
Detecting Increases in Feature Coupling
using Regression Tests

Olivier Giroux
Graphics Infrastructure Dept.

NVIDIA Corporation
Santa Clara, CA, USA

ogiroux@nvidia.com

Martin P. Robillard
School of Computer Science

McGill University
Montréal, QC, Canada

martin@cs.mcgill.ca

ABSTRACT
Repeated changes to a software system can introduce small
weaknesses such as unplanned dependencies between different
parts of the system. While such problems usually go undetected,
their cumulative effect can result in a noticeable decrease in the
quality of a system. We present an approach to warn developers
about increased coupling between the (potentially scattered)
implementation of different features. Our automated approach can
detect sections of the source code contributing to the increased
coupling as soon as software changes are tested. Developers can
then inspect the results to assess whether the quality of their
changes is adequate. We have implemented our approach for
C++ and integrated it with the development process of a
proprietary 3D graphics software. We report on our evaluation of
the approach in the field, and on a study showing that, for files in
the target system, causing increases in feature coupling is a
significant predictor of future modifications due to bug fixes.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Testing
tools. D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement – Restructuring, reverse engineering, and
reengineering.

General Terms
Design, Reliability, Verification.

Keywords
Feature coupling, feature associations, feature implementation,
feature location, regression testing, dynamic analysis.

1. INTRODUCTION
Successful software requires a maintenance investment that can
dwarf that of its initial development. The long life and large
install base that come with success typically combine to expose
flaws and impose unforeseen requirements on a software system.
In turn, such factors put pressure on software development
organizations to keep up with customers' changing expectations,

resulting in continual modifications to a software code base. As
evidence of this situation, the issue tracking systems for large
open-source software projects typically include thousands of
completed modifications.
Many factors influence the quality of changes to a system,
including developer experience, familiarity with the system, time
constraints, and the quality of the system's design. In general,
these practical considerations often lead to suboptimal changes
that slightly deteriorate the quality of a code base [3, 4, 11], for
example by increasing the overall amount of coupling. We refer
to this phenomenon as code decay [4].
Code decay is problematic because it can make it harder to
change a system in a way that is not easily observable. For
example, a software modification may not cause any regression
fault, but instead expose some subtle implementation details that
were previously hidden. Later versions of the system may come
to depend on the details, thus making the previously-encapsulated
code difficult to change. While the effects of code decay will
eventually become apparent, it may prove very expensive to
remedy the situation at the later juncture. Code decay is a subtle
phenomenon that is difficult to characterize [4]. However, it is
nevertheless possible to detect potential symptoms, or risk factors,
which can then be assessed by developers.
The intuition guiding the present research is that an increase in
the amount of coupling between the implementation of different
features (functional requirements) can be a symptom of code
decay (i.e., if it is unplanned), and that such situations should be
reported to developers for closer inspection. Unfortunately, the
implementation of features is not always neatly encapsulated in a
single module [7, 10], a situation which precludes the trivial use
of standard coupling metrics to detect this symptom.
In this paper, we describe a new feature coupling detection
technique. Our approach is based on a dynamic analysis of a
software system as it undergoes regression testing. It can be
completely automated and fully integrated in the software
development process of an organization. With our technique,
developers work as usual but when their changes are committed
and tested, the execution of the test suite is monitored, analyzed,
and compared with information obtained from the regression
testing of a previous version of the code. When increased
associations between the implementation of different features are
detected, the parts of the code contributing to the evidence
obtained are retrieved and reported to the developer.
We have implemented our technique and applied it to a real-world
code base consisting of more than 100 000 lines of C++ source
code exercised by thousands of tests. Our experience with this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGSOFT'06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011...$5.00.

163

technique showed that its overhead is low enough to integrate it in
the build and test cycle of the organization and that it produces
reports that are easy to understand and convenient to use by
developers. A study of the target system using our technique also
demonstrated that files contributing to increases in feature
coupling were significantly more likely to be modified by future
bug fixes, hence reinforcing the assumptions forming the basis for
our technique. The contributions of this paper include a
description of our automatic technique for the detection of
increases in feature coupling and a detailed account of our
experience with this technique in the field.
In the rest of this paper, we first provide the details of our
technique for detecting increases in feature coupling (Section 2).
We then describe our application of the technique (Section 3) and
our initial experience with the technique along with the validation
study (Section 4). Finally, we discuss related work in Section 5
and conclude in Section 6.

2. COUPLING DETECTION TECHNIQUE
Measures of coupling in software have traditionally been used to
diagnose different conditions in software systems, such as the
need for refactoring for more thorough validation activities [1].
In a similar perspective, we base our coupling detection technique
on the following hypothesis: Given that a system implements a
number of features, any increase in the association between the
implementation of two features may indicate locations where
unplanned dependencies have been introduced.
In this paper, we use the term “feature” to refer to a cohesive set
of the observable properties of a software system (e.g., as would
correspond to the functional requirements). For example, a word
processing software would typically include features such as
“spell checker”, ”auto save”, and “undo”. For a number of
practical reasons, the implementation of features does not always
align with module boundaries, and is instead scattered throughout
the basic decomposition of the system [7, 10]. For example, the
functionality to “undo” commands typically involves code that is
scattered throughout the implementation of each undoable
command in the system.
Although the idea of detecting increases in the coupling between
features is conceptually simple, its practical realization must
account for the numerous and complex ways in which different
(and potentially scattered) sections of a software system can
interact. For example, statically establishing data dependencies
between sections of code requires complex, computationally
expensive, and potentially imprecise calculations.
To investigate a technique that would apply to large, deployed
software systems, we chose to estimate feature interactions using
a probabilistic model based on test coverage information. Our
technique associates features with tests, and tests with
implementation components. By recording whether the overlap
between components implementing different features increases as
a regression test suite is applied to a new version of a system, we
can determine which sections of the code cause the increases. We
hypothesize that such sections may contribute to code decay and
should be inspected by developers to ensure that the changes do
not introduce undesirable weaknesses in the code. In the rest of
this section, we present the details of our technique.

2.1 Basic Concepts
The following concepts are important to our analysis algorithm.
The most basic concepts are that of a program version, a
component, a feature, and a test.

