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Abstract Reference documentation is an important source of information on API usage.
However, information useful to programmers can be buried in irrelevant text, or attached
to a non-intuitive API element, making it difficult to discover. We propose to detect and
recommend fragments of API documentation potentially important to a programmer who
has already decided to use a certain API element. We categorize text fragments in API doc-
umentation based on whether they contain information that is indispensable, valuable, or
neither. From the fragments that contain knowledge worthy of recommendation, we extract
word patterns, and use these patterns to automatically find new fragments that contain simi-
lar knowledge in unseen documentation. We implemented our technique in a tool, Krec, that
supports both information filtering and discovery. In an evaluation study with randomly-
sampled method definitions from ten open source systems, we found that with a training set
derived from about 1000 documentation units, we could issue recommendations with about
90% precision and 69% recall. In a study involving ten independent assessors, indispens-
able knowledge items recommended for API types were judged useful 57% of the time and
potentially useful an additional 30% of the time.

Keywords Application Programming Interfaces · API Documentation · Text Classification ·
Natural Language Processing · Recommendation Systems

1 Introduction

Application Programming Interfaces (APIs) are a means of code reuse. They provide an in-
terface to features and functionality in existing frameworks and libraries. Using APIs, how-
ever, often involves significant challenges (Robillard and DeLine, 2011; Stylos and Myers,
2008).

When questions arise about how to use an API correctly or efficiently, programmers
naturally expect to find information in the API’s reference documentation (Robillard and

M.P. Robillard and Y.B. Chhetri
School of Computer Science
McGill University
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DeLine, 2011). While good reference documentation will often contain such information, it
can become difficult to discover and access given the large size and repetitive nature of the
documentation resources. This general challenge can be described in terms of two separate
problems: information filtering and information discovery.

Information filtering relates to the burden of having to sift through large amounts of
irrelevant information, e.g., because of legacy information, boilerplate text, or because it is
intended for another audience such as novice programmers. Indeed, Maalej and Robillard
(2013) found that the documentation units associated with 53.5% of the class members in the
.NET 4.0 framework contain obvious information of little value (for the JDK 6 this number
is 45.5%). We note that solutions to the information filtering problem do not necessarily
involve deleting or hiding information judged irrelevant. Instead, the goal of the information
filtering task is to surface the most important information. How this information is presented
is an implementation decision.

For API reference documentation, the problem of information discovery relates to the
fact that useful information may be attached to an element a reader would not intuitively ac-
cess. This problem has been discussed extensively in the literature, and has motivated several
other research projects (Dekel and Herbsleb, 2009; Duala-Ekoko and Robillard, 2012; Sty-
los and Myers, 2008). Section 2 illustrates the need to support both information filtering and
information discovery.

To address the challenges described above, we wanted to determine to what degree it
was possible to identify what fragments of text in an API’s reference documentation should
be read by a programmer who has decided to use this element as part of a task, but indepen-
dently of the actual task. This constraint provides a specific criterion that we can use to judge
the usefulness of individual pieces of information in reference documentation. Although the
notion of relevance often includes context-specificity (e.g., details of the task or character-
istics of the user), our initial goal was to investigate how to create a context-independent
knowledge base from API documentation. In practice, recommendations derived from such
a knowledge base can always be filtered based on user profiles.

Our initial exploration of the idea of recommending API documentation led to two main
contributions toward a general solution.

First, using a grounded approach, we created a coding guide to manually but reliably
classify text fragments into three distinct categories: those that are indispensable, those that
are valuable, and those that are less important to a programmer who has already identified
the corresponding element as relevant to a task. We validated our coding guide by measuring
inter-coder agreement on classification performed independently.

Second, we devised a technique to identify indispensable and valuable pieces of infor-
mation in documentation units. We call these pieces of information knowledge items (KIs).
The technique relies on the semi-automatic identification of word usage patterns in relevant
information, assisted by natural language processing techniques, and then uses a pattern-
matching approach to automatically find instances of these patterns in unseen documenta-
tion.

As part of this work, we have also developed an Eclipse plug-in, Krec, that recommends
the first two categories of information from the reference documentation of the API elements
used in a block of code.

