
Reusing Program Investigation Knowledge for Code Understanding

Martin P. Robillard and Putra Manggala
School of Computer Science

McGill University
Montréal, QC, Canada

{martin,pmangg}@cs.mcgill.ca

Abstract

Software maintenance tasks typically involve an impor-
tant amount of program investigation effort on the part of
software developers. To what extent can we benefit from
prior program investigation activities to decrease this ef-
fort? To investigate this question, we studied the revision
history of two systems to determine how knowledge derived
from prior investigation activities could have been reused to
support other change tasks. Our initial investigation used a
tool, ConcernDetector, that can recommend sets of program
elements associated with a high-level concern when ele-
ments in the set overlap with elements currently being mod-
ified. We discovered that simple overlap-based techniques
for retrieving prior investigation knowledge have important
limitations, and that effective reuse of prior program inves-
tigation knowledge requires analyses that can partially in-
fer the nature and intent of a task.

1. Introduction

During the maintenance of a mature software system,
change tasks often involves parts of the system that have
been modified in the past [17]. In extreme cases, a small
number of complex, unstable, or poorly-implemented code
locations are modified on a regular basis to address unstable
requirements or to fix bugs.

Performing a change task generally requires a developer
to investigate the source code to identify the relevant seg-
ments. At the end of the task, this developer is likely to
have located the corresponding code and to have acquired
some understanding of it. Knowledge about a change task
can be expressed in terms of the different concerns associ-
ated with the task [13]. Simply put, concerns are high-level
concepts relevant to developers, such as individual features,
requirements, or design decisions. Unfortunately, knowl-
edge about the implementation of concerns is all too often
forgotten as the developer moves on to a different task. It it

not unusual that addressing a previously-modified concern
after only a few months requires a re-investigation the code.

Our goal is to mitigate the loss of tacit knowledge devel-
opers have about the implementation of concerns through
the use of concern documentation, i.e., documentation link-
ing high-level concerns with the corresponding source code.
Prior studies have provided evidence that documenting con-
cerns by identifying the source elements involved in their
implementation can provide immediate benefits to develop-
ers involved in a non-trivial change task [9, 13]. We hence-
forth refer to this activity as concern mapping. To further
maximize the benefits of concern mapping, we were inter-
ested in studying to what extent previously-mapped con-
cerns could be used to assist program investigation activ-
ities in future tasks. In particular, we were interested in
determining a) how to produce concern mappings that are
likely to be useful in the future, and b) the ideal strategies
for retrieving concern mappings relevant to the current task.

As our initial approach, we investigated the retrieval of
concerns based on a simple overlap metric. We designed
a tool, ConcernDetector, that can recommend existing con-
cern mappings to a developer when source code elements
(fields and methods) modified by the developer overlap with
the elements specified in previously-produced mappings.
Using the change history of two open-source systems, we
simulated a change stream to study how ConcernDetector
would have behaved in realistic contexts. We discovered
that simple overlap-based techniques for identifying rele-
vant prior investigation knowledge have important limita-
tions, and that effective reuse of prior program investiga-
tion knowledge requires analyses that can partially infer the
nature and intent of a change task.

The contributions of this paper include ConcernDetector,
our publicly-released concern recommendation tool, and
the results of two empirical studies that provide a number
of insights into the challenges associated with the retrieval
of previous program investigation knowledge.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the tools we developed to provide a prac-

martin
Text Box
In Proceedings of the 16th IEEE International Conference on Program Comprehension, 2008 (C) IEEE



tical implementation of our proposed technique. In Sec-
tions 3 and 4, we describe our empirical studies. We discuss
the major insights gained during the studies in Section 5,
describe the related work in Section 6, and conclude with a
summary of the paper in Section 7.

2. Concern Documentation Infrastructure

Reusing program investigation knowledge requires a
means to produce this knowledge (in the form of concern
mappings), and a means to retrieve previously produced
mappings.

2.1. Producing concern mappings

Mappings between high-level concerns and the corre-
sponding implementation can be produced manually or au-
tomatically in many different ways (see Section 5). To pro-
vide a baseline level of support for concern mapping, we
have developed the ConcernMapper Eclipse plug-in [15]. 1

ConcernMapper allows developers to create a view corre-
sponding to a concern and to drag and drop any Java field or
method from an Eclipse view to the concern view. Dragging
an element in the view includes it in the corresponding con-
cern mapping. In ConcernMapper, mappings are persisted
as XML files. In Figure 1, the left panel shows the main
view of ConcernMapper, displaying the elements specified
as being part of a mapping of the “Filtering” concern.

2.2. Retrieving concern mappings

To allow developers to use concern mappings produced
as part of prior tasks, we developed a second Eclipse plug-
in, called ConcernDetector.2 ConcernDetector monitors
changes to an Eclipse workspace, and immediately notifies
the developer when current changes involve elements that
overlap with a concern mapping stored in the workspace.
In this case, we say that ConcernDetector recommends the
concern mapping for viewing. The three main technical as-
pects of ConcernDetector are the management of the con-
cern pool, the retrieval strategy, and the presentation of rec-
ommended concerns.

