
In Proceedings of the ICSE Workshop on Directions in Software Engineering Environments, pages 83–88, IEE, May 2004

Program Navigation Analysis to Support
Task-aware Software Development Environments

Martin P. Robillard and Gail C. Murphy
Department of Computer Science

University of British Columbia, Canada
{mrobilla,murphy}@cs.ubc.ca

Abstract

Performing a software modification requires a developer
to investigate a program to find and understand the code
relevant to the modification task. Although standard pro-
gram investigation tools can help developers in this activ-
ity, developers often get lost in the complex web of infor-
mation available about a program.

To address this problem we propose to use program nav-
igation analysis, a technique to record and analyze the ac-
tions of a developer using a software development envi-
ronment in order to infer the current task and the subset
of a program relevant to this task. Our hypothesis is that
we can use the results of program navigation analysis to
dynamically configure the interface of a software develop-
ment environment in a way that alleviates the problems of
disorientation experienced by developers.

In this paper, we define program navigation analysis and
present an overview of its underpinnings, summarize our
experience with the technique, highlight important techni-
cal challenges, and discuss the benefits that can be reaped
from use of the technique.

1. Introduction

Before performing a modification to a software system,
developers must usually investigate the system to find and
understand the source code relevant to the change task [2].
The large size of most production software systems, and the
pressures inherent on development and maintenance tasks,
render the program exploration activity a serious challenge
to developers [3]. These factors make it unrealistic to ex-
pect developers to master the complete details of a system’s
design and implementation prior to undertaking a modifi-
cation. Rather, a developer must efficiently discover a suf-
ficient amount of the structure and behavior of the program
relevant to a modification [21].

Many tools have been developed to support developers
in the task of identifying information about a program that
is relevant to a change task. In particular, cross-referencing
tools, such as code browsers and program databases, allow
developers to perform queries that elicit the structural rela-
tions between different elements in a program. The main
purpose of cross-referencing tools is to provide develop-
ers with information that cannot be obtained easily through
source code inspection [5, 8, 14, 16, 22]. Currently, support
for performing cross-reference queries is a standard feature
of most modern software development environments, such
as the Eclipse platform [15].

Although cross-referencing tools allow developers to
quickly identify related parts of a program that are not co-
located, their use leads to non-sequential patterns of navi-
gation through a program [4] that can lead to problems of
“disorientation” that have been observed and extensively
studied in the context of hypertext navigation [6, 7, 13].
For example, one problem often encountered by developers
investigating a program is theEmbedded Digression Prob-
lem:

...pursuing multiple paths and digressions leads
to a lot of trouble such as: losing your place, for-
getting to return from digressions, and neglecting
to pursue digressions you intended to follow.
[7, p. 408].

As an illustration of this problem, we can take the case
of a developer investigating the code implementing a ma-
trix calculation algorithm. At some point, the developer
may realize that the global memory allocation strategy in
the program investigated also needs to be understood [1],
and then pursue a thread of investigation relevant to the
memory allocation strategy. Once this aspect is understood,
the developer might become “lost”, and not remember how
or where to pursue the investigation of the matrix calcula-
tion algorithm.



Various approaches have been proposed to alleviate the
problem of orientation in complex data structures. Such
approaches include history lists and similar features [7],vi-
sual displays that support the metaphor of physical naviga-
tion [9, 13], and tools that can record the paths taken by
developers while investigating programs [12]. However,
although they present program information in a way that
may facilitate navigation, these approaches do not address
the fundamental problem of helping developers focus on
the information relevant to their task. We believe that task-
specific support for program navigation is essential for de-
velopers to keep their bearing in what would otherwise be
an overwhelming amount of information. Unfortunately, it
is practically impossible to determine what is relevant to a
task through standard program analyses. As Woods et al.
have observed in a different context, the discovery of rele-
vant information is inevitably a human-centric activity.

Just as machine diagnosis can err, we cannot ex-
pect machine agents to consistently and correctly
identify all of the data that is relevant and signif-
icant in a particular context in order to bring it to
the attention of the human practitioner. It always
takes cognitive work to find the significance of
data. [24, p. 31]

Based on this fundamental observation, we are inter-
ested in developing software development environments
that are sensitive to the activities of a developer, and that
can contextualize their interface based on an interpretation
of the task being performed. For this purpose, we define
and motivate the need for a new type of analysis, called
program navigation analysis, which focuses on the inter-
pretation of the navigation activities of developers as they
investigate a program, with the purpose of facilitating pro-
gram investigation in the context of a specific task.

