
Selection and Presentation Practices for
Code Example Summarization

Annie T. T. Ying and Martin P. Robillard
School of Computer Science

McGill University, Montréal, Canada
{annie.ying,martin}@cs.mcgill.ca

ABSTRACT
Code examples are an important source for answering ques-
tions about software libraries and applications. Many usage
contexts for code examples require them to be distilled to
their essence: e.g., when serving as cues to longer documents,
or for reminding developers of a previously known idiom. We
conducted a study to discover how code can be summarized
and why. As part of the study, we collected 156 pairs of code
examples and their summaries from 16 participants, along
with over 26 hours of think-aloud verbalizations detailing the
decisions of the participants during their summarization activ-
ities. Based on a qualitative analysis of this data we elicited
a list of practices followed by the participants to summarize
code examples and propose empirically-supported hypotheses
justifying the use of specific practices. One main finding was
that none of the participants exclusively extracted code verba-
tim for the summaries, motivating abstractive summarization.
The results provide a grounded basis for the development of
code example summarization and presentation technology.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation, Design, Human Factors

Keywords
Code Examples, Summarization

1. INTRODUCTION
Code examples are important in modern software develop-

ment. Programmers search for code examples frequently and
extensively: Nearly a third of the respondents in a survey
of programmers searched for code examples every day, and
programmers working on implementation tasks in the field

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14, November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

conduct web search sessions almost exclusively for finding
code examples [32]. Code examples are an expected compo-
nent of formal API documentation [29]. On popular forums
such as Stack Overflow, 65% of accepted answers contain
code examples [35], while unanswered questions often lack
code [1].

Although most will agree that code examples are useful
and desirable in many software engineering contexts, the
question of code example effectiveness is much more elusive.
What makes a code example effective?

While the effectiveness or usability of a code example
can generally be related to its intended usage, evidence
is mounting that concise code examples are particularly
desirable, especially for pedagogical purposes:

“It’s tough to know the context of the example and yet it has to
be very small, and only highlight exactly what the concept in the
API is that you’re looking for”—a Team Lead at Microsoft [29].

Concise examples also tend to be in highly rated answers on
the developer forum Stack Overflow [23]. In contrast, longer
code examples can be difficult to understand [29] or even be
misleading [5], and cause serious presentation problems for
summarizing documents, e.g., in web search results [34].

Given the amount of publicly-available source code and
the desirable properties of concise code examples, we see
great potential for technology that can automatically shorten
a source code fragment and adapt it to a concern of interest.
No such technology exists, and current knowledge on natural-
language summarization does not necessarily apply to source
code because of fundamental differences in structure of the
input data. For example, the assumption that topic and con-
cluding sentences in paragraphs are likely summary sentence
candidates does not directly apply to source code [15].

As part of our first steps toward automatic source-to-source
summarization, we studied how humans summarize examples
in order to understand how to automate the process. The
study considered 156 summaries generated by 16 program-
mers on 52 code examples. Generating these summaries
required determining which content to select and how to
present this content. We analyzed common practices behind
these decisions across the hand-generated representations, as
well as the rationale behind the practices.

We found that none of the participants exclusively ex-
tracted code verbatim for the summaries. Participants em-
ployed many practices to modify the content, by trimming
a line, truncating code, aggregating a large amount of code,
and refactoring code. Not only were the participants con-
cerned with the main goal of the task to shorten code, but
also with whether the summary looked compilable, readable
and understandable. In terms of the selection of content,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2635877

460

we found that participants used language constructs and
query terms, as other literature has suggested [2, 3, 14, 39].
In addition, we found that participants had the human in
mind, for example, by including code deemed easy to miss
by the reader and excluding code deemed obvious assuming
the reader had previous knowledge of the API.

We present related work next, followed by the study set-up
(Section 3) and a conceptual framework for interpreting the
results (Section 4). We then detail common selection and
presentation practices (Sections 5-6). Section 7 elaborates
on the findings from the practice catalog.

2. RELATED WORK
Our study on summarizing source code examples is gen-

erally informed by foundational work on text summariza-
tion [13]. We also draw from three active research areas
in software engineering and information retrieval: studies
of code examples, automated source code explanation, and
work on snippet generation.

Studies on Code Examples: Numerous studies have pro-
vided us with valuable knowledge on what is important in a
code example. We will discuss the two most relevant ones.

Nasehi et al. investigated the characteristics of code exam-
ples in highly rated answers on Stack Overflow [23]. They
found that these examples tend to be “concise”: the examples
are typically less than four lines and “shorter than similar
code inside other answers to the same question”, with “re-
duced complexity” and “unnecessary details” left out. Our
summarization focus was motivated by these highly regarded
concise examples.

Buse and Weimer studied code examples found in an au-
thoritative source of code examples: the official Java JDK
documentation [3]. Their two findings were that markers
such as ellipses were employed to indicate an input variable’s
context-specific value, and that exception handling code was
in many JDK examples. Buse and Weimer incorporated
these two findings in their code examples synthesis tool. Not
all of their findings are applicable to summarization: We
observed the usage of ellipses in the summaries but we did
not observe the inclusion of exception handling code in the
summaries.

Source Code Explanation: Most of the efforts in code
summarization are targeted to code-to-text summarization,
e.g., producing a succinct set of textual keywords [10,30], a
textual summary given the source code of a method [33], or
a textual summary given a class [22]. Sridhara et al. [33]
used heuristics for selecting statements within a method and
templates for generating textual summaries. For clarity we
refer to automated code-to-text summarization as source
code explanation. Our earlier effort in code example sum-
marization has explored code-to-code summarization using
a machine learning approach [38]. Regardless of the sum-
mary output format, all of these approaches involve selecting
which part of the code is important for a summary or explana-
tion. Rodeghero et al.’s recent study specifically looked into
whether three types of Abstract Syntax Tree (AST) nodes
were important for the selection task, by tracking eye move-
ments of participants during a code-to-text summarization
task [30].

Snippet Generation in Search Engines: Studying what
is a good concise representation for source code also relates to
work in the search engine domain on what information should

Figure 1: Study Set-Up and Conceptual Framework

be included in a textual snippet in the search result to more
effectively help a user evaluate a search result [4, 37]. Our
work investigates what is the best representation for a type of
domain-specific query: code example queries. Programmers
use these queries in many contexts: general search engines,
code-specific search engines and question answering sites
such as Stack Overflow.

3. STUDY SET-UP
The goal of the study was to learn code summarization

practices and their justification from human participants to
inform future development in source code summarization and
presentation technology. We had two research questions:

1. Selection: Which parts of the code from an original
code fragment should be selected for a summary, and
why?

2. Presentation: How should the code be presented in
a summary, and why?

To answer these questions, we recruited 16 participants
and asked them to shorten ten code fragments each. We
instructed the participants to verbalize their thought process
using the think-aloud protocol [18]. For each code fragment
studied, to be able to estimate differences in personal style,
we asked three participants to shorten the code fragment,
the result of which we call a summary. In total we collected
156 summaries on 52 code fragments and 26 hours of screen-
recording with synchronized audio. We base the observations
reported in this paper on this data.