DEFINITION 1 (PROGRAM VERSION). A program version
P=(C,F,T) is the combination of a set C of components, a set F
of feature, and a set T of tests.

DEFINITION 2 (COMPONENT). Given a program version P=(C, F,
T), a component c ∈ C is an entity of the program represented by
P whose execution can be detected as part of the execution of a
test t ∈ T.

Components can be defined to represent different constructs, such
as lines of code, procedures, basic blocks, etc… Although
practical considerations influence the selection of a component
granularity, our approach is technically independent from the
specific choice component types.

DEFINITION 3 (FEATURE). Given a program version P=(C, F, T),
a feature f ∈ F is a functionality of the program expressed such
that it is possible to unambiguously determine whether a test t∈ T
exercises f.

DEFINITION 4 (TEST). Given a program version P=(C, F, T), a
test t ∈ T is an execution of a subset of the program represented
by P that exercises a set of features Ft and covers a set of
components Ct, where Ft ⊂ F and Ct ⊂ C. We have exercises(t,f)
if t exercises f, and covers(t,c) if c is executed as part of t.

It follows from the last two definitions that the association
between features and tests is many-to-many. In other words, it is
not necessary for a feature to be uniquely associated with a test.

In practice, the binary relation exercises can be obtained in a
number of ways, including through manual inspection, feature
location techniques, or others. In the context of our approach we
assume that this relation exists and that the information is
available as part of a software project. Section 3.2 describes one
way to automatically generate the exercises relation. As for the
covers relation, the components covered by individual tests can be
determined from the execution of a test using straightforward
instrumentation techniques (see Section 3.1).

2.2 Feature Implementation
We estimate the association between different features in two
steps. First, we estimate how strongly each component is
associated with the implementation of a feature. We call this
estimate the feature implementation. Second, and based on the
feature implementation, we estimate the strength of the
association between the implementation of different features. We
call this last estimate the feature association.
The calculations of the feature implementations and associations
are based on linear algebra. Given a program version P = (C,F,T),
we model the exercises relation as a matrix of size |T| × |F| where
the row/column tuple (t,f) is 1 if t exercises f and 0 otherwise.
Similarly, we model the covers relation as a matrix of size |T| ×
|C| where the row/column tuple (t,c) is 1 if t covers c and 0
otherwise.
The intuitions behind our definition of a feature implementation
are that a) a component implements a feature if it is covered by all

164

tests exercising the feature, and b) the strength of the
implementation relation is determined by the ratio of tests
covering the component that are associated with the feature over
the ratio of all tests covering the component. For example, if a
component c1 is covered by 20 tests, and all 5 tests for feature f1
cover c1, then we will say that that c1 implements f1 with a degree
of 0.25. At the other end of the spectrum, if c1 is covered by 20
tests, and all 20 tests for feature f1 cover c1, then we will say that
c1 implement f1 with a degree of 1.0. In order to operationalize
these intuitions, we define a vector operation we call the
implementation product. The implementation product is similar
to a standard dot product but makes provisions for intuitions a)
and b) above.

DEFINITION 5 (IMPLEMENTATION PRODUCT). Given two vectors of
size n, a = (a1, a2, … an) and b = (b1, b2, …, bn), the
implementation product a ⊗ b is defined as

⎪
⎩

⎪
⎨

⎧
≠≠∀≡⊗ ∑

∑
=

=

otherwise,0

00 if,
1

1
iin

i i

n

i ii ba
b

ba
ba ,

With our definition of the implementation product, we can define
a matrix implementation product that works just like the standard
matrix multiplication except that the implementation product is
used instead of the dot product to multiply component vectors.

DEFINITION 6 (MATRIX IMPLEMENTATION PRODUCT). Let A = [aik]
be an m × n matrix, and let B = [bkj] be an n × s matrix. The
matrix implementation product A ⊗ B is the m × s matrix
C[cij],where cij is the implementation product of the ith row
vector of A and the jth column vector of B.

With the above definitions, we can now define a feature
implementation.

DEFINITION 7 (FEATURE IMPLEMENTATION). Let exercises
and covers be the matrices corresponding to the exercises and
covers relations for a program version, respectively. Let
exercisesT be the transpose of exercise. We define a feature
implementation FI as FI = exercisesT ⊗ covers.

Example

We illustrate the calculation of a feature implementation with a
small example. Consider a simple program comprising four tests
and seven components. Table 1 shows the covers matrix for a
program version (for clarity we do not show the 0 values). We
can assume that this information is obtained by running test
programs with execution instrumentation.

Table 1: Covers matrix for the example program
 C1 C2 C3 C4 C5 C6 C7

T1 1 1 1 1

T2 1 1 1 1

T3 1 1 1 1

T4 1 1 1

Additionally, individual tests exercise only a subset of the
features of the program. Table 2 shows the transpose of the
exercises matrix. This information can be provided along with
the test suite, for example.

Table 2: ExercisesT matrix for the example program
 T1 T2 T3 T4

F1 1

F2 1 1

F3 1

F4 1 1

F5 1

Taking the implementation product of exercisesT and covers
produces the FI matrix, as shown in Table 3.

Table 3: Feature implementation for the example program
 C1 C2 C3 C4 C5 C6 C7

F1 0.5 0.25 0 0.33 0 0.5 0

F2 1 0.5 0 0 0 0 0

F3 0.5 0.25 0.5 0 0 0 1

F4 0 0.5 0 0.67 0 1 0

F5 0 0.25 0.5 0.33 1 0 0

For example, taking the implementation product of row F1 in
exercisesT and column C1 in covers produces the value (F1, C1) =
1×1/(1+1) = 0.5 in FI. This value estimates that C1 implements F1
with a degree of 0.5 since one other test not associated with F1
covers C1.

2.3 Feature Association
A feature association is a square matrix representing the degree of
association between the implementation of different features.

DEFINITION 8 (FEATURE ASSOCIATION). Given a program version
P = (C,F,T) and its corresponding feature implementation FI, a
feature association FA is the square matrix of size |F| × |F|
defined as the (true) matrix product FA = FI •FIT.