In the rest of this paper, we define program naviga-
tion analysis and present an overview of its underpinnings
(Section 2), summarize our experience with the technique
(Section 3), highlight important technical challenges (Sec-
tion 4), and discuss benefits that can be reaped from use of
the technique (Section 5).

2. Program Navigation Analysis

Generally speaking, we defineprogram navigation
analysisas the process of collecting data about the program
investigation activities of a developer during a software en-
gineering task, and analyzing this data to support the same
or a different software engineering task.

The idea of using data about the navigation paths of tool
users has long been a desirable goal, and research address-
ing this ideal finds its source in work on user interfaces and
human-computer interaction:

A nice outcome would be to have a personal-
ized summary of what has been examined during
a browsing session that could later be used for
analysis and integration [7, p. 408].

An early example in the direction of program navigation
analysis is the idea of recording how much different parts
of a document have been respectively read and edited, and
of displaying information about thisedit andread wearas
graphical annotations in the scrollbars of a text editor [10].

Later work based on this idea includeFootprints, a
project to help users navigate effectively through a web of
information by analyzing a record of previous interaction
between people and a system:

Work done by users to solve problems in infor-
mation systems should leave traces. These traces
should be accessible to future users who could
take advantage of the work done in the past to
make their own problem-solving easier.
[23, p. 270]

Research in the context of theFootprints project has
led to the development of advanced web navigation tools
that have been shown to help users perform information-
gathering tasks more effectively.

In the context of software engineering, we propose the
more ambitious goal of using program navigation analysis
to automatically tailor software development environments
to a software engineeringtaskbased on an inference of the
code relevant to thetask. This goal can be contrasted with
the purpose of user-adaptive systems, which is to adapt to
particularusers[11].

With a mature program navigation analysis technology
available, we hope to be able to produce task-aware soft-
ware development environments that can reduce the prob-
lem of disorientation experienced by developers during
program investigation activities by automatically determin-
ing and visually emphasizing the subset of a program likely
to be related to the task.

3. Our Experience

As part of a research project, we developed an algorithm
to automatically infer clusters of program elements poten-
tially related to a task based on an analysis of the source
code a developer examined during a program investigation
session [18]. The motivation for this research was to find
an inexpensive way to generate artifacts describing how
and where different concerns1 are implemented in a sys-

1We define the termconcernas any high-level concept a developer
needs to consider during a software engineering task, and that has a cor-
responding mapping in the source code of a system.

2



tem. With appropriate tool support [19], concern descrip-
tions have been shown to help developers perform software
evolution tasks more systematically [17].

The technique we developed is based on an analysis of
all the code that becomes visible in the editor window of
a software development environment during a program in-
vestigation session. Specifically, our technique comprises
three phases: a transcription phase, an analysis phase, and
a clustering phase.

Transcription Phase In this phase, a machine-readable
transcript summarizing the investigation session is pro-
duced. Information about the code viewed by a developer
can be captured in a variety of ways. We decided to capture
a list of navigation events each comprising the following
information:

• The set of all the methods completely or partially vis-
ible in the active editor window at any point in time
(fields are ignored for reasons described in Section 4).

• How each event was produced, distinguishing be-
tween five potential actions: choosing an method from
a browser, performing a keyword search, performing a
cross-reference search, scrolling, and recalling a pre-
viously active window.

• The target of the action (e.g., in the case where a
method is selected from a browser, we record which
method was selected).

In our initial research, we produced the navigation tran-
scripts based on a manual coding of screen movies recorded
during empirical studies of program evolution. It is under-
stood that a mature version of this technology should sup-
port the automatic production of navigation transcripts.

Analysis Phase In this phase, an inference program scans
the navigation transcript and assigns acorrelation metric
to all pairs of methods present in the transcript based on
how “related” the two methods in the pair were during the
program investigation. A number of factors are considered
in this analysis, but the general intuition is that methods that
were heavily examined in direct or close sequence probably
are related in the context of aconcern(or task). The details
of the algorithm can be found in a separate article [18].

Clustering phase In the final phase, the inference pro-
gram selects a user-specified number of pairs in decreas-
ing value of correlation and groups elements into concerns
by taking the transitive closure of each pair. For example,
if the pairs [A,B][B,C][D,E] are found to have the high-
est correlation metric, the inference program produces the
concerns [A,B,C] and [D,E].