By analyzing this data and answering the research ques-
tions, we learned how concrete code summarization practices
lead to specific usability effects for a code fragment. This
knowledge directly supports the design of tools to automati-
cally extract and format code examples.

The rest of this section describes the details of the task,
code fragment corpus, and participants involved in the study,
also illustrated in the left part of Figure 1. The right part of
Figure 1 illustrates the data analysis conceptual framework,
which is described in Section 4. Sections 5 and 6 respectively
present the result of the two research questions.

3.1 Summarization Task
We define of a code fragment summary by adapting the

definition of a textual summary [25]. A code fragment sum-
mary is smaller in size than the original code fragment and
conveys important information in the original fragment. The
major goal of a code fragment summary is to present the
main ideas in the original fragment in less space.

We asked the participants to provide free-form summaries.
For each code fragment, a participant was instructed to write
a summary of no more than three lines. To help participants
envision the results, we asked them to make summaries as if
they were to serve as content summaries in a result page for
a search engine (for documents containing source code).

To provide a summary of a code fragment, the partici-
pants used a data collection tool we designed for this study

461

Figure 2: Annotation tool, with a summary by P6

(Figure 2). The top section presents contextual information
relating to the code fragment (Section 3.2). The middle
section shows the original code fragment the participants
were asked to summarize. Finally, the bottom section is a
fixed-sized text box in which the participant was asked to
enter the summary. In addition to the summary, for each line
in the summary, we asked the participants to indicate which
lines from the original code fragment the particular summa-
rized line came from. This approach is used in experiments
in the textual summarization community [24] for the purpose
of evaluating how different summaries overlap. We used this
information to determine the textual difference between the
original and the summary described in Section 4.

We asked the participants to verbalize their thought pro-
cess for the entire duration of their summarization activities.
We recorded the verbalizations together with a video of the
screen.

We chose to study the summarization practices in a lab
setting with access to the summary author. The participants’
verbalizations contained the rationale behind the decisions
taken in generating the summaries. Such rationale is harder
to reliably infer by the experimenters themselves in the
absence of the author of a code example. We also designed
the study to have multiple authors summarizing the same
code example so that we could examine the variability among
different code summary authors.

The summarization task was constrained by our decision
to limit summaries to three lines. This forced the partici-
pants to make choices that were not necessarily the ones they
would make if this experimental procedure had not been in
place. Research in text summarization suggests that fixing
the summary length in an experiment is crucial because sum-
maries of different lengths directly affect the actual content
of the summaries [12]. The artificial setup is a component of
any lab study: although it decreases the ecological validity of
the task, it has the major advantage that it supports the sys-
tematic analysis and comparison of the code summarization
practices. We return to this issue in Section 4.

3.2 Code Fragments
Selecting code fragments to study summarization practices

presents two challenges. First, the general idea of summariza-
tion is context-sensitive because of the requirement to assess

the relative importance of the elements in the original code
fragment. To distill a fragment to its essence, participants
need a basic idea of what the fragment is about. Second, code
summarization requires a non-trivial level of programming
expertise: we cannot ask participants to summarize code
they do not understand.

We addressed both challenges by selecting the code frag-
ments from a well-defined corpus of programming documents:
The Official Android API Guides.1 This documentation con-
tains a mix of natural-language text and code fragments
meant to explain and demonstrate the usage of the Android
API. Selecting code fragments from this documentation helps
us address the first challenge above (context) by allowing us
to draw from the structure of the text surrounding a code
example to provide the context. It helps us address the
second challenge by explicitly scoping the expertise required
of participants. We discuss the implications of selecting code
fragments from this corpus on the generalizability of the
results in Section 4.

We extracted all code fragment candidates in the Android
guide (1) that were enclosed in HTML pre tags; (2) that
were non-XML, leaving only fragments with code (though
not necessarily Java); (3) that had ten or more non-empty
source code lines; and (4) whose closest enclosing heading
started with a verb, e.g., “Passing events back to the dialog’s
host.” Selecting candidates with verb-starting heading is due
to the necessity in providing a context for the code example
(Section 3.3). These four criteria produced 166 candidates.
We randomly selected 52 fragments for the study.

3.3 Context Generation
We generated a context for each fragment using an auto-

matic procedure based on the headings enclosing the code
fragment. For each fragment, we constructed a context that
consists of two parts. The immediately enclosing heading
describes a specific purpose of what the code fragment is
supposed to demonstrate. The rest of the enclosing head-
ings point to the general area of the Android API the code
fragment demonstrates.

Figure 2 demonstrates a code fragment taken from a page
with two levels of subsections: First, the page is titled “Di-
alogs” and the second-level heading is titled “Passing Events
Back to the Dialog’s Host”. In this example, the title of
the page, “Dialogs”, shows which part of the Android API
the code fragment is taken from, as displayed in the annota-
tion tool in Figure 2. The second-level heading provides a
more specific purpose, which we marked as “Query” in the
annotation tool. For the code examples with three levels
headings, the third-level heading is displayed as “Query”, and
the first two levels are displayed under “Android API”. This
automatic procedure eliminates the threat of investigator
bias in crafting the context, at the cost of a potential loss of
precision in how well the context describes the fragment.

3.4 Participants
We assigned the 52 fragments to the 16 participants (P1

to P16) in a way that ensured that all fragments were sum-
marized by exactly three participants. Twelve participants
were assigned ten fragments and four were assigned nine
fragments.

We required participants to have one year or more of
Java programming experience, and have at least looked at

1http://developer.android.com/guide/components/index.html

462

P6's
summary

P7's
summary

P12's
summary

...extends FragmentActivity implements NoticeDialogListener{
void showNoticeDialog() { // create instance and show it}
void onDialogPositiveClick(DialogFragment dialog) {//same for negative click }

public void onDialogPositiveClick(DialogFragment dialog) {
public void onDialogNegativeClick(DialogFragment dialog) {

extends FragmentActivity implements NoticeDialogFragment.NoticeDialogListener{
// The dialog fragment receives a reference to this Activity through the
public void onDialogNegativeClick(DialogFragment dialog)

Originated from
the same fragment line

Figure 3: Summaries on the same fragment, with variations on the presentation highlighted

Table 1: Participants’ Development Experience
Java \ Android looked at Android API developed an app professional

1 year P3,6,7,8 P4,5,10
between 1 & 5 yrs P9,14,15 P1 P11
between 5 &10 yrs P2 P16
more than 10 yrs P12,13

the Android API. Of the 16 participants in the study, five
were recruited from local professional programmer meet-up
groups, one through personal contacts, and the remaining ten
from the McGill School of Computer Science (nine graduate
students and one undergraduate). Table 1 presents the partic-
ipants’ Java and Android development experience. In total,
seven had professional software development experience.