Concern pool. The concern pool is the collection of con-
cern mappings managed by the tool during an Eclipse ses-
sion. The concern pool is built by loading all the exter-
nalized concern mappings found in a user-specified direc-
tory. The concern pool is initialized when ConcernDetec-
tor is first activated, but is also synchronized incrementally
whenever a concern mapping file is modified on disk.

1ConcernMapper was developed in 2005 and is not a contribution of
this paper. See www.cs.mcgill.ca/˜martin/cm.

2http://www.cs.mcgill.ca/˜swevo/concerndetector

Retrieval strategy. ConcernDetector monitors changes to
Java elements in the Eclipse workspace and to the concern
view in ConcernMapper. Changed elements are kept in an
internal list. The following actions will cause an element to
be included in the list:

• Editing or removing a method;

• Editing or removing a field;

• Adding an element to a concern in ConcernMapper.

Whenever an element is added to the list, ConcernDe-
tector queries the concern pool for concern mappings that
share elements with the internal list of changed elements.
ConcernDetector uses a user-specified threshold to deter-
mine which mappings to recommend. The threshold is a
value (≥ 1) that indicates how many elements must overlap
for a concern mapping to be recommended. For example,
with a threshold of 2, only concern mappings that specify
at least two elements that are also in the list of modified
elements will be recommended.

Result presentation. Recommended concerns are pre-
sented in a dedicated Eclipse view (see Figure 1). The Con-
cernDetector view (right panel) shows the recommended
concern mappings. For each overlapping element, changes
performed by the developer are indicated (Alteration His-
tory column). In our example, the overlap threshold is 2
and the developer altered methods createPartControl

and select.

3. Exploratory Study

Intuitively, discovering concern mappings relevant to a
current task should be helpful to developers. For our first
investigation of this idea, our main goal was to discover and
understand the basic factors impacting its practical applica-
tion. In particular, we sought to gather insights about:

1. Producing concern mappings. What are the types of
concern mappings that are likely (or unlikely) to be
useful? How could they be effectively created from
change tasks?

2. Retrieving concern mappings. What is a good re-
trieval strategy? What is the impact of the threshold?
How many concern mappings can reasonably be pre-
sented to a user?

3. Interpreting concern mappings. Is it easy to piece
together the implementation details represented by a
concern mapping? What could help in this matter?

To gather data that would enable us to answer the above
questions and improve our approach, we conducted an em-
pirical study in which we simulated scenarios of interac-
tions between a user and the tool by using historical change
data.



Figure 1. ConcernMapper and ConcernDetector

3.1. Methodology

Target System. The major issues in the selection of a tar-
get system for our study were that a) the value of a rec-
ommendation is subjective, and b) providing an informed
estimate of this value requires a high level of knowledge
about the target system. We thus needed to study a sys-
tem well-known to the investigators. For obvious reasons,
the systems most familiar to us were systems we ourselves
developed, which introduces the possibility of investigator
bias. Putting a premium on the quality of the assessment of
the concern recommendations, we chose to analyze the re-
vision history of the ConcernMapper plug-in described ear-
lier. This system is particularly well-suited for our study as
it is fairly stable (Released in 2005), publicly-available and
open source, has undergone periodical maintenance, and
has been developed in large part by the authors.

Study Procedure. Simulating the use of ConcernDetec-
tor requires two major types of data: a concern pool, and
a series of change tasks. To obtain both of these data, we
analyzed the revision history of ConcernMapper using the
following procedure:

1. We converted the commit stream into a sequence of
transactions. Following common practice for min-
ing CVS repositories [21], we considered all commits
sharing a user and log message performed during a
given time window to constitute a transaction. After
this step, the change history of the system can be ab-
stracted as a series of 165 transactions t1, ...t165.

2. We determined two epochs in this sequence of transac-
tions: stable and start-simulation. The stable epoch is
the point at which we considered that the system had
been fully developed. We chose Release 1.0.0 (t33) as
this epoch. The start-simulation epoch is the point we
used as the start of the simulation.

3. Using an automated in-house repository analysis tool
(a component of SemDiff [3]), we obtained, for each
transaction between stable and start-simulation, the set
of Java elements (field, methods) that had changed as
part of the transaction. Of the 87 transactions between
the two epochs, 53 involved Java elements (the others
involved only the user manual or configuration files).
We then considered that each set of changed elements
associated with a transaction formed a basic concern
mapping.