We evaluated the approach end-to-end in the context of software development in Java
using the JDK reference documentation as provided by the output of the Javadoc tool. We
evaluated the approach with sample Java code blocks extracted from ten open source sys-
tems. Our evaluation shows that with a training set consisting of 556 pieces of useful in-
formation extracted from over 1000 manually-inspected documentation units, we can issue
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recommendations in simulated operating conditions with about 90% precision and 69% re-
call. Furthermore, the recommended knowledge represents the filtering out of about 86% of
the less important reference documentation associated with a programming (recommenda-
tion) context. We further verified the recommendations on code blocks from a popular book
that recommends efficient ways of programming in Java (Bloch, 2008), and found that for 6
out of 8 possible cases, Krec was able to match the recommendation from the documentation
with those expected in the book. Finally, we conducted a study where we asked ten inde-
pendent assessors to rate the usefulness of knowledge items tagged as indispensable by our
approach that were recommended for API types. The participants rated the recommended
knowledge items as useful in 57% of cases, and as potentially useful in another 30% of
cases.

The rest of this article is organized as follows. Section 2 illustrates the need for informa-
tion filtering and information discovery when using API reference documentation. Section 3
defines our concept of knowledge item and explains our development of a coding guide that
is the instrument we use to classify text fragments in reference documentation. Section 4
describes our automated technique for detecting and recommending useful information in
reference documentation, and Section 5 reports on its performance. Section 6 discusses the
related work and Section 7 presents our conclusions.

2 Motivating Examples

The following situations illustrate how a recommendation-based model for accessing API
documentation supports both information filtering and discovery.

Cloning Objects

In Java, cloning is an important mechanism that can be used to make a copy of an object
without statically specifying its run-time type. Cloning in Java is a complex mechanism that
is supported both by language constructs (interface implementation) and by API elements
(such as the Cloneable interface and the Object.clone() method).

The reference documentation for Object.clone() provides both a theoretical specifica-
tion of the behavior of the method, as well as constraints on how it should be overwritten.
The description of the method comprises 344 words in 16 sentences.

Once a developer has assimilated the basic theory behind the Java cloning mechanism,
the value of this documentation unit lies mostly in the important implementation guidelines
it provides, such as the following sentences:

By convention, the returned object should be obtained by calling super.clone.

or,

By convention, the object returned by this method should be independent of this
object (which is being cloned).

However, without explicit support, the only mechanism available to a developer to re-
member these kinds of directives is to re-read the documentation of Object.clone() to find
this information. In fact Dekel and Herbsleb (2009) have already argued that this kind of
knowledge should be “pushed” to developers to avoid them overlooking important informa-
tion. In this article, we report on an empirical approach to automatically filter knowledge
such as the above two sentences from larger documentation units, while retaining the possi-
bility of displaying it in the context of the complete document.
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Creating New Threads

In a programming task in Java with concurrency requirements, programmers typically create
instances of a class implementing the Runnable interface and passing the instances to new
Thread instances as shown below.

class Run implements Runnable ...

...

(new Thread(new Run())).start();

If the task is composed of multiple jobs demanding parallel execution, creating and starting
a new Thread for each job is not efficient. To tackle some of these performance issues, Java
5.0 introduced the Executor framework in package java.util.concurrent (Austin, 2004).
For the task above, it is more efficient to use a single instance of a class implementing the
Executor interface, as shown below.

class AnExecutor implements Executor ...

...

Executor executor = new AnExecutor();

executor.execute(new Run());

executor.execute(new Run());

This recommendation of Executor over Threads is provided in the documentation of the
Executor interface:

An Executor is normally used instead of explicitly creating threads

but is buried in text that contains several different kinds of information, including code
examples. The quote above is not highlighted in any way. How would a user discover this
information? We cannot assume that users of the Thread class would be naturally inclined
to read the entire reference documentation of the Thread class and of all the elements in
the three Java concurrency packages (totaling about 91 000 words or over three hours of
reading at an average speed). This example thus shows the need for information filtering
(what information is indispensable or particularly valuable to users of class Thread?) and for
information discovery (where is this information found in the reference documentation?).

Our research provides an initial approach for surfacing important statements like the
one above, for their eventual recommendation to programmers. In this situation, we would
detect that the programmer is using the Thread class, and return all text fragments previously
classified as indispensable and valuable that are associated with Thread. Here fragments
in the documentation of Executor become associated with the Thread class because they
mention it.