4. CONCEPTUAL FRAMEWORK
The study produced two different types of data: short-

ened source code and the verbalizations of participants. We
analyzed this data using a combination of quantitative and
qualitative [31] methods. The basis for the analysis was
the systematic extraction of the textual differences between
code fragments and the corresponding summaries (“Diff” in
Figure 1). We then refined the difference into a structured
list of summarization practices. For this purpose we fol-
lowed coding (or classification) techniques [31, Section 2.3],
guided by the categories of operations in textual summariza-
tion [13]. We distinguished practices concerning the type
of content selected and the way the content was presented
in a summary (“Selection” and “Presentation” in Figure 1).
The categorization enabled a quantitative assessment of the
frequency and generality of each practice. To make hypothe-
ses justifying the use of different summarization practices,
we relied on a quantitative analysis of the distribution of
each summarization practice across code fragments and par-
ticipants. This aspect of the analysis was directly enabled
by the choice to have each code fragment summarized by
multiple participants. Finally, we inspected the transcripts
of the participants’ verbalizations for evidence of the intent
behind each practice.

We distinguished between selection and presentation be-
cause even summaries with content associated with the same
part of the original fragment could have variations on how
the summary content was presented. For example, P6’s and
P7’s respective summaries (Figure 3) of the same fragment
both included the signature of the method onDialogPosi-

tiveClick (marked by the arrow in bold), but P6 chose to
leave out the keyword public and added a comment in the
body (the dark shade in the third line), and P7 chose to
provide the complete first line of the method declaration (the
dark shade in the first line). P12, whose summary contained
the signature of a different method, chose to provide the
first line of the method declaration without the body (the
third line). The decision of treating the removal of tokens
(e.g., public) as presentation, rather than selection (i.e., de-

selecting public) is dictated by granularity. The granularity
we chose for selection is at a higher level in the abstract
syntax tree than individual Java tokens. A granularity at the
token level would result in more decisions, complicating the
conceptual framework of the analysis and the computational
complexity of a summarization algorithm. This separation
of content selection from presentation is typical in a natural
language generation system, where the selection granularity
is typically at the sentence level rather at the word level [28].

Links to the Evidence: This study reports primarily on
evidence of a qualitative nature. A major challenge for
reporting observations derived from qualitative data is linking
to the evidence upon which an observation is based. In our
case this amounts to providing, for each observation, the
number of fragments where a practice is observed and the
distribution of these fragments across participants. This
amount of precision can quickly overwhelm the text to the
point of unreadability. Instead, we use a new visual approach
inspired by the idea of sparklines [36]. A sparkline is a
small graphic embedded in the text, drawn without axes.
In our context, a histogram presents the distribution of
observations of a given practice for a participant (each bar)
over the ten code fragments (the vertical axis). The 16 bars
corresponding to participants are sorted in decreasing number
of code fragments where the evidence was observed. The
vertical axis represents the number of code fragments where
the evidence was present. For example, the histogram for the

practice shortening identifiers is , signifying that
eight participants showed evidence of the practice in 8, 6, 5,
5, 4, 4, 3 and 3 code fragments respectively. We can compare
different practices in terms of the amount of evidence that
was observed across the participants and code fragments. For
example, the practice shortening identifiers was observed
in more participants and more summaries than the practice

shortening API names (). This observation can be
deduced by comparing the dark area of the two histograms.

The in-lined histograms are intended to provide a conve-
nient and compact assessment of the amount of evidence for
a practice. We provide more detailed links to the evidence in
Table 2, which relates the histograms to the specific partici-
pants associated with the practices, as well as the number of
code fragments observed and the number of occurrences in
the summaries. Finally, each quote explaining the rationale
for a practice is annotated with the corresponding participant
identifier, whose characteristics can be found in Table 1.

Threats to Validity: The threats to validity for this study
concern the reliability of the observations for the purpose
of informing source code summarization technology. We
consider the risk that a reader wishing to use this paper
could be misled.

The corpus of code fragments is limited to 52 fragments
in one technology. It is not representative of any defined
population of code fragments besides the Android documen-

463

tation. However, the contributions we provide in this paper
do not involve generalization from a sample to a population.
We make no claim about how often the practices we noted
are used in general, and we do not think such a projection
would be particularly useful. Instead, the implications of our
results concern the goodness of fit of a certain practice to
achieve a particular selection or presentation goal, which is
independent from frequency counts. We indicate frequency
counts for each practice to be transparent about the strength
of the evidence for the observations, without implying that
they can be extrapolated.

One threat of using frequency counts as a measure of the
strength of the evidence is that not all practices are equally
likely to be observed in the 52 fragments. It is possible that
our data misses some useful summarization practices, for
example if they target special source code patterns that were
not part of our code fragment corpus.

Our use of a grounded approach means that the data is
collected directly from participants and, as such, is influenced
by them. The corresponding threat is that a participant with
an unusual background or behaving strangely could corrupt
the data. Our experimental protocol required participants
to justify most of their decisions, allowing us to discover
such potential problems. We observed that all participants
appeared to complete the task in earnest. To avoid injecting
our own bias, we did not attempt to judge the quality of the
summaries.

As mentioned in Section 3.1, the summarization practices
we observed were employed in a context where participants
were required to produce a short (three-line) summary. This
decision was necessary to obtain comparable data. At the
same time, it also means that different practices might be
useful in contexts where the desired output summary is not
constrained by size.

5. SELECTION PRACTICES
Selection practices concern how participants decided on

which content to include in a summary, e.g., whether to
include a specific method declaration that matched the query
terms or whether to exclude exception handling code. We
observed three types of selection practices, each using a
distinct type of information: language constructs from the
code example itself, query terms, and human considerations,
such as the programming expertise of the reader.

Understanding these practices can help determine what
type of content should automatically be selected (or filtered
out) when presenting code examples in contexts where sum-
marization is appropriate (e.g., in search results).

5.1 Practices Related to Language Constructs
Certain types of language constructs were consistently in-

cluded (e.g., content of a class) or excluded (e.g., exception
handling code) in a summary. Figure 4 shows how frequently
a language construct appeared in a summary (“# of Se-
lected”). To put these frequency numbers in context, we
also provide how frequently the construct was eligible for
selection (“# of Eligible for Selection”). This second set of
frequency numbers represents either the occurrences of the
construct in a code fragment shown to a participant (e.g., try
exception handling blocks do not occur as often as method
declarations), or the number of times the parent node was
selected in a summary (e.g., a method signature can only be
selected when a method declaration is selected). Finally, the

Compilation Unit 0 3

 Package Declaration 0 21

 Import Declaration 0 21

 Class Declaration 50 54

 Class Signature 12 50

 Class Body 50 50

 Method Declaration 184 210

 Method Signature 124 184

 Method Body 126 184

 Conditional Structure 65 165

 Try Statement 9 12

 Try Block 9 9

 Catch Block 0 9

 Finally Block 0 3

 Comment 33 702

of Selected

of Eligible for
Selection

Figure 4: How often a construct was in a summary

pie charts show the ratio “# of Selected” divided by “# of
Eligible for Selection”.

The first two practices involve methods. All participants

selected methods (), as P14 justified, “First, I want

to know the functions I have to use.”:
Practice - Including (or Excluding) the Method

Signature: Depending of the code fragment a method sig-
nature can be included or excluded.

Including the method signature () was consid-
ered as part of keeping the structure of the code. As one par-
ticipant put it, “because there’s a lot of them [code], it can be any-

thing. It’s the structure. The main part is the class BillingRecei-

ver which extends BroadcastReceiver, the method that overrides

inside. The rest can be ignored.”P9 Another participant chose to
show the structure of the code rather than the control flow
structure: “The switch is more about how the method functions.