4. To simulate the fact that developers often investigate
more code than they change, we expanded each con-
cern with a number of elements. These elements were
obtained by using a recommendation algorithm imple-
mented by the Suade plug-in [12]. In a nutshell, given
a set of elements (a concern mapping in our case),
Suade analyzes the local topology of the structural de-
pendency graph and produces a number of elements
likely to be relevant to the input set. We chose to add
all of the elements produced with Suade with a confi-
dence of 95% or more, or the top three elements, what-
ever number was greater. After this step we were thus
in possession of 53 sets of elements approximating the
elements related to a change task. For the purpose of
our study, we considered these sets of elements to form
our concern pool.

5. We imported the source code of the version of Con-
cernMapper corresponding to start-simulation into an
Eclipse workspace.

6. We sequentially replayed each of the 45 transactions
between start-simulation and the last transaction in the
system. Each transaction simulated a change task.
For each transaction, we recorded the concerns rec-
ommended by ConcernDetector for thresholds varying
between 1 and 8.



3.2. Results

Following the methodology described in the previous
section yielded a set of 45 transactions with, for each, the
identification number of concern mappings retrieved for
threshold values of 1 to 8. However, 16 of the 45 trans-
actions did not involve any change to Java elements (but
only changes to help and configuration files). We thus dis-
carded these transactions, and analyzed the remaining 29
transactions. Figure 2 shows the number of concern map-
pings detected (recommended). The x-axis lists the trans-
action numbers (from the simulation phase), and the y-axis
represents the number of concerns detected for each thresh-
old value.

Our main observation of the data represented by Figure 2
is that the number of concerns detected is excessive. Taking
the example of transaction 127, we see that with a threshold
of 1, 27 concern mappings would have been recommended
during the change task, and 18 with the more constraining
threshold of 2. We manually investigated all the recom-
mended mappings to understand what caused this system-
atically high level of interaction between tasks in the sim-
ulation phase and previous changes. Our analysis showed
that many of the concern mappings we artificially gener-
ated were predictably unlikely to be useful in our develop-
ment context. For example, a number of transactions corre-
sponded to: small tweaks to the appearance of the GUI, mi-
nor refactorings and code cleanups, changes to ensure con-
formance with a style guide, changes to use generic types
after the release of Java 1.5, etc. Based on our best as-
sessment of whether each transaction could or could not
possibly represent a potentially reusable piece of (our own)
software investigation knowledge, we removed 24 of the 53
concerns in our concern pool (and one transaction in the
simulation phase). As a result of this procedure, we de-
tected on average 55% fewer concerns among the 18 trans-
actions for which at least one concern had been detected.
For example, for transaction 121, 9 concerns were detected
instead of 15.

Despite the sanitization procedure, we still noticed a sig-
nificant level of overlap between the transactions in the sim-
ulation phase and the 29 remaining concerns. For instance,
four transactions still elicited over 10 related concern map-
pings for a threshold value of 1. Such a high level of overlap
is difficult to reconciliate with our experience as program-
mers, where typically a task will intersect one or two impor-
tant concerns. A further manual inspection of the commit
logs and source code of the concern mappings in our con-
cern pool provided a simple explanation for this observa-
tion: a number of distinct concern mappings in the concern
pool actually corresponded to the same high-level abstrac-
tion. Although this association between an individual map-
ping and a high-level concern is subjective, the nature of the

elements in a concern mapping and the commit log associ-
ated with the concerns generally provided strong evidence
of association between different concern mappings. For ex-
ample, we can consider the following three mappings (with
their commit messages):

#35–Added filtering
#44–Fixed a bug with filtering
#45–Cleaned up the implementation of the filtering concern

Clearly these three mappings address the same concern.
Building on our detailed understanding of the system, we
analyzed the source code and commit log of each of the
29 remaining concern mappings in our concern pool and
merged conceptually-associated mappings into 11 clusters
representing high-level concerns. We then analyzed the
concern detection frequency using these clusters. Figure 3
presents the final analysis. In this last case, we see that
with a threshold of 2, only 6 transactions produce associ-
ated concerns. However, at this point, a manual inspection
shows that the resulting concerns are highly relevant to the
transactions (this is a direct result of our filtering process).

Synthesis. This initial study brought to light a number of
basic considerations with respect to the reuse of concern
mappings as proxies for program investigation knowledge.

• Not every change task will generate useful pro-
gram investigation knowledge (e.g., cleanups and
environment-related adaptive changes).

• Concern mappings for distinct tasks may be concep-
tually related. Concern mappings for conceptually-
related program investigation knowledge should not be
recommended individually, but as a unit.

Both of these observations imply that, in order to be ef-
fective, a technique to reuse program investigation knowl-
edge would require additional judgment (either manual or
heuristic-based) to transform basic concern mappings cor-
responding to individual tasks into standalone knowledge
representations.

4. GanttProject Study

Our first study used synthetically-generated concern
mappings. To further our understanding of the potential
for using concern mappings to aid program understanding,
we followed up with a study involving manually-generated
concern mappings. The specific goal of this study was to
collect a number of cases where a concern mapping was
recommended during a task, and to produce observations
about the benefits and limitations of the approach through a
qualitative analysis of the individual cases.