Empirical evaluation of this technique on two different
program investigation tasks of 45 and 60 minutes involv-
ing a total of five different developers, showed that in every
case the algorithm could infer a core set of elements rep-
resenting important (and in some cases, critical) methods
related to a task. In each case, the results were produced
with a minimum amount of noise. As a typical example,
for one subject, three useful concerns were found in a list
of seven concerns proposed by the algorithm. This project
thus showed the feasibility of inferring code relevant to a
task based on program navigation activities.

With the algorithm summarized above, the performance
of program navigation analysis is not an issue. For inves-
tigation sessions of one hour, the time required to generate
results using a sub-optimal implementation was in the order
of a few seconds. At this point we do not believe compu-
tational complexity to be an impediment to the adoption of
program navigation analysis. As for the automatic genera-
tion of navigation transcripts, we are currently investigating
potential ways to instrument the Eclipse platform to auto-
matically produce the navigation transcripts, and we do not
foresee this issue to be a fundamental hurdle.

4. Technical Challenges

In our experience, we found that the most complex is-
sues related to program navigation analysis lie in generat-
ing precise results that require a minimum of user input
to correct or filter. In this context, we now discuss the
four important challenges we have identified when trying
to improve the precision of our program navigation analy-
sis technique: determining what a developer isreally ex-
amining, accounting for time, identifying the start point of
a task, and inferring the nature of a task. Although these
challenges were identified as part our our work on concern
inference algorithms, we believe that they are general chal-
lenges inherent to the concept of program navigation anal-
ysis.

Inferring the code a developer is examining When in-
vestigating a program, a lot of the information a developer
accesses is irrelevant and mentally discarded. For example,
when studying the code for a short method, a developer will
typically have in his field of view the code for other meth-
ods above or below the method of interest in the file. In this
case, can we be sure that the developer is only investigating
one method? In other words, how can we determine with
accuracy the subset of methods on the screen that is actively
examined by a developer? This problem is exacerbated in
the case of field declarations, which typically occupy a very
small fraction of the source code on display in an editor.
For this reason, our current algorithm ignores field declara-
tions in most situations. In the case of methods, we use a

3



stochastic approach that involves assigning artificial prob-
abilities to the different methods visible based of a number
of factors such as whether the method was accessed explic-
itly or revealed through scrolling. We believe this type of
stochastic approach to be generally more desirable than al-
ternatives such as controlling the number of lines of source
code displayed in an editor window. However, much work
needs to be done to improve the parameters of the algo-
rithm. Ideally, configurations for the probabilities involved
in determining which method is examined should be based
on empirical data, and should include self-training feed-
back.

Accounting for time Our current program navigation
analysis algorithm does not account for the time a devel-
oper spends examining each method. However, we believe
that important gains in precision can be obtained by factor-
ing in such time data. Unfortunately, without specialized
devices, it is generally not possible to determine, based on
an instrumentation of a software development environment,
whether or not a developer is actually looking at the code
on the screen. Specifically, important interferences can be
caused just by having a developer leave to get a coffee, or
turn away from the screen to discuss with a colleague. In
such cases, a method that was on the screen for five min-
utes could have been actually examined for only five sec-
onds. After numerous unsuccessful attempts at increasing
the precision of our algorithm through the inclusion of time
data, we decided to develop our initial prototype without
this factor. In a fully-integrated approach, one possibility
could be to have an explicit way for developers to “pause”
the recording of their activities. Unfortunately, this alterna-
tive is disruptive and decreases the value of the approach.
In any case, the inclusion of time data in program navi-
gation analysis without user interference remains an open
problem.

Identifying the start point of a task During the empir-
ical evaluation of our program navigation analysis tech-
nique, we observed that, in the absence of any informa-
tion about where to start a program investigation, devel-
opers began their task with very broad searches that of-
ten yielded few useful results [18]. We also observed that
the results of the analysis were more precise for developers
who were given an initial start point for their investigation.
These observations indicate that broad searches such as the
ones performed to identified a starting point for an inves-
tigation task are of little value to help determine the code
relevant to a task. A simple solution to elide these broad
initial searches is to allow developers to manually start the
recording of their investigation activities once they become
involved in a focused investigation. However, in addition
to being disruptive, this alternative requires that developers
be able and willing to identify when their investigation be-

comes focused. Instead, a more desirable outcome would
be to infer this transition automatically. This inference may
be possible through an analysis of how many search results
are used versus how many are discarded. However, we have
not yet investigated the feasibility of this idea.