What are the possible functions and outcome. [...] I was just given

switch, I have no idea of what it is.”P7 This structure can be
important in code on the Android platform with a substantial
amount of call-backs. There were fewer cases in which only

the method signature was kept (), while more
fragments had both the signature and the body selected

for the summary (). One reason for keeping the
method body was that the fragment has more computation-
intensive code. For example, a fragment about the usage of
the gyroscope had more than half of the lines on mathemati-
cal computations. For that fragment, all three participants
included at least two statements from the method body.

Participants collapsed the method by displaying the con-

tent of the method without the signature (). One
participant who eliminated the method signature said that
the declaration was a common API call-back, saying, “This

handler is pretty much for any activity.”P4 Another reason was
that the participants expected the user of a summary could
find the signature through the IDE.

Practice - Including Overriding Methods: Of the
method declarations with an explicit @Override annotation
(43 methods), most of the methods (36) were included in a
summary by at least one participant. One participant even
called it a “regular pattern”P13 to include overriding methods.
The seven methods not included by anyone were in code
fragments with other choices of methods. However, the
override annotation itself was rarely kept, only in six code

fragments ().

464

Practice - Excluding Exception Handling Blocks:
None of the exception handling code, enclosed in catch or
finally blocks, appeared in a summary. There were several
intents behind the practice of excluding exception handling
code. First, exception handling code was not unique to an
example (“Try-catch is part of almost all standard code.”P5) or too
obvious to the reader (“Anyone working with sockets knows it

will throw exceptions. I will remove the catches, and the try.”P2)
Second, the code inside the try block was kept (while the
catch clause was removed) to show one case of the code:

“The first thing you should do in an example is [to] assume everything

is OK.”P2 Third, participants expected that missing exception
handling code would be suggested by an IDE: “[Missing] this

exception you would have Eclipse complaining about it.”P11

Practice - Keeping Only One Case in a Parallel
Structure: Some code fragments contained code with mul-
tiple cases. In the case of if or switch statements, more
than one third of the instances only had one block selected
for a summary. Keeping one case and dropping the others
also happened with method calls (“I can just remove one of the

buttons. Instead of having the cancel button, I can just have the

OK button.”P4) or method declarations (“onStop is basically the

reverse of onResume. It will be OK to just display everything in

onResume [...].”P9)

5.2 Practices Based on Query Terms
Not surprisingly, participants used terms from the query

to determine whether a part of the code was relevant enough
to include in a summary. Thirteen out of 16 participants
explicitly mentioned the importance of the query in the de-
cision of content selection. For example, “startForeground

[a method declaration] actually starts the foreground service. Since

the query [“Running as a foreground service”] doesn’t have anything

to do with the media player, even though it’s part of the API being

used, [...] I left it out.”P15

All 16 participants verbally justified the content selection
when a code element matched terms in the query. Of these
70 distinct methods from the 52 code fragments (70×3 = 210
instances of methods eligible for selection from Figure 4),
twenty-two contained at least one query term (or stemmed).
Of these 22, only one was not selected by any participant.
Both from the verbalizations and from the summaries, we
conclude that all participants used the query in content
selection for summarization.

5.3 Practices Considering the Human Reader
Summaries are targeted to humans. Participants explicitly

considered the expertise of the programmer.
Practice - Including Easy-to-Miss Code: Four par-

ticipants mentioned including easy-to-miss parts of the code
in the summary, e.g., the method declaration onResume “is

something people tend to forget.”P11 Another participant made
a similar comment and explicitly qualified the advice with
the participant’s own personal experience: “It reflects my own

knowledge of this class [...]. If you set the layout in the wrong place,

you can end up with a lot of problems. I want to be specific there.”P10

Another participant expressed frustration at not being able
to include a call to the super class which was deemed easy to
miss: “I’m still not happy to remove the super. If someone looks

at the short one, copy and start. He could miss it.”P2

Practice - Accounting for Programming Expertise:
Seven participants justified not including parts of the code
that were too obvious to the reader. The code might be

obvious because of (1) previous languages used (“This is C-style

where you handle one byte at a time. It would be pretty obvious this is

how you do it”P11) (2) the assumption on the knowledge of Java
(“The sockets [...] is not specific to Android. It’s exactly the same in

standard Java”P2) , or previous knowledge of the Android API
(“onCreate is a method where if he knows a little bit of Android

development, he won’t get a lot from this [onCreate] anyways.”P5)
In general terms, one participant explicitly distinguished
the different needs of an expert and a novice of an API:

“Someone who’s very experienced [...] may be looking for something

very specific, [such as] methods [...]. Someone who is a complete

novice would probably look at something very explanatory.”P3

Practice - Using the Query to Infer Expertise: Par-
ticipants used the query to infer the level of expertise on the
API of the query poser, and then excluded the part of the
API deemed obvious. One participant commented on the
decision of not including certain method declarations for a
query about Near Field Communication (NFC), a topic the
participant deemed advanced. “If someone is doing NFC, [...]

someone already knows what onPause [or] onResume is, so I don’t

need to stress it. This is more advanced stuff than how the activity

behaves.”P11 Interestingly, P11 was one of the participants
who deemed onResume easy to miss in another fragment.

6. PRESENTATION PRACTICES
Presentation practices relate to decisions about how the

selected content appeared in a summary. We observed par-
ticipants made changes to the selected original content to
make it fit into the space allowed for the summary through
practices in three general categories: trimming a line when
needed (Section 6.1), compressing a large amount of code
(6.2), and truncating code (6.3). Beyond presentation de-
cisions for the purpose of fitting the desired content into
the space, we found that formatting decisions were personal
and related to readability of the summary (6.4). Despite
the task’s focus on reducing code, we observed participants
improved the code, e.g., by clarifying comments (6.5).

The presentation practices we collected provide practical
insights into how source code fragments can be formatted in
various situations including on search results pages, in forum
posts, and in tutorial documents.

6.1 Trimming a Line When Needed
Ten participants () performed transformations

for the purpose of trimming a line, such as shortening variable
names or removing a type qualifier. These operations hap-
pened when the content needed to fit into a line pre-allocated
for that content.

Practice - Shortening Identifiers: We expected par-
ticipants to shorten variable and parameter names, because
these changes do not change the semantics of the program.

Eight participants () did so in 29 (56%) code frag-
ments. We observed a number of ways to shorten a name:
(1) using acronyms, e.g., from sharedPreferences to sp,
(2) shortening words in an identifier, e.g., from default-
Value to defaultVal, (3) using discourse aggregation for
reducing the complexity [27] by dropping words (e.g., from
defaultValue to default) or para-phrasing (e.g., from tag-
FromIntent to intenttag), and (4) using a combination of
these operations, e.g., mInputStream to in. These observa-
tions concur with Eshkevari et al.’s taxonomy on identifier
renaming in a code base [6].