3 Knowledge Items

Recommending knowledge from API documentation requires classifying the knowledge
contained therein. In the first phase of our investigation, we manually studied the content
of the Java 6 SE reference documentation (a.k.a “Javadocs”) to elicit the properties that can
help us distinguish information we can recommend.
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3.1 Concepts and Terminology

In the JDK 6, reference documentation is mostly composed of text. In this project we focus
on recommending text and ignore images and code. Textual documentation is composed
of sentences, and a sentence or a group of sentences contains a unit of information, i.e., a
self-contained message. For example, consider the following two units of information,1

If the limit array is not in ascending order, the results of formatting will be incor-
rect.

and,

Note that the get and set methods operate on references. Therefore, one must be
careful not to share references between ParameterBlocks when this is inappropri-
ate.

In the first case, a single sentence contains a unit of information, while in the second, there
are two sentences. For uniformity, we refer to a sentence or a group of sentences that contains
a unit of information as a text segment. We refer to the documentation explicitly attached
to an API element, i.e., a class, an interface, an enum, a field, or a method, as a documen-
tation unit. The documentation unit of a class or an interface thus only documents the class
or the interface, and not its member fields or methods. A documentation unit consists of one
or more text segments. If the unit of information present in a text segment is worth recom-
mending as part of a programming task, we refer to the text segment as a knowledge item
(KI). We say that knowledge items are attached to an API element if they are found in the
documentation unit attached to the element. Alternatively, KIs can be associated with the
element through various cross-referencing heuristics (e.g., if they mention the element, as
described in Section 2).

3.2 Knowledge Items

We observed that in practice we can distinguish between two categories of knowledge items:
indispensable, and valuable. Indispensable KIs are the pieces of information that the pro-
grammers cannot afford to ignore, such as, the caveats, or the threats, in using certain API
elements. Valuable KIs offer useful but non-critical information. For example, a valuable KI
could highlight the benefits of using one method over another to achieve a similar objective.

Some common high-level properties of both of these categories are that the pieces of
information should be non-obvious for most programmers, and that they should have the po-
tential to impact their decisions. For example, “method X should not be called from method
Y” and “it is not safe to call method X from method Y” both instruct the programmer not to
call method X from method Y; the former sentence does it explicitly and the latter implic-
itly. Text segments that merely state the property or the purpose of an API element do not
involve programmer decisions, hence do not constitute a KI, for example, “this enables the
programmer to write code in a compact and easy style”.

We created an initial set of properties to characterize these two categories of KIs based
on our own experience with API documentation (Robillard and DeLine, 2011), those of
others in the field (Dekel and Herbsleb, 2009; Monperrus et al, 2011), and some established
principles (Javadoc, 2001). We further expanded these properties using a grounded approach

1 All quoted examples are taken from the reference documentation of the Java 6 SE APIs
(http://docs.oracle.com/javase/6/docs/api/).
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by closely studying the reference documentation of numerous API elements, followed by
multiple refinement iterations.

We authored a coding guide intended to guide the manual classification of text segments.
The coding guide describes the two knowledge categories, their properties with examples,
and provides instructions on how to look for text segments that represent the two types of
KIs in documentation units. In constructing our coding guide, we followed the best prac-
tices for the development of coding instruments according to the content analysis method-
ology (Neuendorf, 2002). The rest of this section describes our efforts in this respect.

Below, we provide a summary of the characteristics of the two knowledge categories as
found in the coding guide.2

Indispensable Knowledge Items
Programmers who ignore this category of information would either encounter compi-

lation or runtime errors or would be likely to introduce bugs. Indispensable KIs instruct
programmers to perform important actions to accomplish basic objectives of an API ele-
ment. An indispensable KI has properties related to one of the following subcategories:
Usage Directives specify non-optional directives or usage guidelines when using an API
element. For example,

This method should only be called by a thread that is the owner of this object’s
monitor.

Hard Constraints involve specific requirements. For example,

A valid port value is between 0 and 65535.

Threats specify usage of certain protocols, whose violation would result in programming
threats or errors. For example,

A CannotProceedException instance is not synchronized against concur-
rent multithreaded access. Multiple threads trying to access and modify
CannotProceedException should lock the object.