0

5

10

15

20

25

30

121 122 123 125 126 127 128 129 130 131 132 133 134 136 137 138 139 141 145 148 149 152 155 156 159 160 161 162 163

Transaction number

n
u
m
b
e
r
o
f
in
te
ra
c
ti
n
g
c
o
n
c
e
rn

s

T1

T2

T3

T4

T5

T6

T7

T8

Figure 2. Detected Concerns — Empty Transactions Removed

0

5

10

15

20

25

30

121 122 123 125 126 127 128 129 130 131 132 133 134 136 137 138 139 141 145 148 149 152 155 156 159 160 161 162

Transaction number

n
u
m
b
e
r
o
f
in
te
ra
c
ti
n
g
c
o
n
c
e
rn

s

T1

T2

T3

T4

T5

Figure 3. Detected Concerns — Concerns Merged

4.1. Methodology

As in the case of the ConcernMapper study, we con-
ducted this study as an a posteriori simulation of code
changes using a project’s change history.

Target System and Concerns. For this study, the most
constraining requirements were the availability of a) man-
ual concern mappings, and b) a system’s change history
(where the changes occur after the concern mappings are
defined). To address the first requirement, we used the re-
sults of a previous empirical study of manual concern loca-
tion [14]. In this previous study, different subjects created
concern mappings for 16 different concerns in four differ-
ent systems. For the present study, we chose to analyze the
history of only one of the four original systems: GanttPro-
ject (version 2.0.2).3 GanttProject is an Eclipse Rich Client
Platform-based application that allows users to plan projects
using Gantt charts. We chose to focus on a single system
given the time-consuming data analysis required (see be-
low); We chose to study Gantt because it was the largest of
the four original systems, and because an extensive change
history was available.

The concern descriptions consisted of a paragraph of text
written by two investigators as part of the prior study. The

3sourceforge.net/projects/ganttproject/

complete experimental package associated with this study
is available on-line.4

For each concern, three different subjects were asked to
identify the fields and methods that were judged to be the
most relevant to the implementation of the concern (i.e.,
to produce a mapping for the concern). This process re-
sulted in 12 different mappings for the Gantt system (three
mappings for each of the four concerns). To reconcile the
discrepancies between the concern mappings produced by
different subjects for a given concern, we merged the three
individual mappings for each concern into a single aggre-
gate mapping. This process yielded a final set of four map-
pings, one for each of the four concerns. Excerpts from our
previous report [14], below, provides a more detailed de-
scription of each concern. Each concern name is followed
by the number of elements in the corresponding mapping.

C1: Relationships (52): The functionality allowing users
to add a relationship between two tasks.

C2: Non-working days (63): The functionality allow-
ing users to specify the non-working days of the calendar
(holidays and weekends) and taking these days into account
when scheduling tasks.

4http://www.cs.mcgill.ca/˜martin/concerns



C3: Completion (39): The task completion functionality
allowing users to specify how much of a task is completed.

C4: Undo (25): The mechanism allowing users to undo
their actions.

Study Procedure. We grouped the commit stream into
transactions (see Section 3.1) and, for each transaction, de-
termined whether the elements changed as part of the trans-
action overlapped with any of our four concern mappings
(i.e., whether any of the concern mappings would have been
recommended during the work corresponding to the trans-
action). In the case of overlap, we recorded the detected
concern mappings for each overlapping element.

4.2. Quantitative Results

Of the 172 transactions analyzed, 10 transactions in-
volved code changes that overlapped with at least one of our
benchmark concern mapping . Table 1 presents the overall
results. In this table, the first column lists all the transac-
tion numbers for which there was at least one overlapping
concern mapping (i.e., we used a threshold value of 1). We
refer to the internal transaction identifiers produced by our
analysis system for traceability with our raw data. For each
transaction, we list the number of overlapping elements for
each mapping. For example, of all the elements changed
as part of transaction 1960, one was an element marked as
part of concern mapping C1 (Relationships), and one as part
of concern mapping C3 (Completion). Cells for which the
value is zero are left blank for clarity.

Overall, the changes related to the four target concerns
are sparse in the history of GanttProject that we studied. Al-
though our four chosen concerns represent main features of
the system, only 5.8% (10/172) of all transactions overlap
with one of the analyzed concerns. Moreover, the overlap
is very small, generally consisting of a single element. In
the context of our study, even this limited level of interac-
tion between the concerns and the change stream yielded
useful insights. In practice, we expect the technique to be
maximally useful in situations where a much larger pool of
concerns is available for retrieval.

4.3. Qualitative Results

A detailed look at every transaction overlapping with one
of our benchmark concerns provides a deeper understanding
of the benefits of reusing program investigation knowledge,
and of the challenges of identifying concerns that are rele-
vant and useful in supporting the current task.