465

Table 2: Evidence of the presentation practices

Trimming a Line When Needed 10 P2,4,6,8,10,11,13,14,15,16 33 95

Shortening Identifiers 8 P2,4,6,8,10,11,15,16 29 72

Shortening API Names 4 P6,10,11,15 5 7

Eliding Type Information 10 P2,4,6,8,10,11,13,14,15,16 9 16

Compressing a Large Amount of Code 13 P2,3,4,5,6,7,8,9,10,11,14,15,16 28 46

Shortening Multiple Statements 10 P3,4,6,7,8,9,10,11,15,16 15 51

Shortening Method Declarations 7 P4,6,8,10,11,14,16 10 11

Shortening Control Structures 8 P2,3,5,6,8,10,11,16 12 14

Truncating Code 12 P1,2,4,5,6,8,9,10,12,13,15,16 28 63

Eliminating a Parameter 9 P1,4,5,6,8,9,10,15,16 16 28

Truncating a Signature 9 P2,4,5,8,10,12,13,16 18 35

Formatting for Readability 16 all 52 140

Indenting 8 P1,2,4,7,8,9,13,14 20 27

Treating Lines as Separate 15 all except P10 52 135

Improving Code 9 P1,2,4,6,8,10,11,12,16 9 35

Fowler's Refactorings 4 P1,2,8,11 4 5

Generalization 4 P2,4,8,16 5 8

Clarification 6 P6,8,10,11,12,16 14 22

#Fragments (out of 52) #
Instances

#Summaries
(out of 156)

#Participants (out of 16)Presentation practices

Practice - Shortening API Names: We expected that
the names of API calls and overridden methods would remain
the same in a summary. As P6 asserted, “I am assuming over-

ridden methods cannot have their names changed.” Surprisingly,
we observed changes to these API elements, by four partic-

ipants (). P6’s justification on the shortening of
the name of an API method was that the name is “abnormally

long”P6: “unregisterOnSharedPreferenceChangeListener,

what kind of name is that?”P6 P6 renamed the method to “unre-
gister...”. Note that the context was important in this
case, as the API call is expected to be made inside a class that
inherited from SharedPreferenceChangeListener, which
defined the unregister method.

Practice - Eliding Type Information: Java requires
a variable to have a declared type in an unambiguous name-
space and explicit down casts. In the context of summa-

rization, ten participants () relaxed this require-
ment and elided type information in the following situa-
tions: (1) Four participants eliminated a type qualifier; e.g.,

“I’m removing the name-space. [...] Someone can [put a] import

static.”P2 In addition, the type information is a piece of
information expected to be found easily: “[For] the flag, if they

are in the definition of the type, they can see which flags are in the

type.”P12 (2) Five participants removed the variable type in
assignments in six assignments that were selected over five
summaries. (3) In the only selected line that contained a
type cast in the whole corpus, all three participants selected
that line and removed the type cast in consensus. (4) Two
participants shortened a type reference or a primitive type:
e.g., from Object to obj.

6.2 Compressing a Large Amount of Code
Twelve participants () employed more complex

abstraction and aggregation practices that greatly reduced
the code from its original size. These changes involved com-
pressing a block of code that contained one or more method
declarations, control statements, or multiple statements and
replacing the code with ellipses or a comment. Four partici-
pants (P5,7,9,15) only employed ellipses when compressing a

large block of code, four (P4,11,14,16) only employed comments,
and four (P3,6,8,10) employed both.

It is inevitable that when a block of code deemed important
exceeded the space available for summaries, the participant
needed to somehow compress the code. We observed that
participants either compressed the code using ellipses (“’...’

[indicates] additional important things”P8) or comment. Ellipses
and comments also could “abstract a particular block.”P8 Cer-
tainly, comments conveyed more information than ellipses.
However, choosing comments or ellipses was affected by the
trade-off between information and space: All the comments
in the summaries were longer than three characters.

Practice - Shortening Multiple Statements: Ten

participants () shortened multiple statements in-
cluding the whole method body. The use of comments ver-
sus ellipses was split almost evenly: Six of the participants
(P3,4,6,8,10,11) used comments 22 times and seven (P3,6,7,8,9,10,

15) used ellipses 29 times. P15 who only used ellipses to
summarize multiple statements said, “ Most of the time I put

’...’ when there are lines in between. If you don’t put that in, it’s less

clear there’s other stuff in there.”P15

Practice - Shortening Method Declarations: Seven

participants () aggregated whole method declara-
tions by replacing the whole declaration with comments or
with ellipses. Unlike in abstracting multiple statements, most
participants (six out of the seven) used comments rather than
ellipses (one out of seven) to abstract method declarations.
The ten comments demonstrated a number of different ways
to abstract content: (1) listing the method declarations (eight
comments), e.g., lines 1 and 2 in Figure 5; (2) aggregating
lexically [27] through the use of the quantifier “all” (one com-
ment), as in, e.g., “all inherited methods” in line 3 in Figure 5;
and (3) aggregating semantically [27] (one comment), e.g.,
the comment //same for negative click which referred
to the code for handling the positive click. Lexical aggre-
gation is a way to summarize a list of elements with a few
words rather than explicitly listing the methods [27].

Practice - Shortening Control Structures: Eight par-

ticipants () shortened control structures. Four
participants replaced a block in a conditional statement or a

466

1 /* implement SensorEventListener @override ←↩
onAccuracyChanged(), onSensorchanged() */

2 @override onCreate(), onAccuracyChanged(), onResume()←↩
, onPause() onSensorChanged(){...}}

3 // remember to override all inherited methods ←↩
appropriately

Figure 5: All three summaries on the same example
contained a comment listing overriding methods

1 while(cur.moveToNext()) {...}}
2 if (checked)... else...}
3 if (resultCode == Activity.RESULT_OK && requestCode ←↩

== PICK_CONTACT_REQUEST) { //code for activity }
Figure 6: Sample of summarized control structures

switch statement, or in a while or for loop, with a comment
or ellipses. Figure 6 illustrates three such examples. Beside
using ellipses and comments, five participants (P2,6,8,11,16)

compressed the whole structure through program semantics
preserving transformations. Participants either turned an if

statement into a more compact conditional expression (with
operators ? and :), or turned a switch statement into an
if: “switch is going away because [...] they become too big. I’m

just going to put an if.”P2

In brief, ellipses and comments were approaches to shorten
a large of piece of code. This result concurred with one of
Nasehi et al.’s findings [23] on concise code examples that
contain “place-holders, such as comments or ellipses, which
usually transforms the code to a solution skeleton.” We
found that to summarize method declarations, almost all
participants employed comments instead of ellipses. The
majority of the comments were simply listing the name of
the method declarations or using lexical aggregation.

6.3 Truncating Code
Code truncation transformations involve shortening a line

while violating syntax. Twelve participants ()
performed such truncation. These code truncation transfor-
mations affected code compilability, which some participants
considered important. One factor that affected the presen-
tation of code was a participant’s view on the importance
of making the code compilable. This view varied between
the participants. Those who were more indifferent to the
importance of compilability tended to perform code trun-
cating operations violating syntax, using ellipses, or cutting
off parts of a statement or having unmatched brackets or
parentheses.