Inferring the nature of a task The program navigation
analysis we developed applies a set of general heuristics
to the record of a developer’s investigation actions. How-
ever, we believe the precision of program navigation anal-
ysis may be further improved by inferring the nature of the
task being performed. For example, we expect the naviga-
tion behavior of developers to be different whether they are
performing a debugging task, planning a refactoring, writ-
ing unit tests, or enhancing a feature. Characterizing the
program navigation behavior of a developer in terms of the
nature of a task performed may allow us to apply program
navigation analysis heuristics that are specially tailored to
the task, yielding more precise results.

5. Potential Uses for Program Navigation
Analysis

The technique we developed is a proof of concept in-
tended for a specific purpose: the production of artifacts de-
scribing the implementation of different concerns in source
code. However, once program navigation analysis is a ma-
ture technology, we believe it will be possible to use it to
support a number of software development environment
features intended to mitigate the disorientation problems
associated with program investigation activities. Foresee-
able examples include support for streamlined program
navigation, task-sensitive history lists, and task-awareen-
vironment configuration.

Streamlined program navigation By inferring the code
relevant to a task, it will be possible to highlight it in code
browsers, editors, and other views developers use to ac-
cess program information. This feature should have a di-
rect impact on the efficiency of developers. Indeed, dur-
ing empirical studies of programmers [20], we noticed
that developers often accessed unrelated elements above
or below a related element in a code browser. For exam-
ple, Figure 1 is a partial view of a code browser show-
ing 11 of the 181 elements declared in a class accessed
by a developer as part of a software change task we
studied. As we observed during the study, in the pro-
cess of accessing methodrecoverAutosave, which was
previously identified as relevant, the developer mistak-
enly accessed method with similar-looking signatures (e.g.,
methodremoveAllMarkers).

4



Figure 1. A typical code browser

By making elements related to a task more conspicuous
in the software development environment as soon as they
are identified through program navigation analysis, we ex-
pect that developers will access the program information
with fewer false positives. For example, in the case de-
scribed above, methodrecoverAutosave could be flagged
in the browser after being identified as relevant to the task
with program navigation analysis (see Figure 2), preventing
the developer from mistakenly accessing irrelevant meth-
ods such asremoveAllMarkers.

Figure 2. A code browser enhanced with pro-
gram navigation analysis

Task-sensitive history lists History lists present in web
browsers and the search engines of software development
environments keep a record of all the searches performed
by a user. However, because of the heuristic nature of pro-
gram investigation, many of the search results are useless
dead-ends. Using information obtained through program
navigation analysis, we could make information relevant to
a task more conspicuous in history lists.

Task-aware environment configuration The two fea-
tures described above rely on program navigation analy-
sis to identify the subset of a program relevant to a task.
A more ambitious goal for the use of program navigation
analysis is to also infer the nature of the task itself. Be-
sides improving the precision of the analysis results (see
above), a characterization of the task a developer is per-
forming could be used to support a dynamic configuration
of the software development environment. This type of dy-
namic environment configuration could be used to make
the tools most relevant to the task conspicuous in the soft-
ware development environment. Although previous work
has pointed to the possibility of inferring the nature of a
task from an analysis of navigation paths [4], we have not
yet evaluated this possibility in the context of a prototype
tool.

6. Conclusions

The discovery of information relevant to a software en-
gineering task is inevitably a human-centric activity. Al-
though standard program investigation tools can help de-
velopers find elements in a program that a relevant to a task,
they can also cause developers to become lost in the web of
information that the software engineering tools make avail-
able about a program.

To address this problem, we propose to use program
navigation analysis to infer the task a developer is currently
performing, and the subset of a program relevant to that
task. Based on this analysis, we hope to be able to dy-
namically customize software development environments
in order to help developers focus on their task as much as
possible. We believe software development environments
features leveraging off program navigation analysis have
the potential to mitigate the problem of disorientation asso-
ciated with program investigation activities.

A proof-of-conceptproject has shown that program nav-
igation analysis is feasible. Even though technical chal-
lenges remain on the road to a mature and fully integrated
version of this technology, we believe that the potential
benefits warrant further investigation.

Acknowledgments

The authors are grateful to Brian de Alwis for interesting
discussions on the topic of program navigation and for pro-
viding useful comments and references. Thanks also go to
Andrea Bunt for additional pointers and to Reid Holmes for
reviewing the paper.