Valuable Knowledge Items
This is the type of KIs that conveys helpful and beneficial information. Programmers

who ignore this category of information are likely to use the API sub-optimally (Kawrykow
and Robillard, 2009), or spend an inordinate amount of time looking for information. A
valuable KI has properties related to one of the subcategories below:
Alternative API elements recommend alternative API elements to accomplish the same
objective but more efficiently. For example,

When using a capacity-restricted deque, it is generally preferable to use
offerFirst.

Dependent API elements recommend dependent API elements to help complete a task. For
example, the getFamily() method in Font makes a reference to the getName() method using
the sentence,

Use getName to get the logical name of the font.

Such a piece of information, present in the documentation of a separate API element, is use-
ful to keep track of dependencies between API elements. It can help programmers to figure

2 An evaluation version is available on our project web page http://swevo.cs.mcgill.ca/apireco/
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out API elements that are dependent on the one the programmer is working with (Duala-
Ekoko and Robillard, 2011).
Improvement Options recommend actions that could lead to improvement in functionality
or in non-functional properties such as performance. For example,

The implementor may, at his discretion, override one or more of the concrete meth-
ods if the default implementation is unsatisfactory for any reason, such as perfor-
mance.

Best Practices recommend practices that help make optimal use of the API element. For
example,

While implementations are not required to throw an exception under these circum-
stances, they are encouraged to do so.

Other Documentation
For the purpose of recommending documentation, the remaining content is of lesser im-

portance, chiefly because it contains information that is unsurprising for programmers who
have already selected the element, such as the basic objective of an API element (Cwalina
and Abrams, 2008). We do not claim that this information has no value, but we estimate that
the advantage of pushing it to developers during development tasks is uncertain. Our coding
guide provides a detailed characterization of information that should be left out. Other doc-
umentation includes text segments that have some of the following properties (the complete
list is found in our coding guide):
Obvious. A piece of information that is obvious from the name of the API element. Maalej
and Robillard (2013) estimate that over 45% of the documentation units for methods and
fields in the JDK 6 reference documentation contain at least one obvious text fragment
(referred to as “non-information”). For example, for the method getAudioClip(URL url,

String name), the following line in its attached documentation unit contains the text:

Returns the AudioClip object specified by the URL and name arguments.

Unsurprising. A piece of information that is unsurprising for most programmers (Cwalina
and Abrams, 2008), for example, the summary sentence of API elements that provides a
high-level objective or functionality of the element (Javadoc, 2001).
Predictable. A piece of information that is predictable based on the context, for example,

Exception SQLException is thrown if a database access error occurs.

3.3 Reliability Assessment

For the purpose of manually coding text segments, the description of KI categories must
be reliable. Reliability indicates with what consistency two independent coders (persons)
would assign the same category to the same text segment (Neuendorf, 2002).

We measured the reliability of the coding guide by having two different coders indepen-
dently identify indispensable and valuable KIs in randomly-selected documentation units.
This evaluation was conducted by the first author and an external participant, a researcher
who had recently joined our research group and had not previously collaborated with either
authors or worked on this project. We performed the evaluation in three iterations involving,
respectively, 77, 74, and 148 API elements, randomly selected from the Java 6 SE APIs.
The non-uniformity in the number of API elements in each iteration is due to data collection
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Table 1 Reliability assessment results. Iter = Iteration; DU = Documentation Units coded; T = Total number
of text segments across all documentation units in the iteration; Ind = Number of text segments coded as
Indispensable; Val = Number of text segments coded as Valuable; Rest = Number of other text segments; Dis
= Number of instances of disagreement between coders; κ = Cohen’s kappa value

Iter. DUs T Ind. Val. Rest Dis. κ

1 77 201 11 25 152 13 0.82
2 74 133 14 21 85 13 0.80
3 148 244 19 43 155 27 0.77

Total 299 578 44 89 392 53

times that were fixed in advance for each iteration. The coding task involved independently
reading the assigned documentation units and identifying indispensable and valuable text
segments. This phase of the research was iterative to allow improving the guide after each
iteration. After each round, we studied every instance of disagreement and made additions
and amendments to the coding guide as required.

We used Cohen’s Kappa (κ) metric to measure the reliability between the two coders (Co-
hen, 1960). Unlike a simple percent agreement calculation, Cohen’s Kappa takes into ac-
count the potential for agreement by chance. Kappa values are thus very conservative and
values of 0.61-0.80 for κ are considered to indicate substantial agreement between two
coders, and values of 0.81-1.00 are considered almost perfect (Landis and Koch, 1977).