Four participants mentioned the importance of compilable
summaries. The most common reason was that participants
wanted to copy and paste the code directly: “It’s very important

for the code to compile correctly. [...] I’m a very lazy person.

I would Google [...] the snippet, [...] copy it, and pretend it’s

mine.”P6 Another reason was for understandability: “Having

something compilable allows me to actually see the effects, and that

will help me to understand the code better.”P8 Compilable code
was also important because otherwise the summary could
look “sloppy.”P2

It was not always possible to make the code compile. When
the code was not compilable, participants wanted to minimize
the non-compilable parts: “I want to copy the least amount of

code or through the least number of places. Copy code with the

least number of changes [that] would [make the code] work.”P6 One
participant wanted to clearly mark the non-compilable parts
of the code: “It’s important to either compile on its own, or if it

does not compile, it is readily identifiable what needs to be done to

/*convert ns to s */ omega = sqrt(X*X + Y*Y + Z*Z); if (omegaMagnitude > EPSILON)
 { X /= omega; ... } theta = omega * deltaT / 2.0f; deltaR[0] = sin(theta) * X...
deltaR[3] = cos(theta); SensorManager.getRotationMatrix(new float[9], deltaR);

Figure 7: A summary without formatting, by P10

make it compile.”P8 P8 invented a language construct, a pair
of angle brackets to indicate variables not declared in the
summary: “Here I am going to add uncompilable code [replacing

the variable name with <NAME>].”P8

On the other hand, one participant did not see the im-
portance of having compilable or runnable code: “For such a

short and abstract example, [...] we are not talking about runnable

code.”P2 Less so, P4 said,“If it’s not compilable, Eclipse or whatever

editor you use will give some hints. This expects a pointer, or this

expects an object of this class, inherit this class, the kind of auto-fix

suggestions that Eclipse give.”P4

Practice - Eliminating a Parameter: It was some-
times desirable to eliminate a parameter which is deemed to
be a detail: “When we search for something, we don’t want too

much stuff that is irrelevant, [for example,] the parameters.”P9 Nine

participants () shortened the parameter list in a
method call or a method declaration. When eliminating a
parameter, participants chose to replace a parameter with
ellipses (eight participants over thirteen code fragments) as
well as simply eliminating a parameter (three participants
over four code fragments). P1 justified the use of ellipses:

“Here [where the parameters were eliminated] you have to put ’...’

because there are multiple parameters.”

Practice - Truncating a Signature: Because many
of the method and class declarations are part of the call-
back mechanism of the Android framework, we expected
that when such a method or class signature was selected
for a summary, the signature would be kept intact. For
both method declarations and class declarations, leaving the
signature intact was indeed the most common way for a
signature appeared in a summary. However, a significant

number of participants () had summaries with the
method or class signature modified. These changes involved
Java keywords (such as public or static), identifier names,
or the whole signature replaced by a comment. One par-
ticipant justified the removal of keywords, saying, “public

class something, extend something [...]. This is rudimentary. [...]

All this stuff is meaningless.”P6 This justification corroborates
with conclusions from work on statistical modeling of source
code [11], pointing out that source code contains redundancy.

6.4 Formatting Code for Readability
Participants explicitly expressed the importance of two

different readability dimensions that related to formatting:
indenting and treating lines as separate. Figure 7 illustrates
a summary with little formatting, i.e., without any indenta-
tion, and with no separate lines. In Table 2, for formatting
practices we report the number of summaries exhibiting the
practice instead of the number of instances because format-
ting practices apply to the whole summary, not necessarily
to a specific line.

Practice - Indenting Code: Indentation in code can
increase readability: “It’s easier to see the layers, the level of

importance. You look at [the code] from top to bottom.”P9 Two
participants mentioned that indentation is a standard coding
convention and is required by languages such as Python.

Eight participants () intentionally indented at
least one summary. We did not count cases when the in-
dentation in the summary was not intentionally put in, e.g.,

467

1 if (item.isChecked()) item.setChecked(false); else ←↩
item.setChecked(true);

2 item.setChecked(!item.isChecked());
Figure 8: P4 refactored code from line 1 to line 2

indentation that were simply copied and pasted from the
code that contained indentations.

Practice - Keeping Lines as Separate: Keeping the
summary as separate lines can be seen as desirable, whereas
wrapping lines and putting two lines into one can be seen
as undesirable. P11 declared, “it’s ugly,” when a comment
expected to fit a line wrapped around to the following line.
P2 considered eliminating a line break between the class
signature and the method signature as undesirable: “The

class definition and the method on the same line. That will be

really crazy.” All participants () treated at least one
summary with all separate lines, i.e., not wrapping lines and
not putting two lines into one in a summary.

Participants’ views on readability was divided. Half of
the participants (P2,4,8,9,11,12,13,15) explicitly expressed im-
portance in readability. P2 despised original code with poor
readability: “I look at this and I’m scared. Oh my god, what’s

happening here? There’s not a break line.” The other half of the
participants included P3 who did not think readability is
important because summaries are short: “Since it’s just three

lines of code, [...] I don’t think he [the reader] would mind the

formatting.”P3 P10 thought packing more information is more
important than readability: “If it [the summary] is more readable

and as a consequence there is less information, you still would not

know whether you want to click [the link to the whole example.”

Despite the eight participants who did not think readability
was important, the two formatting practices were used by all

participants ().

6.5 Improving Code
We observed three types of transformations that improve

the code: refactoring, generalization, and clarification. Nine

participants () took the effort to improve the code:
“Can I, interesting, well I guess I can. I should. From my experience,

I will just do this [refactoring].”P2 Because the main objective
was to shorten the code, we found any improvements surpris-
ing, especially when some improvements, such as adding in
clarifications as comments, lengthened the code.

Practice - Fowler’s Refactorings: Four participants

() applied two different types of refactoring to con-
trol flow structures [8]. P2 and P11 applied refactorings in
the spirit of the “Consolidate Conditional Fragments” refac-
toring on the same code fragment. P2 eliminated unnecessary
control flow branches, turning line 1 in Figure 8 into line 2.
P1 and P8, on two code fragments, applied the “Consolidate
Duplicate Conditional Fragments” refactoring, moving part
of code that is in all branches of a conditional expression to
the outside of the expression.

Practice - Generalization: Four participants general-
ized a value or variable specific to the examples to something

more likely applicable to other contexts (). P2
and P4 generalized a constant specific to the examples to a
variable, e.g., from the constant Intent.CATEGORY_ALTERNA-
TIVE to the variable myCategory. P8 and P16 replaced a
variable specific to the example with a place-holder. The
place-holder employed by P8 was an invented notation, an
angle bracket (e.g., replacing the variable R.id.menu_search
with <NAME>) or with a comment for P16, (e.g., replacing

the string constant “landscape” with /*orientation*/).
P8 and P16 essentially treated the summary as a closure
and noted the free variables with the place-holder and com-
ment. The termination of this type of generalization is called
conceptual aggregation in the natural language generation
domain [27].