The dot product between two feature implementation vectors
represents the cosine of the angle between them (multiplied by the
magnitude of each vector). Hence, the feature association matrix
models how strongly any two features “align” in the space of
components. The higher the value for a pair of features, the larger
the number of components they share in their implementation or
the more important the shared components are to both features. In
our approach, we do not take into account the absolute value of
feature associations. Instead, we simply detect whether such
values increase as a system evolves.

Example

To complete our example, Table 4 shows the final feature
association for our example.

165

Table 4: Feature association for the example program
 F1 F2 F3 F4 F5

F1 0.67 0.63 0.31 0.85 0.17

F2 0.63 1.25 0.63 0.25 0.13

F3 0.31 0.63 1.56 0.13 0.31

F4 0.85 0.25 0.13 1.70 0.35

F5 0.17 0.13 0.31 0.35 1.42

From Table 4 we see that, for example, feature f1 is more strongly
associated with feature f2 than with feature f5. There are two
things to note from this table. First, a feature association matrix is
in fact a triangular matrix as the association relation is
symmetrical. Second, the values representing the association of a
feature with itself vary between features. This is simply a
consequence of the fact that, for simplicity, we have not
normalized the feature implementation vectors (the row vectors of
the feature implementation matrix). If we normalize the feature
implementation vectors in Table 3, the diagonal of the feature
association matrix will contain only values of 1.

2.4 Coupling-Increasing Components (CIC)
Coupling-Increasing Components (CIC) are the components that
contribute to an increase in the level of association between two
features. We obtain the set of CICs by comparing the feature
implementations and feature associations of two different
program versions.

To identify CICs, we first locate feature pairs whose association
has increased between two versions. We define an association to
have increased if the association between two features in a (more
recent) program version is greater than the association between
the same features in a previous program version by a certain
multiplicative factor α. The α factor is a parameter of our
approach that can take values in the interval [1..∞).

DEFINITION 9 (COUPLING-INCREASING FEATURE PAIRS). Given two
program versions P = (C,F,T) and P*=(C*,F*,T*), and their
corresponding feature association FA[faij] and FA*[faij*], the
coupling-increasing feature pairs CIF[cifij] is a matrix of the
same size as FA* where:

⎩
⎨
⎧ >

=
otherwise,0

 * if,1 ijij
ij

fafa
cif

α

DEFINITION 10 (COUPLING-INCREASING COMPONENTS). Given two
feature implementations FI and FI* and a matrix of coupling-
increasing features CIF, we define the set of coupling-increasing
components of a modified program P*=(C*, F*, T*) as the set of
components contributing to values in CIF. The set of CIC can be
calculated with the following algorithm:

 1: param: P*=(C*, F*, T*): Modified Program
 2: param: FI[fij] and FI*[f*ij]: Feature Implementations
 3: param: CIF[cifij]: Coupling-Increasing Features
 4: var: CIC={}: Coupling-Increasing Components
 5: for i = 1..|fi| (where fi is a row vector of FI)
 6: for j = 1..|fi|, i ≠ j
 7: if cifij = 1
 8: for k = 1..|fi|
 9: if f*ik • f*jk > fik • fjk
10: CIC CIC ∪ c | c is the component
 corresponding to column k in FI
11: end if
12: end for
13: end if
14: end for
15: end for
16: return CIC

Once the analysis is complete, we present the CIC set to the
developers, who will determine if the components are in fact
contributing to code decay.

2.5 Discussion
The quality of the results produced by our algorithm is dependent
on the stability of feature associations in the absence of code
decay. For example, if changes that do not cause code decay in
practice introduce variations in associations, then our algorithm
could produce false positives. In general, the role of the
parameter α is to stabilize the algorithm, by making it more
resilient to small variations in feature associations. However, if α
is set too high then important symptoms of code decay could go
unnoticed, and so the effective range of α is also limited.

Essentially, variations in feature association are a factor of two
main phenomena: a) relevant variations due to an increase in
feature coupling (and potentially indicative of code decay), and b)
irrelevant variations due to imprecision in the computation of
feature implementations. The primary source of imprecision in
the computation of feature implementations is an insufficient
number of tests exercising certain features to obtain reasonable
estimates of the components that implement them. The
importance of this imprecision will typically diminish as the
number of tests increases and the focus of tests narrows to fewer
features.

Finally, the inclusion of components in the CIC set implies the
existence of a mapping of components between system versions
(c ∈ C c* ∈ C*). In other words, given two feature
implementation matrices representing two different program
versions, it is assumed that a column in the matrix for one version
represents the same component as the corresponding column in
the matrix for the other version. In practice, this assumption
requires special treatment when components are added or
removed between versions. Additionally, if using lines of code as
components (commonly identified by file/line information), even
unchanged components may require remapping because of the
addition and removal of other components above them in the
same file. This bidirectional mapping between components of
different program versions is assumed to exist in the CIC
algorithm, but the details are left to the implementation (see
Section 3.4.2).

166

3. CASE STUDY
To investigate the feasibility and usefulness of our approach, we
implemented our technique and applied it to a proprietary 3D
graphics program developed at NVidia Corporation.1 The target
system consists of more than 100 000 lines of C++ code exercised
by thousands of tests, and each change is tested for regression
before it is submitted to the source repository. Although many
parts of the implementation built for this case study are generic
enough to apply to a wide range of software systems, practical
considerations required us to tailor the overall implementation to
the environment of our target system.

Figure 1 : Implementation Diagram

Our current implementation (depicted in Figure 1) is designed to
be applied to all new changes made to our target system before
they are submitted to the source repository. To this end, our
implementation extends existing proprietary regression-testing
infrastructure and practices without interfering with the normal
activities of software developers. For our analyses, we defined
components as the lines of code of the system, as an
approximation for C++ statements. However, for practical
reasons we aggregate the results by source files for the final
presentation to developers.
Our implementation works as follows. First, we obtain the test
suite from the source repository and compile the locally-modified
program with code instrumentation to produce statement coverage
information when executed. The test suite is then executed as
usual, producing the covers relation matrix that relates tests with
components (see Section 3.1). Executing the test suite on our
target system also produces the exercises relation matrix that
relates tests with features thanks to a different type of
instrumentation that forms an integral part of our specific target
system (see Section 3.2).
As described in the previous section, the covers and exercises
matrices serve as input to the computation of feature
implementations and association analyses (see Section 3.3).
Feature implementations and associations are then marked for
storage in the source repository together with the current changes
so that they can be versioned along with the software and used in
future analyses. To perform feature coupling analysis (see
Section 3.4), we recover the version of the feature
implementations and associations that match the previous version
of the program. The old and new associations are then compared

1 This software is used internally and is not released to the public.

for increased associations and the CIC set is constructed from the
lines of code that caused the differences, as described in Section
2.4. Finally, the lines of code are aggregated by files and the set
of coupling-increasing files is presented to the developer.
In the rest of this section, we discuss key implementation issues
specific to each step of our approach.