In this phase of the research, aggregation of sentences into text segments was left up to
the individual coders, so we could collect data to inform our automated segmentation tech-
nique (Section 4.1). There were occasional disagreements between the coders in deciding
what constituted a text segment. In total 23 misalignments had to be manually reconciled to
compute agreement values, i.e., only 4% of the total text segments eventually identified.

We reconciled misalignments using two heuristics. First, if a sentence was chosen by
both the coders to form a text segment, but one of them included additional sentences either
before or after the common sentence, we picked the larger text segment. Second, if one of
the coders had selected two consecutive sentences as representing two different text seg-
ments each forming a different KI, while the other had selected both the sentences as part of
a single KI, we chose the classification of the latter, and discarded the non-matching cate-
gory selected by the former. The basis for employing these heuristics is that including more
sentences as part of a text segment lowers the risk of breaking a unit of information.

Agreement measures between the two coders are presented in Table 1. The column DUs
represents the total number of documentation units (API elements) coded in the correspond-
ing iteration, and T is the total number of text segments across all the documentation units
in the iteration.

We calculated κ for a 3-valued variable, i.e., each text segment could represent either an
indispensable KI, a valuable KI, or neither of the two. In Table 1, the counts in the column
Ind. indicates those text segments that were selected by both the coders as indispensable
KIs, and similarly Val. for valuable KIs. The column Rest indicates the total text segments
that were rejected by both the coders. The values in the column Dis. indicate the number of
instances of disagreement.

The overall rate of disagreement was 9.2%, i.e., there were disagreements for 53 text
segments out of the total 578. Out of the 53 disagreements, 7 were between Indispensable
and Valuable classifications, 16 between Indispensable and neither, and 30 between Valuable
and neither. The overall value of 0.80 for κ , however, indicates substantial agreement be-
tween the two coders. Although the value decreases slightly with each iteration, such small
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differences at that level of agreement do not mean that our amendments were regressive;
The larger final set simply contained documentation units with more ambiguous statements.
With an overall κ in the [0.77− 0.82] range, we concluded that the guide was a reliable
research instrument and used the version produced at that stage for the remainder of the
project.

4 Automatic Detection of KIs

KIs are tedious to find manually, and there is a lot of documentation. The reference docu-
mentation for Java 6 SE alone consists of 206 packages, 3869 types, 28 724 methods, and
6158 fields. The reference documentation of all these API elements total 2 632 232 words
in 194 204 sentences.3 Obviously, some form of automated support is needed to extract
knowledge items from existing documentation. As one of our primary contribution in this
investigation, we developed a technique for finding KIs in large collections of documenta-
tion units.

In essence, the technique works by looking for pre-defined word patterns in documenta-
tion units. The patterns are discovered using a semi-automated technique, and then stored in
a pattern database; they are not automatically learned through black-box text classification
tools.

The justification for using specific patterns is two-fold. First, the cost of producing a
large enough training set for KI classification based on Bayesian or Maximum Entropy
techniques is prohibitive given that we have to classify sentences individually. Second, to a
large extent word patterns for KIs are predictable and dictated by the type of information
they encode. For example, we observed that KIs that represent directives usually have a
modal verb with other supporting words, KIs that recommend alternate APIs use words
like recommend, advise, or prefer, along with one or more terms referring to code elements
(called code words), or groups of words like use and instead.

The existence of common linguistic patterns in reference documentation is not surpris-
ing given the existence of explicit style guides and description formats (Javadoc, 2001), as
well as extensive examples from authoritative sources (the J2SE core packages).

From manually identified KIs, we produce patterns by extracting the words that are
important to the knowledge conveyed in the sentence, and eliminating the words that are
only supportive.

For instance, consider the valuable KI,

It may be more efficient to read the Pack200 archive to a file and pass the File

object, using the alternate method described below,

For this KI, if we extract the words may, efficient, and the code term File, then an unseen
text segment that would match this pattern is:

Consult your JDBC driver documentation to determine if it might be more efficient
to use a version of updateBinaryStream which takes a length parameter,

which has the words might, which we categorize as a modal synonym of may, efficient, and
a code-like term updateBinaryStream.