Eight participants explicitly mentioned that some parts of
the code were important for the example to work, but too
specific to the example. One participant shortened a path
because “someone [the query] assumes the data is an image, but it

doesn’t need to be an image.”P2

Practice - Clarification: Six participants ()
added to the summary clarifications that were not present in
the original code. Five clarified names of the variables; e.g.,
P16 justified replacing the variable cur with a more descrip-
tive name, queryResult, especially important for a variable
that is the input or the result of a piece of code: “Intermediate

variables don’t matter, but what needs to be fed in and what needs

to come out, those two variables [cur and cr], [matter.]”P16 We ob-
served 16 comments in nine different code examples. Fifteen
of those comments reiterated what the code summary pre-
sented, while one comment (//Start and stop download

when activity is in foreground) clarified that the call-
backs onResume and onStop were run in the foreground, an
insight not explicit in the original code. Some of these clari-
fication transformations are found in automatic algorithms
to expand and improve identifiers [16].

7. DISCUSSION
Most of the work on code example generation and sum-

marization has focused on the content selection aspect. Lan-
guage constructs have been used for code fragment sum-
marization [38] and code example synthesis [14]. Systems
for extracting [2], synthesizing [3, 14], or summarizing [38]
code examples have made heavy use of query terms. These
practices of using language constructs and query terms were
used by the participants, a result concurring with existing
work. Section 7.1 discusses some novel types of information
we observed beyond the existing use of code itself and query
terms. Sections 7.2 to 7.4 focus on implications related to the
presentation practices. Finally, Section 7.5 discusses some
implementation ideas.

7.1 Selection Beyond Code and Query Terms
Accounting for expertise information to determine which

content should be included can be a promising type of infor-
mation to complement existing code example search engines
that are based heavily on the code itself and the query as
the input to the analyses. Existing measures to quantify
expertise include the use of commit logs and interaction his-
tory [9, 21]. These measures all share the assumption that
the more a developer changes the code or calls a method, the
more expertise of the corresponding code or API method the
developer has. We observed that participants either assumed
the reader had a certain expertise or inferred expertise from
the query. In information retrieval, the foundational research
on inferring intention is whether a query is informational or
navigational [17].

7.2 Most Summaries are Abstractive
Current textual summarizers generate two types of sum-

maries: Extractive summaries have the content obtained
solely from copying and pasting whole sentences from the

468

original document, whereas abstractive summaries can con-
tain text modified from the original document [19].

If all participants were to provide extractive summaries,
we would only observe selection practices and formatting
practices (modifications involving white spaces) in the sum-

maries. However, all 16 participants () employed
modifications beyond changing white spaces, namely, modifi-

cation involving trimming a line (), compressing

a large amount of code (), and truncating code

(). As we saw in Section 6, the participants made
changes to the selected content to make it fit into the space
allowed for the summary.

Modifications associated with abstractive summaries were
present in 90% (47 out of 52) of the the code fragments; thus,
these 90% of the code fragments had at least one abstractive
summary provided by a participant.

7.3 Abstractive Summary Generation
The code-shortening transformations found in the field of

code transformation and example generation and extraction
typically generate syntactically correct code and preserve
program semantics. For example, shortening identifiers using
acronyms is used in Buse and Weimer’s code example synthe-
sizer [3]. Knowing which words to shorten in an identifier or
using discourse aggregation require a deeper understanding of
the linguistic aspects of the identifier, such as part-of-speech
information. We observed the shortening of API names only
in exceptional cases, when the context was clear and when
the name was long.

Several presentation practices however did not necessarily
result in source code. In the shortening method declarations
practice, we observed summaries with both code and natural

language. Overall, seven participants () injected
additional natural language (in the form of comments or
place-holders described in Section 6) into the code summaries.
This motivates a novel type of transformations that mix code
and text. The only work we know of in this area is the
natural summaries generated by Rastkar et al. [26]. Their
summaries describe a commit as part of a software concern.
The patterns found in their summaries include listing the
method declarations changed in a commit and using lexical
aggregation to to describe a commit (e.g., “All of the methods
involved in implementing ‘Undo’ are named undo”). We have
observed both patterns (listing and lexical aggregation), as
shown in Figure 5.

The presence of improvement transformations was sur-
prising. However, the proportion of these transformations
were small. The five instances of refactoring of control flow
structure were out of 65 on conditional structures selected,
and the ten instances on generalization and clarification on
values and variables were a small fraction of the total number
of statements containing a variable. The 16 comments were
only inserted by two participants, and most of the comments
were redundant because they reiterated the code. Also, gen-
eralization and clarifications are challenging to generate even
in a natural language generation system. Extraneous to the
main goal of a summarizer, improvement transformations
should be of lower priority for a summarizer to address.

7.4 Silhouette of a Summary is Important
Formatting practices determine how much space a summa-

rizer has for a summary. We observed that all participants

employed some formatting in their summaries. The format-
ting included respecting indentation and keeping lines as
separate lines. These results uniquely apply to the problem
of summarizing and presenting source code, as opposed to
text. Text summarizers typically use the space as a contigu-
ous stream of characters with no indentation.

The amount of space in the summary could affect read-
ability. “I don’t like packing more stuff. I always want readability.

That helps me, in one glance, to assess whether the particular code is

helpful or not. [...] If the code is packed, it’s pretty hard. It would go

for another example which has more clarity.”P4 We did not derive
any specific practice from this behavior due to the difficulty
of objectively defining what “packing more stuff” means. We
nevertheless observed that there did not appear to be a strong
correlation between the length of a code fragment and its
summary (Pearson R = 0.0758, p = 0.347), indicating that
many other factors could influence the density of a summary.

7.5 Implementation Directions
To transform a source code example to a summary, one

can opt for edit scripts to encode the transformations. Edit
scripts are sequences of edit operations including insertions,
deletions, and updates. A number of existing approaches can
infer these scripts effectively on two versions of the code [7,
20]. Selection and presentation summarization practices
can be conceptually mapped to the two main components
of an edit script: where in the code (i.e., the AST) an
edit operation should be applied (selection) and which edit
operations should be applied (presentation). One challenge
in adapting existing approaches for generating summaries
is to relax the assumption that a significant portion of the
two versions of the code is the same, because the difference
between a fragment and a summary can be substantial.

8. CONCLUSION
This study elicited selection and presentation practices

we observed from 156 concise code representations obtained
from 16 participants. The goal of the study was to inform
the design of concise representations of source code and
automatic summarization algorithms. The selection prac-
tices we observed reinforce the existing usage of code and
query terms in content selection in the summarization do-
main. The selection practices revealed the importance of
the human reader, as we observed that participants targeted
summaries to the expertise level inferred from the query.
Moreover, participants did not simply copy and paste parts
of the the original fragment to the summary verbatim; all
16 participants employed practices to modify the content,
mostly with the intent to make it more concise but also
make it more compilable, readable, and understandable. The
practices directly inform the design and the generation of
concise source code representations.

9. ACKNOWLEDGMENTS
Thanks to the participants; Wesley Weimer and the anony-

mous reviewers for their comments on the paper; and Pablo
Duboue, Francisco Ferreira, Miryung Kim, Kathryn McKin-
ley, and Christoph Treude for the discussion. This work was
supported by NSERC and a McGill Tomlinson Scholarship.