Table 2 summarizes the main characteristics of each of
the studied transactions. Following the transaction num-
ber, the second column (Add.) lists the number of Java ele-
ments (fields, methods, or entire inner classes) added to the
project as part of the transaction. Similarly, the third and
fourth columns (Chg. and Del.) list the number of elements

Tr. # C1 C2 C3 C4 Total

1902 1 1
1918 1 5 1 7
1933 1 1

1937 1 1
1960 1 1 2
1969 2 2

1973 1 1
1986 1 1
2003 1 1
2011 2 2

Table 1. Concern Overlap in GanttProject

Tr. # Add. Chg. Del. Sca. Type

1902 3 2 2 3 Rework
1918 11 22 3 15 Feature addition
1933 21 16 4 >16 Feature addition

1937 0 2 0 1 Bug fix
1960 1 11 4 3 Bug fix
1969 60 29 15 >23 Feature addition
1973 33 19 3 >13 Feature addition

1986 0 1 0 1 Bug fix
2003 14 8 1 9 Rework
2011 0 2 1 1 Bug fix

Table 2. Analyzed Transactions

changed and deleted, respectively. The following column
(Sca.) lists the number of classes that the elements in the
transaction span. This last metric is used as a basic measure
of the scattering of the change. Finally, the last column is
our categorization of the type of work represented by the
transaction. By looking at the characteristics of each trans-
action and the associated commit log message (see below),
we labeled transactions as either:

• Bug fix: A transaction involving few elements, and
in particular, few or no additions, with a log message
indicative of a bug fix.

• Feature addition: A transaction involving a large
number of elements, mostly additions.

• Rework: A transaction involving a medium number of
elements and involving non-trivial structural changes,
that we could not clearly associate with a bug fix or
new feature.

This categorization provided additional context enabling
us to reason about the concerns identified for each transac-
tion. In the remainder of this section, we present a brief
assessment of the relevance of each identified concern, in
terms of the corresponding transaction. For each transac-



tion, we list each identified concern, followed by our esti-
mate of whether its perusal would have been probably use-
ful (U), possibly useful (P), or not useful (N), and by the
transaction’s log message (when non-empty).

1902 (C4, U)
In this case the C4 (Undo) concern is clearly relevant as the
rework directly involves the undo mechanism. For exam-
ple, a call to getUndoManager() is both part of a removed
method and of a changed method.

1918 (C1, N) (C2, U) (C3, P) ...support interval management
Concern C1 (Relationships) is not useful and was rec-
ommended because it shares a basic, heavily referenced
method with the transaction. C2 (Non-working days) is rel-
evant as non-working days must be taken into account for
task intervals, the feature addressed by this feature addition.
This is not surprising given the five method overlap between
this transaction and C2. The overlap for C3 (Completion)
is a method that loads the attributes of a task. The level
of completion of a task (C3) being one of these attributes,
there is potential conceptual overlap as well.

1933 (C2, N)
The overlap consists of a single method that was removed
as part of the transaction.

1937 (C3, N) Milestones must have zero duration
This is a tiny bug fix consisting of two changed methods
in the same class. To be conservative, we consider that the
overlapping concern is not related.

1960 (C1, N),(C3, N) Problem when load too many tasks
This bug fix addresses a performance problem. Both con-
cerns C1 (Relationships) and C3 (Completion) overlap with
a single method and do not seem to be relevant.

1969 (C1, N) ...custom columns when importing .gan files
This transaction is a massive feature addition. Although
there is a two method overlap with concern C1 (Relation-
ships), both are methods in classes that are central to the
design of the system. The overlap is therefore not surpris-
ing, and the identified concern is spurious.

1973 (C4, N) ...added importing of custom fields from .gan files
This feature addition seems to be a continuation of 1969,
and our interpretation is the same for concern C4 (Undo) as
for concern C1 in the case of 1969.

1986 (C3, U) task progression bar displays 100% even if not
The recommended concern (Completion) is highly relevant
to this bug fix, as it was documented to describe exactly
the implementation of the task completion level, which is
specified through a progress bar.

2003 (C2, P) changes for Interval stuff
This concern (Non-working days) is clearly relevant to this
rework at the conceptual level because a task interval (dif-
ference between start and end time) must take into account
non-working days. Indeed the name of the overlapping

method is isNonWorkingDay. We flagged this concern
as only potentially relevant since the overlapping method
might only need to be called as a service, without the need
to understand the underlying mechanism.

2011 (C2, P) Patch [1823763] from Joana
The concern is potentially relevant to this bug fix
as it involves two overlapping methods in the class
WeekendConfigurationPage, which partly implement
C2 (Non-working days). However, the concern will only be
relevant if the changes to the page involve the non-working
days mechanism. For changes strictly to the user-interface,
for example, the change would not have been relevant. The
granularity of our collected data does not allow us to make
this distinction.

Synthesis. Our qualitative analysis did not elicit any ob-
vious correlation between the usefulness of recommended
concerns and factors such as task type, number of overlap-
ping elements, of size of the transaction. However, the anal-
ysis raised a number of valuable insights into the factors that
should be considered when trying to retrieve program in-
vestigation knowledge. We discuss these factors in the next
section.