In our technique, a KI pattern is simply a set of words, optionally including a special
word that is a placeholder for code words, such as File. KI patterns do not contain duplicate

3 http://docs.oracle.com/javase/6/docs/api/
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words. As another example, the pattern {should, wrap, <CW>} would be derived from the
following KI (where <CW> is the placeholder for code words):

If no such object exists, the list should be “wrapped” using the
Collections.synchronizedList method.

A sentence will match a KI pattern if it contains all the words in a pattern (or a synonym).
We use the WordNet4 dictionary to find synonyms.

Overview of the Approach

To proceed from raw documentation units to recommendations, our pattern-based approach
requires the sequence of steps illustrated in Figure 1. The input to the approach is the raw
text of all the documentation units in the reference documentation for a given set of APIs
(in our case all of the Java 6 SE reference documentation (Javadocs), a in Figure 1), and
the output is the set of all knowledge items estimated to be contained in this documentation
corpus (d in the figure).

In the first stage, all documentation units are preprocessed to make them more amenable
to automated analysis. This stage is described in Section 4.1.

In the second stage, we automatically eliminate text segments from the list of potential
KIs using a fixed set of heuristics (Section 4.2).

With the remaining text segments, we do one of two things. A random sample is selected
for KI Selection (c2), and the rest is reserved for automated detection (c1). The entire KI
selection process is described in Section 4.3, and the automated detection in Sections 4.4
and 4.5.

Text segments selected for KI selection are first manually classified as described in Sec-
tion 3. If they are determined to be KIs, they are stored in a final KI database (d), but also
used to generate KI patterns. To generate patterns, we first use natural language processing
techniques in a linguistic analysis stage to automatically discover and remove words un-
likely to be important, and produce a list of “headwords” that are estimated to capture the
essence of the KI. We then manually validate the headwords, producing a KI Pattern that
is stored in a pattern database.

With a sufficient number of KI patterns, we can simply apply the patterns (f ) to all
remaining unclassified text segments (c1) to discover the KIs among them. These add to the
manually-selected KIs to produce the final KI database containing all the KIs in the entire
documentation corpus.

4 http://wordnet.princeton.edu/
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Once the KI database is available, we can use it as input to Krec, our documentation
recommendation tool (Section 4.6).

4.1 Preprocessing

The pre-processor takes HTML documents containing documentation units as produced
by the Javadoc tool and prepares them for further processing. It performs the following
operations:

– It separates the documentation units for methods and fields from the Javadoc page of the
type declaring them.

– It strips the HTML tags from the resulting documentation units, extracts the plain text,
and identifies potential code words from the HTML code tags or based on additional
heuristics. These heuristics include identifying camel-cased tokens, identifying tokens
that are equivalent to the name of the API element associated with the documentation
unit, etc.

– It converts the raw text into a list of sentences. We used the PunktSentenceTokenizer

module in the Natural Language Toolkit5 (NLTK) libraries to fragment text into sen-
tences.

– It eliminates non-alphanumeric characters such as curly braces at the beginning or at the
end of a sentence.

– It groups sentences that begin with a conjunction, e.g., thus, hence, therefore, etc., with
their preceding sentence because they tend to represent a continuation of the same in-
formation.

The output of the pre-processor is a list of text segments.

4.2 Filtering

The filtering stage eliminates some of the text segments output by the pre-processor. This
elimination is based on several heuristics:

– In Javadoc-style documentation units, the first sentence of “each member, class, inter-
face, or package description” contains a high-level summary of what the element is sup-
posed to do (Javadoc, 2001). Since our recommendations assume that the programmer
has already selected an API element and has a basic understanding of what it should do,
recommending a functionality summary from its documentation would be redundant as
we would be recommending obvious information. We thus eliminate the first sentence
from consideration.

– Documentation units often contain a mix of text and code examples. We eliminate text
segments that only contain code blocks because we assume that the code would ideally
be supporting information in text segments present either before or after the code. Hence
the code block in isolation would neither contain indispensable nor valuable KIs.

– We also eliminate some of the independent clauses mentioned at the bottom of the doc-
umentation units for most API elements, especially methods. These include the clauses
Throws, See Also, Since, Specified by, and the first sentence in Returns. The rationale
behind each of these is present in our on-line appendix (see footnote 2).

