D Reference Manual. Xerox Cor-
poration, Palo Alto, CA, USA, 1983.

[10] N. Wilde and M. C. Scully. Software reconnaissance: Map-
ping program features to code. Software Maintenance: Re-
search and Practice, 7:49–62, 1995.

[11] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNIAFL:
Towards a static non-interactive approach to feature loca-
tion. In Proceedings of the 26th International Conference
on Software Engineering, pages 293–303, 2004.

[12] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Pro-
ceedings of the 26th International Conference on Software
Engineering, pages 563–572, 2004.