5. Discussion

Our initial idea, as implemented in ConcernDetector,
was to recommend previously-created concern mappings to
developers if the current task involves changes to elements
that overlap with the mappings. Our hypothesis was that,
by looking at the recommended mappings, developers can
quickly discover the parts of the source code related to a
concern relevant to their task. Our studies have shown that
a number of important considerations must be taken into
account for this idea to be feasible in practice.

Producing concerns. One of the factors that has a large
impact on the effectiveness of our technique is the nature of
the concern mappings available for retrieval. Ideally, con-
cern mappings should be produced with as little effort as
possible. Potential strategies to achieve this aim include:
a) Creating the mappings opportunistically during program
investigation [13], b) recording each transaction to a revi-
sion control system, c) using automatic techniques based on
static and dynamic analysis (e.g., [5, 20]), and d) recording
and analyzing traces of a developer’s navigation through the
source code (see Section 6).

As the ConcernMapper study has shown, concern-
producing strategies that systematically take all change
tasks into account will generate an unacceptable level of
noise (useless mappings). User or tool intervention is there-
fore necessary to produce concern mappings only from pro-
gram maintenance tasks that are likely to be useful in the
future. However, this filtering step is not likely to be suffi-
cient, because it does not account for tasks that address the



same high-level concern (e.g., “filtering” in Section 3.2).
Ideally, concern mappings for tasks that address the same
high-level concern should be merged. We see this require-
ment as one of the most challenging problems for advancing
our technique.

Finally, an important issue with the production of con-
cern mappings is their adaptation to evolving source code.
In our usage scenario, concern mappings are defined in one
version of a system and (potentially) reused in a later ver-
sion. In the time between creation and retrieval, the mapped
source code may have changed in a way that invalidates
many of the elements in the mapping. To address this chal-
lenge, we have developed a tool, ISIS4J, that can automat-
ically adapt a concern mapping to a more recent version of
the source code [2]. In practice, the use of ISIS4J in combi-
nation with ConcernDetector should yield the best results.

Retrieving concerns. ConcernDetector currently matches
previously-produced concerns based on overlap with mod-
ified code. This strategy assumes that the set of recently-
modified elements constitutes a valid approximation of the
scope of the task at hand. One can easily imagine situa-
tions where this assumption would not hold. For example,
the aggressive use of printing statements to assist in pro-
gram understanding is likely to lead to the recommendation
of irrelevant concerns. This situation illustrates an essential
challenge for our approach: the identification of the correct
“context” upon which to base the concern retrieval. A nat-
ural extension to our current overlap scheme would be to
consider overlap between existing mappings and program
elements visited as part of program investigation activities.
Information about the visited methods may prove useful in
clarifying the context of tasks such as transactions 2003 and
2011 in the GanttProject study. The challenge with moni-
toring program navigation activities lies in the difficulty of
automatically detecting task boundaries in the program nav-
igation. ConcernDetector currently provides a way for users
to influence the context used as a basis for concern retrieval:
Elements added to a current concern mapping in Concern-
Mapper are considered to be “modified” for the purpose of
our matching algorithm (this feature was not used in the
studies). Additional experimentation will be required to de-
termine the best way to establish the context for the purpose
of retrieving concern mappings.

The GanttProject study raised a number of issues regard-
ing the use of a simple overlap-based retrieval strategy for
concern mappings. First, the nature of a task might in-
fluence the type of retrieval strategies. For instance, the
GanttProject transactions we studied involved both small
bug fixes (e.g., transaction 1937) and feature additions in-
volving a large amount of code (e.g., transactions 1969 and
1973). Should the retrieval strategy be the same for both
types of tasks? At first glance a uniform strategy seems in-

appropriate, as the set of recommended concerns for large
changes is likely to include many false positives. A strategy
taking into account the relative amount of overlap might be
more desirable.

A second major observation stemming from the
GanttProject study is that the role that individual elements
play in the implementation of a system could be taken into
account by the concern retrieval algorithm. For example, for
transactions 1969 and 1973, the overlapping elements are
methods of a class implementing a basic and unstable data
structure, and as such are modified as part of many different
changes. A strategy taking into account the frequency of
occurrence of an element in the overall concern pool should
result in fewer false positives. Regarding the importance of
the task and the role of code elements, it is interesting to
note that these factors were also identified by Fritz et al. as
important when modeling developer knowledge [6].

A last obvious source of input data for the retrieval al-
gorithm is the nature of the modification (added, deleted,
changed). By definition, added elements can never be
matched. However, it might be possible to provide differ-
ent recommendations based on whether the overlapping el-
ements were deleted or simply changed.