5 https://sites.google.com/site/naturallanguagetoolkit/Home
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4.3 Knowledge Item Selection

We manually identify a set of KIs among filtered text segments (c2) to build a form of
training set that is then used to generate KI patterns that will then be used to discover KIs in
unseen documentation units. The procedure for transforming a KI into a KI pattern is almost
fully automated, requiring only one simple word vetting phase at the end of the process. The
basic idea for generating a pattern from a KI is to get rid of words that do not capture the
essence of the KI. The first part of the procedure is fully automated and is represented by
the sub-stage Linguistic Analysis in Figure 1.

In the linguistic analysis stage, KI sentences are tagged with their part of speech (POS)
using the NLTK implementation of the Treebank tagger. Parts of speech describe the basic
function of words (noun, verb, etc.). We further augmented the tagging technique to handle
code words and to tag them distinctly. The output of this phase is a list of KIs consisting of
words tagged with their POS. For instance, the first example of KI presented in this section
would be tagged as follows:

It/PRP may/MD be/VB more/RBR efficient/JJ to/TO

read/VB the/DT Pack200/CW archive/JJ...

Where PRP is the tag for a personal pronoun, MD the one for a modal verb, VB the one for
the base form of a verb, etc.6 CW is our own tag, designed to represent code words.

We then pass the tagged KIs to a tool called a chunker to eliminate words that have a
low probability of capturing the essence of a KI. Chunking (or shallow parsing) is a natural
language processing technique that identifies different phrases present in the KI sentences.
These phrases could be noun phrases, verb phrases, adjective phrases, etc. Each of these
phrases consists of a headword accompanied by other supporting words. The headword is
the word (or words) in the phrase with a POS tag that match the phrase. E.g., a noun phrase
could have a noun headword accompanied by a determiner and an adjective.

Our approach is to consider that headwords are the most likely to capture the essence of
a KI, and to disregard supporting words in a phrase, or words not associated with a phrase.
The chunker relies on grammatical rules to create the different phrases. A good overview
of the chunking technique can be found in a popular textbook (Jurafsky and Martin, 2008,
§15.3).

Our initial set of rules included the standard English rules for the different phrase types.
However, to use chunking to select essential words in KIs, it was not sufficient to use basic
language processing tools: these needed to be specially engineered to properly handle the
intricacies of software documentation. Code words, such as addSource in the KI “a correct
way to write the addSource function is to clone the source,” are treated as nouns. With obser-
vations from several manually-identified KIs, we also augmented the rules to extract words
which may not be important in general usage of the English language, but are important in
our context. For example, consider the KI,

JComponent subclasses must override this method like this:

From this sentence, a rule for noun phrases extracts the words JComponent and subclasses,
and a rule for verb phrase, the word override. Our additional rules further identifies JComponent
as a code word term from its POS tag, and our customized modal phrase extracts the word
must.

6 The complete list can be found on our project web page (see footnote 2).
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We customized the chunker to consider a modal phrase to be a modal verb accompanied
optionally by verbs and adjectives. We categorized modal verbs into two categories: those
that specify mandatory actions, i.e., must, ought to, shall, and should, and those that specify
optional actions, i.e., can, could, may, might, will, and would.

Continuing with our example, the chunker would assemble words into the following
phrases (headwords are in italics, code words are indicated with an asterisk):

It/PRP

(may /MD) Modal Phrase

be/VB

(more/RBR efficient /JJ) Adjective Phrase

(to/TO read /VB) Verb Phrase

(the/DT Pack200 */CW archive/JJ) Noun Phrase

...

From each phrase detected in a KI, all supporting words (non-headwords) are automat-
ically eliminated. The remaining list of headwords is then produced as the output of the
automated linguistic analysis stage. The final stage (Headword Selection) requires a human
to look at the list of headwords and eliminate any word that does not usefully capture the
essence of the KI.

In our example, the output of the linguistic analysis stage would produce the following
list of headwords with their accompanying phrase (stars indicate code words):

Modal Phrase: may

Adjective Phrase: efficient

Noun Phrase: Pack200*

Verb Phrase: read

From which we extract the pattern {May, Efficient, <CW>}.
Finally, we note that because each of the patterns relates to a KI, and each KI is associ-

ated with a category, the patterns are likewise associated with a category (i.e., indispensable
or valuable).