3.1 The Covers Relation
We obtain the covers relation by instrumenting the program code
to automatically detect each line of code covered by each test.
Inspired by the work of Tikir and Hollingsworth [12], we
designed our instrumentation such that it removes itself once
triggered, leaving the original subroutines. This strategy greatly
reduces the cost of instrumentation, especially for code containing
loops. This characteristic of our implementation is in fact critical
given the size and heavy computational nature of the target
system. We observed, as also noted by Tikir and Hollingsworth,
that the performance impact of this type of instrumentation is low,
increasing the run time by only 5~10% (see Section 4.3 for the
details of the performance evaluation).
The covers matrix produced by our coverage instrumentation can
be very large. Thousands of tests executing over hundreds of
thousands of lines of code will produce hundreds of millions of
entries in this matrix. Fortunately, covers matrices are naturally
sparse and contain some simple patterns, such as groups of
components that are always covered together. We reduced the
effective size of the stored data by indexing, storing, and
analyzing these groups of components as a single entity.

3.2 The Exercises Relation
Ideally, the features exercised by individual tests in the test suite
would be documented alongside and versioned with the test suite.
In practice, we found that this information was not consistently
available. In our target system, each test is relatively complex
and exercises many features, often leaving only vague and
informal references to the dominant feature to be encoded in the
test name. In some cases, even the names were misleading, due to
the test’s ultimate purpose changing over time.
To recover the exercises relations, we relied on execution logs
produced by our target system as it executes. These execution
logs form an integral part of the target system and are different
from our instrumentation system. The primary purpose of the
execution logs is to assist in the analysis of inputs given to the
system, both manually by developers and through automated
tools. Built by the developers alongside the system’s
functionality, the logs provide extensive details about the
execution of the system, including a fine-grained description of
the functionalities exercised by the program during its execution.
For example, the logs produced by our target system are
analogous to a trace of user interactions that could be generated
by a word processor, logging the commands invoked by the users
through menus and buttons (e.g., spellchecking, justification,
etc…).
Since the exact details of our logging feature are proprietary, for
the purpose of this paper we abstract the logging feature as a
module that produces a list of the commands called on the
graphics software. We collected these logs for each test and
matched the functionality they referenced to features, hence
reconstructing the exercises relations between tests and features.
The main consequence of this strategy is that it makes our

 System

Implementation
Analysis

Association
 Analysis

Source
Repository

Coupling
Analysis

Tests
 Coverage

Data

Feature
Implementation

Feature
Associations

Coupling-Increasing
Components

167

definition of feature to be fine-grained, yielding more than ten
thousand features for our target system. However, this strategy
supports a completely automatic recovery of the exercises matrix,
which is a critical element of the feasibility of our approach. This
strategy for mapping features to tests is a parameter of our
approach that may not be directly realizable for all target systems
(see Section 3.5).
Although the number of features detected remains much less than
the number of lines of code in the system, our feature identifiers
are much larger than an integer and their analysis produces
physical data sets of similar size. Like the covers matrices,
exercises matrices are also naturally sparse and their cost can be
made manageable using a similar grouping strategy.

3.3 Feature Implementations
The implementation of the computational support for feature
implementations as described in Section 2.2 gives rise to a matrix
product of staggering size if the sparseness is not exploited. To
compute the implementation of a feature, the associated exercises
test group2 for the feature is used as the reference test set. All test
groups from the covers relations are then compared to the
reference test set. If all tests from the reference test set are found
in the covers test group, then all components associated to it are
added to the implementation of the feature. The implementation
value of each of these components is then calculated as the size of
the reference test set over the size of the test group (see
Definition 5). This process produces as output a set of tuples of
components and implementation values, representing the non-zero
values of the feature implementation vectors.
Even in their compact form, the feature implementation vectors
remain large and dominated by components with very low
implementation scores (e.g., components that are covered by all
tests). To increase the performance of our feature coupling
analysis, we limit the size of feature implementation vectors to
200 components, and truncate the less significant components.
The components truncated in this manner vary from feature to
feature, leaving a selection of the 200 highest-degree components
for each individual feature, and resulting in a sparser (but not
smaller) feature implementation matrix. The choice of 200 as the
length of implementation vectors is based on experience with
applying feature location techniques on our target system.
The tradeoff of this optimization strategy is that the components
removed in this manner will also vary from program version to
program version. As a result, features insufficiently exercised by
the test suite will appear to make significant feature
implementation losses and gains between versions. Although in
principle the low implementation values of the truncated
components means that they should not affect the end result (the
computation of CICs), in practice we have found that this process
introduces noise that warrants additional filtering during coupling
analysis (see Section 3.4).
Finally, even though it is not required by our algorithm, we
normalize our implementation vectors after truncation. As a
result the implementation products are themselves normalized and
provide useful meaning to associations when debugging the
implementation of coupling analysis.

2 The groups are seen in the sparse matrix, as mentioned in 3.1.

3.4 Feature Coupling Analysis
Our implementation of feature coupling analysis is faithful to the
algorithm described in Section 2.4. However, use of the
technique in the field required the development of an additional
noise filtering support, and support for the mapping of
components and features across program versions.