Interpreting concerns. As part of the ConcernMapper
study, we manually inspected every recommended concern
mapping to assess its potential relevance and usefulness
(Section 3.2). This procedure revealed a last major con-
sideration for the retrieval of concern mappings during pro-
gram investigation: the internal significance of a concern
mapping. In other words, given a recommended concern,
how difficult is it to immediately recognize the high-level
concern it refers to? In our current infrastructure, concerns
are simply labeled with a name (or short phrase). In cases
where the label refers to an obvious feature of the appli-
cation (e.g., “filtering”, “autosave”), determining what the
concern mapping refers to is instantaneous. In many other
cases, it may not be the case. As part of our development
process, we link every commit to the revision control sys-
tem to an issue in a bug tracking database (Bugzilla). How-
ever, our goal is to make our concern mapping retrieval
technique independent from this assumption. Motivated
by the experiences described in this paper, we recently re-
leased a version of ConcernMapper that supports attaching
explanatory comments to the elements in a concern map-
ping.

Threats to validity. Both of our studies used historical
analysis as a surrogate for the longitudinal study of software
developers. This setup allowed us to study much more data
(years of development) at the cost of interpreting the results
outside of the actual context.



For the ConcernMapper study, we used a system devel-
oped by the authors, which can introduce investigator bias.
However, in our specific context the use of an in-house
system is a strength of the study as it allowed us to make
a highly informed interpretation of the results, since we
would have been the consumers of the tool’s output. More-
over, given that we were analyzing a transaction stream
in an exploratory context rather than evaluating a tool or
method, it is not obvious how any characteristic of the re-
sults could advantage or disadvantage the investigators. In
the case of the GanttProjet study, the classification of trans-
actions and interpretation of relevance of the recommended
concerns was performed by the investigators. In this case
also, the goal of the study was not to evaluate the relevance
of the results but to understand what we could do to increase
relevance.

The biggest threat to the validity of this study is the ex-
ternal validity (or generalizability) of the results. By nature
our technique is necessarily impacted by the development
process used. We studied systems developed in two differ-
ent environments, but these environments are not necessar-
ily representative of most environments. In particular, the
level of change frequency that we observed was relatively
low: studies of projects with a higher change frequency may
lead to different or additional observations. However, we
are confident that most of the basic insights obtained during
our studies should help us improve the effectiveness of our
approach in a majority of cases.

6. Related Work

A number of systems have been proposed to recommend
information relevant to software developers. Such recom-
mendation systems can provide a wide variety of informa-
tion, from source code locations relevant to a task to per-
sonnel with expertise relevant to a task or problem [11, 18].
We specifically discuss systems that can recommend source
code elements, since such systems share the issues and tech-
niques that are the most relevant to our work.

Hipikat [1] accumulates and links a variety of software
development artifacts (source code, bug reports, emails,
etc.) into a group memory, which can then be queried in
a specific context. For example, a developer interested in a
bug can ask Hipikat for recommendations about other rele-
vant artifacts in the group memory. Hipikat follows a query
model, where information must be explicitly pulled from
the group memory by a user query. Instead, ConcernDe-
tector follows the information delivery (or “push”) model,
providing recommendations as soon as they become perti-
nent. Although the last available instance of Hipikat did not
have the support necessary to include concern mappings in
its group memory, there is no fundamental limitation pre-
venting such an inclusion.

Program navigation analysis techniques involve moni-
toring the source code elements visited by a developer in
an integrated development environment, and using this in-
formation to highlight the elements identified as the most
relevant to the developer. In their Mylyn tool, Kersten and
Murphy [8] use a degree of interest model based on the fre-
quency and time of interaction to present the most relevant
source elements, which form a task context (similar in na-
ture to our concern mappings). Task contexts are intended
to help in the current task, but can also be exported, reused,
and shared. Earlier software navigation analysis tools in-
clude NaCIN [10], Navtracks [16], and Teamtracks [4].
These approaches all use the same fundamental concept but
vary in the exact nature of the navigation data analyzed and
in the heuristics used to recommend relevant elements. Pro-
gram navigation-based techniques rely on the assumption
that a programmer’s monitorable actions can be indicative
of higher-level knowledge. Fritz et al. have recently col-
lected evidence that supports this assumption [6]. Program
navigation-based approaches offer a potentially inexpensive
way to produce concern mappings, but we are not yet aware
of studies of the reuse of navigation traces.

Both Zimmermann et al. [22] and Ying et al. [19] pro-
posed systems to recommend source code elements related
to a task using an analysis of the revision history of a soft-
ware system. Basically, if two (or more) elements have been
changed together often in the past, modifying one element
in the set will elicit a recommendation to visit the other el-
ements. We consider recommendations based on change
history to be a specialized case of concern mapping recom-
mendations, in which concern mappings are, by definition,
groups of elements that changed together. Although there
exists evidence that demonstrates the usefulness of such
systems, we believe that retrieving more general concern
descriptions can also be useful.