469

10. REFERENCES

[1] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A.
Schneider. Answering questions about unanswered
questions of stack overflow. In Proceedings of the
Working Conference on Mining Software Repositories,
Challenge Track, pages 97–100, 2013.

[2] S. Bajracharya, J. Ossher, and C. Lopes. Leveraging
usage similarity for effective retrieval of examples in
code repositories. In Proceedings of the International
Symposium on the Foundations of Software
Engineering, pages 157–166, 2010.

[3] R. Buse and W. Weimer. Synthesizing API usage
examples. In Proceedings of the International
Conference on Software Engineering, pages 782–792,
2012.

[4] E. Cutrell and Z. Guan. What are you looking for? An
eye-tracking study of information usage in web search.
In Proceedings of the Conference on Human Factors in
Computing Systems, pages 407–416, 2007.

[5] E. Duala-Ekoko and M. Robillard. Asking and
answering questions about unfamiliar APIs: An
exploratory study. In Proceedings of the International
Conference on Software Engineering, pages 266–276,
2012.

[6] L. M. Eshkevari, V. Arnaoudova, M. Di Penta,
R. Oliveto, Y.-G. Guéhéneuc, and G. Antoniol. An
exploratory study of identifier renamings. In
Proceedings of the Working Conference on Mining
Software Repositories, pages 33–42, 2011.

[7] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall.
Change distilling: Tree differencing for fine-grained
source code change extraction. Transactions on
Software Engineering, 33(11):725–743, 2007.

[8] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, 1999.

[9] T. Fritz, J. Ou, G. Murphy, and E. Murphy-Hill. A
degree-of-knowledge model to capture source code
familiarity. In Proceedings of the International
Conference on Software Engineering, pages 385–394,
2010.

[10] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques
for summarizing source code. In Proceedings of the
Working Conference on Reverse Engineering, pages
35–44, 2010.

[11] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and
P. Devanbu. On the naturalness of software. In
Proceedings of the International Conference on
Software Engineering, pages 837–847, 2012.

[12] H. Jing, R. Barzilay, K. McKeown, and M. Elhadad.
Summarization evaluation methods: Experiments and
analysis. In AAAI Symposium on Intelligent
Summarization, pages 51–59, 1998.

[13] H. Jing and K. R. McKeown. The decomposition of
human-written summary sentences. In Proceedings of
the Annual International Conference on Research and
Development in Information Retrieval, pages 129–136,
1999.

[14] J. Kim, S. Lee, S.-W. Hwang, and S. Kim. Enriching
documents with examples: A corpus mining approach.
Transactions on Information Systems, 31(1):1–27, 2013.

[15] J. Kupiec, J. Pedersen, and F. Chen. A trainable
document summarizer. In Proceedings of the Annual
International Conference on Research and Development
in Information Retrieval, pages 68–73, 1995.

[16] D. Lawrie and D. Binkley. Expanding identifiers to
normalize source code vocabulary. In Proceedings of the
International Conference on Software Maintenance,
pages 113–122, 2011.

[17] U. Lee, Z. Liu, and J. Cho. Automatic identification of
user goals in web search. In Proceedings of the
International Conference on World Wide Web, pages
391–400, 2005.

[18] C. Lewis and J. Rieman. Task-Centered User Interface
Design: A Practical Introduction, chapter 5: Testing
The Design With Users. Self-published, 1993.
http://grouplab.cpsc.ucalgary.ca/saul/hci topics/tcsd-
book/contents.html.

[19] I. Mani. Automatic summarization. John Benjamins
Publishing, 2001.

[20] N. Meng, M. Kim, and K. S. McKinley. Lase: locating
and applying systematic edits by learning from
examples. In Proceedings of the International
Conference on Software Engineering, pages 502–511,
2013.

[21] A. Mockus and J. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proceedings of the International Conference on
Software Engineering, pages 503–512, 2002.

[22] L. Moreno, J. Aponte, G. Sridhara, A. Marcus,
L. Pollock, and K. Vijay-Shanker. Automatic
generation of natural language summaries for Java
classes. In Proceedings of the International Conference
on Program Comprehension, pages 23–32, 2013.

[23] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
makes a good code example? A study of programming
Q&A in StackOverflow. In Proceedings of the
International Conference on Software Maintenance,
pages 25–34, 2012.

[24] A. Nenkova and R. Passonneau. Evaluating content
selection in summarization: The pyramid method. In
Proceedings of the Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
145–152, 2004.

[25] D. Radev, E. Hovy, and K. McKeown. Introduction to
the special issue on summarization. Computational
Linguistics, 28(4):399–408, 2002.

[26] S. Rastkar, G. C. Murphy, and A. W. Bradley.
Generating natural language summaries for
crosscutting source code concerns. In Proceedings of the
International Conference on Software Maintenance,
pages 103–112, 2011.

[27] M. Reape and C. Mellish. Just what is aggregation
anyway. In Proceedings of the European Workshop on
Natural Language Generation, pages 20–29, 1999.

[28] E. Reiter and R. Dale. Building natural language
generation systems. MIT Press, 2000.

[29] M. Robillard and R. DeLine. A field study of API
learning obstacles. Empirical Software Engineering,
16(6):703–732, 2011.

[30] P. Rodeghero, C. McMillan, P. W. McBurney,
N. Bosch, and S. D’Mello. Improving automated source

470

code summarization via an eye-tracking study of
programmers. In Proceedings of the International
Conference on Software Engineering, pages 390–401,
2014.

[31] C. B. Seaman. Qualitative methods in empirical studies
of software engineering. Transactions on Software
Engineering, 25(4):557–572, 1999.

[32] S. Sim, R. Gallardo-Valencia, K. Philip, M. Umarji,
M. Agarwala, C. Lopes, and S. Ratanotayanon.
Software reuse through methodical component reuse
and amethodical snippet remixing. In Proceedings of
the Conference on Computer-Supported Cooperative
Work, pages 1361–1370, 2012.

[33] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for Java methods. In Proceedings
of the International Conference on Automated Software
Engineering, pages 43–52, 2010.

[34] J. Stylos and B. Myers. Mica: A web-search tool for
finding API components and examples. In Proceedings
of the Symposium on Visual Languages and
Human-Centric Computing, pages 195–202, 2006.

[35] S. Subramanian and R. Holmes. Making sense of online
code snippets. In Proceedings of the Working
Conference on Mining Software Repositories, Challenge
Track, pages 85–88, 2013.

[36] E. R. Tufte. Beautiful evidence. Graphics Press,
Cheshire, CT, 2006.

[37] R. White, J. Jose, and I. Ruthven. A task-oriented
study on the influencing effects of query-biased
summarisation in web searching. Information
Processing & Management, 39(5):707–733, 2003.

[38] A. T. T. Ying and M. P. Robillard. Code fragment
summarization. In Proceedings of the Joint Meeting of
the European Software Engineering Conference and the
International Symposium on the Foundations of
Software Engineering, New Ideas Track, pages 655–658,
2013.

[39] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei.
MAPO: Mining and recommending API usage patterns.
In Proceedings of the European Conference on
Object-Oriented Programming, pages 318–343, 2009.

471