3.4.1 Eliminating Noise
The set of tests used to validate changes made to our target
system varied greatly depending on the scope of the changes
performed. Current practices for our target system call for
executing a “sanity” test suite instead of the much larger “full”
test suite when changes are deemed at low risk of causing
functional regressions.3 As a result, we encountered many cases
where some features were insufficiently exercised to reliably
identify the components implementing them (in other words,
resulted in significant noise in the feature implementation
matrix). We solved this problem by adding a filtering pass to the
algorithm described in Section 2.4.
We employ two different filtering methods to reduce the effect of
noise at the feature coupling analysis phase. First, the algorithm’s
sensitivity threshold α eliminates insignificant variations in
associations. For our target system, values as small as α=1.1
provided an appropriate baseline for noise reduction. We
determined this value heuristically by estimating how much a
feature association should increase before being considered
significant. This initial estimate was assessed empirically and
found to be adequate for our initial investigation of the approach
(see Section 4.2).
Second, we defined an analysis on individual feature
implementations to discard variations resulting from noisy feature
implementation vectors that do not appear to reliably associate a
feature to its implementation. Specifically, we define a noisy
implementation vector as one whose components are all more or
less equally relevant, such that no component is significantly
more important than any other. As in Section 2.4, we
parameterized the significance detected with a sensitivity
threshold β, such that a feature implementation vector (of
components) [ci] is noisy if the following predicate holds (the
overbar denotes the mean and σ the standard deviation):

()ccci βσ<−

3.4.2 Mapping Components with Program Versions
We identify our components (lines of source code) with unique
indices in the covers and feature implementation matrices. The
indices are derived from file names (indexed in a file name table)
and line numbers. This choice is convenient when gathering
covers relations, but problematic during feature coupling analysis
because changes to the source code cause source lines to move
(potentially including unchanged source lines). To allow the
comparison of feature implementation matrices during feature
coupling analysis, we build a (line number line number) map for
each file of the system between program versions, by applying the
UNIX diff utility to the different versions of the files and
accumulating the additions and subtractions of lines to find the
mapping of old line numbers to new line numbers.

3 This is ultimately left at the developer’s discretion.

168

Our implementation uses this mapping to link components in the
new version to those of the old version, ignoring removed
components and assuming that new components previously held
implementation scores of zero (i.e., that they were never covered).
This assumption is reasonable, since it shows new components
with nonzero feature implementation values as implementation
gains, and allows them to contribute correctly to feature coupling
analysis.

3.4.3 Mapping Features with Program Versions
Features can also vary between program versions, though they are
far more stable than components. In all cases where algorithms
manipulate features we refer to them by an index in a table of
feature names, for instance when referring to features in the
exercises or feature implementation matrices. Because features
change over time, the table of features that we build for our
analysis (see Section 3.2) also changes over time and indices in
the exercises and feature implementation matrices of different
program versions are incompatible. To enable the comparison of
features of different program versions, we search for the names of
features from one program version’s feature table in the other
program version’s feature table. We note the pair of indices in a
one-way mapping from new to old indices and use the mapping
during feature coupling analysis whenever we compare new
features with old features.

3.5 Discussion
The most sensitive aspects of the implementation of our approach
revolve around the definition of components and features.
Selecting components as functions instead of source code lines,
and coarse- rather than fine-grained features, would simplify the
feature coupling analysis significantly. With fewer, larger
features, the noise elimination process may not be necessary,
since each feature is more likely to have been sufficiently
exercised by the test suite. Using functions as components would
simplify the mapping of components between versions. However,
for our application, our choice of definitions for components and
features was influenced mostly by the concern that the
implementation of features may be scattered across different
functions.
Lines of code were a natural fit for comparison and integration of
the results of coupling analysis with other tools of the existing
infrastructure surrounding the target system. The data we collect
subsumes the data function-level instrumentation produces: we
have the flexibility to recover function coverage from our data
through very simple analysis of the source code to support
functions as components in the coupling analysis.
The granularity of features was also dictated by the existing
infrastructure, through the level of detail of the existing execution
logs. For our definition of features, alternatives consisted mostly
of the manual mapping of tests to features, a choice that was
simply not practical, requiring too much human intervention to
scale up to the size of the test suite. In practice, execution logs
are not uncommon in the field, and we expect that our approach
can be replicated for systems with logging features, although the
quality of the results will necessarily vary depending on the
details of the logging data produced. In the cases where it is not
feasible to instrument the program in this manner, then the
mapping of tests to features must be provided by some other
means, such as formal documentation or as an integral part of the

test suite.4 However, for some software systems that are under
active development it may be reasonable to install instrumentation
that produces execution logs detailing the features in use.

4. EMPIRICAL RESULTS
The applicability of our feature coupling detection technique is
based on a number of assumptions that can only be validated
empirically. Specifically, we rely on the fact that, in practice:

• Feature implementation vectors meaningfully associate
components with features;

• The CIC sets produced are usable by developers;
• The computational cost of the approach is acceptable;
• The symptoms detected by the approach have value.

To help determine whether these assumptions held in the case of
our target system, we applied our approach to 13 different
versions of our target system distributed over a three-month
period, to simulate the analysis of weekly development releases.
Because of practical constraints on the computational resources
available for this research project, we limited the number of tests
executed on the 13 versions of the system to the “sanity” subset of
the tests. This subset was previously selected using the execution
logs to identify the smallest subset of tests from the “full” test
suite that exercised 95% of the same features.

4.1 Feature Implementation Vectors
To be able to determine coupling-increasing components, we need
to be able to reliably associate components with features. In our
approach, the association between a feature and its components is
modeled with a feature implementation vector (a row in the
feature implementation matrix). For the purpose of our approach,
we consider that a feature implementation vector is useful if it
clearly identifies certain components as associated with a feature.
In our approach the parameter β determines if a feature
implementation vector is "good enough" to be used in the
computation of CICs (see Section 3.4.1).
As an initial investigation we measured the relative number of
significant versus noisy implementation vectors in our feature
implementation matrix, given different values of β. We consider
an implementation vector to be noisy if the predicate of
Section 3.4.1 holds and significant otherwise. Figure 2 shows the
relative number of significant vectors in the matrix for different
values of β. For each value of β, each bar represents the value for
one of the 13 versions of the program we analyzed.

0

20

40

60

80

100

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Si
gn

ifi
ca

nt
 %

Figure 2: Effect of the β parameter on noise detection

We selected β=1.5 for our system because we felt it provided
adequate protection from noise without eliminating weaker

4 This is a common assumption, made in [6,10,17,18]

169

evidence in feature implementation vectors. For this value of β,
we observed that (on average) 56% of feature implementation
vectors were rejected when executing the “sanity” test suite.
Executing the “full” test suite reduces this number to 25%,
strengthening our intuition that more thorough testing of features
reduces noise in the feature implementation matrix.