Finally, in the area of reuse, a number of systems have
been proposed to recommend source code examples [7] or
library components [18] to help a developer complete a de-
velopment task. Such systems differ from our proposed
approach in that they recommend code elements that are
meant to be used (cloned or referenced), as opposed to be-
ing navigated.

7. Conclusion
Developers spend a lot of time investigating source code,

and can potentially benefit from prior investigation activ-
ity. We propose to capture a part of the knowledge resulting
from program investigation activities as a mapping between
a high-level concern and the corresponding source code, a
structure we call a concern mapping. To investigate how
concern mappings could be reused effectively as part of fu-
ture software modification tasks, we propose to recommend
previous mappings for viewing by developers.



We investigated the potential of concern mapping reuse
by conducting historical studies of the revision history of
two Java systems. We discovered that, to be effective, a
general approach for identifying relevant prior investigation
knowledge should include:
• techniques to merge conceptually-related concern

mappings;

• techniques that can partially infer the nature of a
change task and the role that the elements in concern
mappings play in the implementation of the system as
a whole;

• support for documenting the intent associated with a
mapping.

We are currently enhancing our concern documentation
infrastructure to take these considerations into account.

Acknowledgments

The authors are grateful to Bartélémy Dagenais for use of
the SemDiff framework and comments on the paper, and
to Ekwa Duala-Ekoko, Monica Turner, and the anonymous
reviewers for comments on the paper. This work was sup-
ported by NSERC.

References

[1] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development.
IEEE Transactions on Software Engineering, 31(6):446–
465, 2005.

[2] B. Dagenais, S. Breu, F. Weigand Warr, and M. P. Robil-
lard. Inferring structural patterns for concern traceability in
evolving software. In Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineer-
ing, pages 254–263, 2007.

[3] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. In Proceedings of the 30th
ACM/IEEE International Conference on Software Engineer-
ing, 2008. To appear.

[4] R. De Line, M. Czerwinski, and G. Robertson. Easing pro-
gram comprehension by sharing navigation data. In Pro-
ceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 241–248, 2005.

[5] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Transactions on Software Engineering,
29(3):210–224, 2003.

[6] T. Fritz, G. C. Murphy, and E. Hill. Does a programmer’s
activity indicate knowledge of code? In Proceedings of
the 6th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 341–350, 2007.

[7] R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach for recommend-
ing relevant examples. IEEE Transactions on Software En-
gineering, 32(1):952–970, 2006.

[8] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering, pages 1–11, 2006.

[9] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and col-
lect relevant information during software maintenance tasks.
IEEE Transactions on Software Engineering, 32(12):971–
987, 2006.

[10] I. Majid and M. P. Robillard. NaCIN — an Eclipse plug-in
for program navigation-based concern inference. In Pro-
ceedings of the Eclipse Technology Exchange at OOPSLA,
pages 70–74, 2005.

[11] A. Mockus and J. D. Herbsleb. Expertise Browser: A quan-
titative approach to identifying expertise. In Proceedings of
the 24th International Conference on Software Engineering,
pages 503–512, 2002.

[12] M. P. Robillard. Topology analysis of software depen-
dencies. ACM Transactions on Software Engineering and
Methodology, 2008. To appear.

[13] M. P. Robillard and G. C. Murphy. Representing concerns
in source code. ACM Transactions on Software Engineering
and Methodology, 16(1):1–38, 2007.

[14] M. P. Robillard, D. Shepherd, E. Hill, K. Vijay-Shanker, and
L. Pollock. An empirical study of the concept assignment
problem. Technical Report SOCS-TR-2007.3, School of
Computer Science, McGill University, 2007.

[15] M. P. Robillard and F. Weigand-Warr. ConcernMapper: sim-
ple view-based separation of scattered concerns. In Proceed-
ings of the 2005 OOPSLA Workshop on Eclipse technology
eXchange, pages 65–69, 2005.

[16] J. Singer, R. Elves, and M.-A. Storey. NavTracks: support-
ing navigation in software maintenance. In Proceedings of
the 21st IEEE International Conference on Software Main-
tenance, pages 325–334, 2005.

[17] R. Vasa, J.-G. Schneider, and O. Nierstrasz. The inevitable
stability of software change. In Proceedings of the 23rd
IEEE International Conference on Software Maintenance,
pages 4–13, 2007.

[18] Y. Ye and G. Fischer. Supporting reuse by delivering task-
relevant and personalized information. In Proceedings of
the 24th International Conference on Software Engineering,
pages 513–523, 2002.

[19] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Transactions on Software Engineering, 30(9):574–
586, 2004.

[20] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNIAFL:
Towards a static non-interactive approach to feature loca-
tion. In Proceedings of the 26th ACM/IEEE International
Conference on Software Engineering, pages 293–303, May
2004.

[21] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In Proceedings of the First Inter-
national Workshop on Mining Software Repositories, pages
2–6, May 2004.

[22] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Pro-
ceedings of the 26th ACM/IEEE International Conference
on Software Engineering, pages 563–572, 2004.