5



References

[1] E. L. Baniassad, G. C. Murphy, C. Schwanninger, and
M. Kircher. Managing crosscutting concerns during soft-
ware evolution tasks: An inquisitive study. InProceedings
of the 1st Conference on Aspect-Oriented Software Devel-
opment, pages 120–126. ACM Press, April 2002.

[2] B. W. Boehm. Software engineering.IEEE Transactions on
Computers, 25(12):1226–1242, December 1976.

[3] S. A. Bohner and R. S. Arnold, editors.Software Change
Impact Analysis. IEEE Computer Society Press, 1996.

[4] D. Canter, R. Rivers, and G. Storrs. Characterizing user
navigation through complex data structures.Behavior and
Information Technology, 4(2):93–102, 1985.

[5] Y.-F. Chen, M. Y. Nishimoto, and C. Ramamoorthy. The
C information abstraction system.IEEE Transactions on
Software Engineering, 16(3):325–334, March 1990.

[6] J. Conklin. Hypertext: An introduction and survey.IEEE
Computer, 20(9):17–41, September 1987.

[7] C. L. Foss. Tools for reading and browsing hypertext.Infor-
mation Processing & Management, 25(4):407–418, 1989.

[8] A. Goldberg. Smalltalk-80: The Interactive Programming
Environment. Addison-Wesley Publishing Company, Read-
ing, MA, USA, 1984.

[9] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the
map metaphor in a tool for software evolution. InProceed-
ings of the 23rd International Conference on Software En-
gineering, pages 265–274. IEEE Computer Society Press,
May 2001.

[10] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCand-
less. Edit wear and read wear. InProceedings of the Con-
ference on Human Factors and Computing Systems, pages
3–9. ACM Press, May 1992.

[11] A. Jameson. Adaptive interfaces and agents. In J. Jackoand
A. Sears, editors,Human-computer interaction handbook,
pages 305–330. Erlbaum, 2003.

[12] D. Janzen and K. De Volder. Navigating and querying
code without getting lost. InProceedings of the Con-
ference on Aspect-Oriented Software Development. ACM
Press, March 2003.

[13] H. Kim and S. C. Hirtle. Spatial metaphors and disorienta-
tion in hypertext browsing.Behaviour & Information Tech-
nology, 14(4):239–250, 1995.

[14] M. Lejter, S. Meyers, and S. P. Reiss. Support for maintain-
ing object-oriented programs.IEEE Transactions on Soft-
ware Engineering, 18(12):1045–1052, December 1992.

[15] Object Technology International, Inc. Eclipse platform
technical overview. White Paper, July 2001.

[16] P. D. O’Brien, D. C. Halbert, and M. F. Kilian. The Trellis
programming environment. InProceedings of the Confer-
ence on Object-oriented Programming, Systems, and Appli-
cations, pages 91–102. ACM Press, October 1987.

[17] M. P. Robillard and G. C. Murphy. Concern Graphs: Find-
ing and describing concerns using structural program de-
pendencies. InProceedings of the 24th International Con-
ference on Software Engineering, pages 406–416. ACM
Press, May 2002.

[18] M. P. Robillard and G. C. Murphy. Automatically infer-
ring concern code from program investigation activities. In
Proceedings of the 18th International Conference on Auto-
mated Software Engineering, pages 225–234. IEEE Com-
puter Society Press, October 2003.

[19] M. P. Robillard and G. C. Murphy. FEAT: a tool for locat-
ing, describing, and analyzing concerns in source code. In
Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 822–823. ACM Press, May 2003.

[20] M. P. Robillard and G. C. Murphy. A study of program
evolution involving scattered concerns. Technical Report
TR-2003-06, Department of Computer Science, University
of British Columbia, Vancouver, BC, Canada, March 2003.

[21] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. Anex-
amination of software engineering work practices. InPro-
ceedings of the 1997 Conference of the Centre for Advanced
Studies on Collaborative Research, pages 209–223. IBM
Press, 1997.

[22] W. Teitelman and L. Masinter. The Interlisp programming
environment.IEEE Computer, 14(4):25–33, April 1981.

[23] A. Wexelblat and P. Maes. Footprints: History-rich tools for
information foraging. InProceedings of the Conference on
Human Factors and Computing Systems, pages 270–277.
ACM Press, May 1999.

[24] D. Woods, E. Patterson, and E. Roth. Can we ever escape
from data overload? A cognitive system diagnosis.Cogni-
tion, Technology & Work, 4(1):22–36, April 2002.

6