In the process of selecting a value for β, we manually looked at
the value distributions in feature implementation vectors. To
illustrate this phenomenon, Figure 3 shows the value distribution
of both a significant (solid line) and noisy feature implementation
(dotted line), sorted by decreasing degree values.

0
0.05
0.1

0.15
0.2

0.25

0 50 100 150 200

C
om

po
ne

nt

R
el

ev
an

ce

Figure 3: Sample feature implementations

For the significant feature implementation, the figure shows a few
very relevant components that stand out from a long tail of less
relevant components. For the noisy feature implementation
vector, we see instead an almost straight line, with no component
being more or less associated with a feature than others. In
general, we find that noisy vectors usually correspond to features
that are insufficiently exercised by tests.

4.2 CIC Sets
The characteristics of CIC sets matter in our approach since this is
the information directly reported to developers. If CIC sets
contain large numbers of source locations scattered throughout the
system, the developers will be overwhelmed with information.
The size of CIC sets is affected by the parameters α and β, which
determine whether association changes constitute valid symptoms
to be reported, and the usefulness of feature implementation
vectors, respectively. To assess their sensitivity to α and β for
our system, we measured the CIC sets produced from 13 target
revisions of the system (yielding 12 CIC sets). Since our
approach automatically aggregates CIC sets by source file, we
present our results at this level of granularity.

0
5

10
15
20
25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Si
ze

 o
f C

IC
 se

t
(f

ile
s)

Figure 4: Effect of β on the size of CIC sets

Figure 4 shows the impact of the β parameter on the size of CICs
(number of files) for a fixed value of α. Note that in general
increasing the value of β decreases the number of CICs.

0
5

10
15
20
25

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Si
ze

 o
f C

IC
 se

t (
fil

es
)

Figure 5: Effect of α on the size of CIC sets

Figure 5 shows the effect of α on the size of CIC sets for a fixed
value of β=1.5. We observed that the number of coupling-
increasing files produced remains largely stable for changing
values of α. We surmise that the spikes in the graph represent
versions exhibiting significant increases in some feature
associations.

0
50

100
150
200
250

1 2 3 4 5 6 7 8 9 10 11 12
C

ha
ng

ed
 F

ile
s

Figure 6: Number of file changes between revisions

Except for two versions of the system, we find that the number of
files reported as coupling-increasing to be manageable (often
under five files). This observation makes it reasonable to expect
that a developer could inspect the complete list of files reported to
evaluate whether the last changes to each file could have been
suboptimal. To provide a better context for this interpretation,
Figure 6 shows the number of files changed between each version
considered. As can be seen from this last figure, feature coupling
analysis can help narrow the focus of the developer to a number
of files about ten times lower than the overall number of changed
files.

4.3 Performance
Our approach is only feasible if it can be applied without
incurring overhead that would severely disrupt the normal
activities of developers. In general, thanks to the various
optimizations described in Section 3, we found that our
implementation of the approach exhibited acceptable performance
characteristics for its intended use. In the rest of this section, we
discuss the performance characteristics and tradeoffs
corresponding to the different steps of our approach. Unless
otherwise noted, the experimental machine for our performance
assessments was an IBM T42 Thinkpad laptop computer with a
1.86 GHz Pentium-M processor and 2 GB of physical memory.
The analysis implementation was written in C++, compiled using
Visual Studio 2005 (with optimizations enabled) and executed on
Windows XP SP2.
For our target system, using the “sanity” test suite comprising 70
tests, the entire analysis process requires about 2 minutes. For
larger test suites, comprising several thousand tests, the process
completes in less than 2 hours.

170

4.3.1 Executing the Test Suite
In our environment, tests execute on dedicated computer nodes
that exploit parallelism between tests and reduce testing latency
by sharing nodes between all developers. This system allows
developers to test their changes for regression within minutes or
hours, depending on the size of the test suite used.
The only part of our approach that affects the testing phase is the
line coverage instrumentation, which increases the execution time
by 5~10% and requires additional storage requirements to store
line coverage information. Roughly 300KB of disk space per test
is required, with the data compressed with zlib5 as it is written.

4.3.2 Recovering the Exhibits & Covers Relations
We merged the recovery of the exhibits and covers matrices into a
single process, centered on the recovery of test-related
information from the file system where it is written during the
execution of the regression test suite. The computational (and
memory) cost of this operation grows linearly with the number of
tests, components and features.
On the experimental machine, this phase represents about 1.5
second of computation per test, which is mostly due to file system
management (seeking and opening files), I/O (reading),
decompression (zlib), decoding the file format, and memory
management. This process is the most time-consuming because it
is performed serially. This entire process completed after less
than 3 minutes for all versions of the program, using the “sanity”
test suite, but typically took more than one hour on larger test
suites.
When this process has completed, the output is written to a single
file, roughly 20MB in size for our target system, containing both
the exhibits and covers matrices in their compressed form.

4.3.3 Computing Feature Implementations
The time required to compute feature implementations is solely
bounded by the processor speed. The computational cost of this
operation in our implementation grows linearly with the number
of features, components and tests. Although the algorithm does
not take tests into account, our implementation compresses the
covers and exhibits matrices using test groups. The computational
cost introduced by test groups grows linearly with the number of
tests in the worst case. However, the practical compression of
data (and data processing) we get from working with test groups
more than makes up for any added performance cost.
For our target system this processing step executes at a rate of
about 50 features per second. The output is an in-memory feature
implementation matrix that requires about 2KB per feature of
memory.

4.3.4 Feature Associations and Coupling Analysis
The computational time required for calculating feature
associations and to perform feature coupling analysis grows
quadratically with the number of features, but is positively
impacted by the truncation of implementation vectors to constant
lengths. This decouples both operations from the specific number
of components, resulting in a constant-time operation.
Furthermore, the small size of the vectors means that the
processor can process almost 100 000 of our implementation

5 http://www.zlib.net/

products every second. The entire coupling analysis phase takes
just 10 seconds on the experimental machine.

4.4 Validation Study
For our initial assessment of our approach, the final question we
wanted to answer was whether the files identified with our
approach were actually responsible for code decay. This question
is a difficult one given that code decay is an abstract concept that
is difficult to operationalize [4]. As a starting point, we decided
to work with the weaker hypothesis that files identified with our
approach correlate with files touched by future bug fixes. To
determine whether this hypothesis held in our case, we built
contingency tables recording, for each file in our target system
and each version of the system, whether the file was flagged as
coupling-increasing or not, and whether the file was touched by
bug fixes afterwards or not. This strategy is similar to previous
studies of dynamic coupling, which have also used future changes
as the dependent variable for empirical evaluation [1]. With this
data, a standard statistical procedure (the chi-square test of
independence) can determine whether increased feature coupling
is a predictor of future bug fixes.
For this experiment, we considered all the source files of the
system for the 12 revisions used in the rest of our investigation.
A file was considered to be "coupling increasing" at a given
version of the program if it appeared in the CIC set produced by
the application of our technique to that version, using α=1.1 and
β=1.5. To determine whether a file was associated with future
bug fixes or not, we searched the issue tracking database. A file
was considered "buggy in the future" for a version of the program
if it was involved in at least one bug fix in the following 4
months.
Table 5 shows our aggregated contingency tables. Each row
corresponds to one versions of the system. Columns 2 to 5
present, for each version, the number of files with the
characteristics listed in the header. For example, version 5 of the
system comprised 14 files identified as both coupling-increasing
and buggy in the future.

Table 5: Feature coupling increase as a Predictor of Bugs

Version CI
Buggy

CI
Not Buggy

Not CI
Buggy

Not CI
Not Buggy

1 2 0 302 837

2 7 0 299 835

3 4 0 292 845

4 1 0 295 845

5 14 8 274 845

6 0 0 257 884

7 2 3 240 896

8 11 6 227 897

9 5 3 227 906

10 0 0 235 906

11 0 0 234 907

12 0 0 234 907

171

Because of low values in the first two columns, we could only
perform a chi-square test of independence for versions 5 and 8.6
However, for both versions 5 and 8 the chi-square test indicates a
statistically significant relation between the "coupling increasing"
and "buggy in the future" variables (p ≤ 0.001). In other words, our
feature coupling increase metric is a good predictor that a file will
be touched by a bug fix in the future.
Manual inspection of the files identified as coupling-increasing
showed that these files did correspond to code units judged by the
developers of the system to be in need of preventative maintenance.
Although not surprising, these initial results can already serve to
confirm informal observations about the perceived deteriorated state
of the coupling-increasing files. Additional research should help
improve the precision with which our technique can identify
problematic code locations.

4.5 Discussion
Our experience with the current implementation of our feature
coupling increase detection technique has allowed us to answer
many practical questions regarding the assumptions stated at the
beginning of this section.
First, we were able to determine that our approach could clearly
identify feature implementation vectors that strongly associate
features with components. Empirical evidence (e.g., Figure 3)
shows a "natural" distinction between significant and noisy feature
implementations. By being able to select and use only "good"
feature implementations, we can increase the overall quality of the
results produced. However, due to the filtering of noisy feature
implementation vectors, some significant feature coupling increases
might go undetected simply because the test suite is not able to
accurately factor out a feature. When combined with a test selection
strategy, it might be advisable to favor or simply add tests that
improve feature coverage.
Second, our experience showed that, when aggregated into files, the
size of CIC sets constitutes a manageable amount of information for
developers. Although we found the size of CIC sets to vary
depending on the values of the α and β parameters, the main factor
determining the size of CIC sets is the nature of the actual program
versions analyzed.
Third, our implementation of the proposed approach demonstrated
that it can be used at a reasonable cost (10% slowdown for the
execution of the test suite plus a few minutes of additional
computation). As such, the total cost will vary greatly based on the
size of the test suite executed. However, as in the case of testing,
the quality of the results will increase with the number of tests.
More experience should help determine in which situations the
benefits of the approach are worth the cost.
Finally, we were able to obtain evidence that files identified as
coupling-increasing with our approach are more likely to be touched
by bug fixes than randomly-selected files. Although we construe
this initial result as confirming evidence of the assumptions
underlying our approach, our interpretation is subject to the usual
threats to validity that must be considered for quantitative studies of
this type. In our case, an important consideration is that the
phenomenon of code decay might not be adequately measured by

6 The chi-square test is generally considered invalid (but not

necessarily failed) if a cell value is lower than 5.

the single occurrence of bugs in a file. More detailed, qualitative
investigation should help us strengthen the link between CICs and
actual code decay.

5. RELATED WORK
The seminal work motivating our research is the investigation of
code decay in a large-scale phone switching system conducted by
Eick et al. [4]. In their study of the 15-year history of the system,
Eick et al. analyzed a number of decay indices such as the span of
changes (number of files touched), which is shown to increase as the
software evolves. Although this study motivated our research by
providing evidence of code decay, our decay assessment strategy
differs from Eick et al.'s code decay indices in that we do not
analyze the history of the code, but rather immediate differences
between versions. This difference in strategy is mainly due to
different research goals. While Eick et al. sought to provide
evidence of long term decay, we were interested in preventing such
decay by providing an early warning system.
A large number of approaches have been proposed that involve the
analysis of a running program for purposes that range from the
broad (e.g., program understanding [2]) to the very specific (e.g.,
impact analysis [8]). In this space, a few approaches relate more
closely to our work through either their relationship to coupling
analysis or their reliance on the concept of feature.
Arisholm et al. investigated how dynamic coupling measures can
help assess various properties of a software system [1]. The
dynamic measures studied by Arisholm et al. include
characterizations such as the number of messages sent by each
object, the number of distinct methods invoked by each method, etc.
This work does not take into account the notion of feature as a
separate entity that can span multiple modules. Nevertheless, the
results of this study are consistent with ours, in that "dynamic export
coupling measures were shown to be significantly related to change
proneness" [1, p. 505].
The approach developed by Licata et al. [9] produces “feature
signatures” by taking the textual difference between two versions of
a software system and analyzing the number of distinct test suites
that execute each code block that differs between the two versions.
The main assumption behind the concept of feature signatures is that
a test suite corresponds to a feature. Feature signatures are
represented as histograms plotting the number of “difference
blocks” executed by the number of distinct test suites. Licata et al.
propose to use feature signatures to recover the rationale associated
with a change, to understand relationships between test suites, and
to identify scattered code associated with a feature. There are a
number of important differences between the approach of Licata et
al. and our feature coupling detection approach. First, we do not
assume that test suites map one-to-one with features, but recover
feature associations using a separate process. Second, we rely
primarily on differences in the execution traces, as opposed to
differences in the source code text. Finally, our approach produces
a specific metric (increase in feature coupling), as opposed to a
general representation of the impact of the change on test suites.
Although the main focus of this research is not specifically the
location of features in source code, the technical foundations for this
work has benefited from a number of dynamic analysis-based
feature location techniques. We conclude this discussion of related
work with a description of feature location techniques that have
inspired the design and implementation of our approach.

172

The Software Reconnaissance technique developed by Wilde et al.
identifies features in source code based on an analysis of the
execution of a program [13, 14]. Software Reconnaissance
determines the code implementing a feature by comparing a trace of
the execution of a program in which a certain feature was activated
to one where the feature was not activated. Wilde at al. also
proposed a second formulation of Software Reconnaissance where
components are attributed implementation scores based on the
frequency of their occurrence in a test suite, and the frequency of
their occurrence together with the feature to locate [13]. This
definition is the basis for our feature association calculations.
Eisenberg and De Volder extended Software Reconnaissance by
devising more sophisticated heuristics for determining component
implementation scores [6]. They combine both of Software
Reconnaissance's formulations by requiring the user to provide sets
of exhibiting and non-exhibiting tests, and then performing multiple
probabilistic analyses on them. They combine the result of the
analyses into a final implementation score which is used to assign
components to a feature.
Finally, Eisenbarth et al. [5] proposed a different extension to the
ideas of Wilde et al., by producing the mapping between
components and test cases using mathematical concept analysis.
Their approach, however, requires more human intervention than
would be practical for our application.

6. CONCLUSION
One important challenge for organizations involved in software
maintenance is to ensure that the repeated modifications applied to a
software system do not result in a gradual decay of the system's
code base. Unfortunately, symptoms of code decay can be difficult
to detect in the short term, and clear evidence may only appear once
it is too late to easily remedy the situation.
In an attempt to mitigate this problem, we proposed to analyze a
system for symptoms of potential decay with every execution of a
regression test suite. Our technique is based on the assumption that
an increase in the level of association between the implementation
of two features may indicate the introduction of unplanned
dependencies, and constitutes a symptom of potential code decay.
By analyzing the execution of regression tests, we automatically
determine the degree of coupling between features based on the
sections of code they execute in common. With this information,
we can then identify any section of code that contributes to an
increase in feature coupling between two different versions of a
system.
We assessed the feasibility of our approach by implementing it and
integrating it with the development environment of a proprietary 3D
graphics software comprising over 100 000 lines of C++ source
code. This experience provided us with valuable insights about the
engineering tradeoffs required to integrate feature coupling increase
detection with regression testing in practice. For example, we were
able to measure the tradeoff between the size of the test suite used
(which impacts execution time) and the number of features that can
be located with enough accuracy to be analyzed for coupling
increases.
Our experience has also helped confirm that source files identified
with our approach may be in need of preventative maintenance. A

small experiment confirmed that files identified by our approach
were significantly more likely to be affected by change requests in
the future. Although we expect that additional experimentation will
help us better understand the link between increased feature
associations and code decay, we conclude that detecting increases in
feature coupling as part of regression testing is a feasible and
promising approach for maintaining the quality of software systems.

7. ACKNOWLEDGEMENTS
The authors are thankful to Harold Ossher and to the anonymous
reviewers for their thorough and insightful comments on this paper.
This work was supported by an NSERC Discovery Grant and by
NVIDIA Corporation.

8. REFERENCES
[1] E. Arisholm, L.C. Briand, and A. Føyen. Dynamic coupling

measurement for object-oriented software. IEEE Transactions on
Software Engineering, 30 (8), pp. 491-506, 2004.

[2] T. Ball, The concept of dynamic analysis. In Proceedings of the 7th
European Software Engineering Conference and 7th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, volume 1687
of Lecture Notes in Computer Science, Springer-Verlag, pp. 216-234,
1999.

[3] L. A. Belady and M. M. Lehman. A model of large program
development. IBM Systems Journal, 15(3), pp. 225-252, 1976.

[4] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron and A. Mockus. Does
code decay? Assessing the evidence from change management data.
IEEE Transactions on Software Engineering, 27(1), pp. 1-12, 2001.

[5] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code. IEEE Transactions on Software Engineering, 29(3), pp. 210-224,
2003.

[6] A. Eisenberg and K. De Volder. Dynamic feature traces: finding
features in unfamiliar code. In Proceedings of the 21st International
Conference on Software Engineering, pp. 337-346, 2005.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In Proceedings
of the European Conference on Object-Oriented Programming,
pp. 220-242, 1997

[8] J. Law and G. Rothermel, Whole program path-based dynamic impact
analysis. In Proceedings of the International Conference on Software
Engineering, pp. 308, 2003.

[9] D. R. Licata, C. D. Harris and S. Krishnamurthi. The feature signatures
of evolving programs. In Proceedings of the 18th IEEE International
Conference on Automated Software Engineering, pp. 281-285, 2003

[10] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of
separation: multi-dimensional separation of concerns. In Proceedings
of the 21st International Conference on Software Engineering, pp. 107-
119, 1999

[11] D. L. Parnas. Software aging. In Proceedings of the 16th International
Conference on Software Engineering, pp. 279-287, 1994

[12] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code
coverage testing. In Proceedings of the 2002 International Symposium
on Software Testing and Analysis, pp. 86-96, 2002

[13] N. Wilde, J. A. Gomez, T. Gust, and D. Strasburg. Locating user
functionality in old code. In Proceedings of the Conference on Software
Maintenance, pp. 200–205, 1992.

[14] N. Wilde and M.C. Scully. Software Reconnaissance: mapping
program features to code. Journal of Software Maintenance: Research
and Practice, 7(1), pp. 49-62, 1995.

173

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