4.4 Training Set Construction

To proceed with the automated detection stage of our approach, we needed a sufficiently
large collection of KI patterns generated from manually-identified KIs. The challenges for
this stage were that a) each pattern involves the manual inspection of a KI, and b) our
collection of patterns must be diverse enough to capture a sufficiently large number of KIs
to be able to produce recommendations in a majority of programming contexts.

Our basic strategy for meeting these inter-related challenges was to build the training
set incrementally through a combination of automated detection and manual validation. In
addition to speeding up the process of building the pattern database, this process allowed
us to estimate the performance of our automated KI discovery process. We summarize the
process as follows:

1. Manually generate a seed training set of validated KIs, and generate patterns from them.
Our seed training set consisted of all the KIs discovered as part of the development of the
classification scheme (Section 3), plus those discovered in an additional 100 randomly-
sampled documentation units.
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2. Generate an intermediate test set by randomly sampling 20 unseen documentation units.
3. Apply all known patterns to this intermediate test set. Identify false negatives and false

positives (missing KIs).
4. Discard the false positives and add the missing KIs identified in the previous step to

the training set. Generate patterns from them. Add the generated patterns to the pattern
database.

5. Randomly sample 100 additional unseen documentation units. Manually identify KIs in
them, and add the corresponding patterns to the pattern database.

6. Go to step 2.

After six iterations, we had inspected 899 documentation units in the training sets and
120 in the intermediate test sets. For the total of these 1019 documentation units, which is
about 2.6% of the total in the Java 6 SE SDK, we collected 556 unique KIs, and 361 unique
patterns; 142 indispensable and 219 valuable.

Across our six test iterations on 120 documentation units, we correctly discovered 38
KIs, incorrectly produced five spurious KIs (false positives), and omitted 42 KIs (false neg-
atives). This gave us a preliminary precision of [0.82–1.00] and a recall of [0.30–0.44] de-
pending on the test iteration.

Based on our experience so far, we estimate that further increasing the size of the pattern
database in the same way will lead to higher recall and lower precision. Given the massive
investment required to produce the current database, we opted to apply the pattern database
at this point in the process.

We note that the precision and recall numbers provided here are the intermediate results
that we used to determine when to stop adding to our training set. The results of the end-to-
end evaluation are presented in Section 5.

4.5 KI Database Generation

From the remaining 97.4% of the documentation units remaining unseen, 57.2% of them
(21 700) had one or more sentences left after the filtering stage. We then applied the 361
patterns to automatically identify potential KIs. The automated detector was able to detect
one or more KIs in 8396 (38.7%) of them. We stored the automatically detected KIs in a
final KI database.

Table 2 presents the details of the KIs generated by the automated detector and those
manually vetted. The column Total shows the number of documentation units associated
with each API element type, and the column With KI reports how many of those contain at
least one KI. Out of the 8396 elements for which there is one or more KI in the corpus, 75%
are methods, 20% are types, and the rest are fields.

The rest of the table reports on the total number of KIs in our database, listed by docu-
mentation unit type, KI type (indispensable or valuable) and origin (Manually or Automa-
tically detected). Out of all the automatically detected KIs, 80% belongs to the documenta-
tion unit of methods.

The most effective pattern was {<CW>, must, pass}, where <CW> is a placeholder for a
code word; it matched 1072 KIs across all the documentation, which is 7.6% of the total
KIs automatically detected. 265 out of the total 361 patterns matched one or more KIs (in
addition to the seed KI). The average instances of a match per pattern was 52.
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Table 2 Knowledge item corpus. The column Total shows the number of documentation units associated
with each API element type. The column With KI reports how many of those contain at least one KI. The
columns under KIs report the total number of KIs in our database, listed by documentation unit type, KI type
(Ind = Indispensable; Val = Valuable), and origin (Manually or Automatically detected)

Doc. Units KIs

Total With Manual Auto

KI Ind. Val. Ind. Val.

Types 3869 1685 91 148 797 1817
Methods 28724 6301 120 168 3514 7217
Fields 6158 410 10 19 190 506

Total 38751 8396 221 335 4501 9540

Fig. 2 Krec in action.

4.6 Knowledge Recommender

We developed an Eclipse plug-in called Krec (Knowledge Recommender), that takes as input
a Java file or a block of Java code, and recommends KIs associated with the API elements in
the code. Krec uses as input the KI database generated as described in this section. Krec also
recommends KIs attached to elements not present in the input code if they mention one or
more of the elements in the code. E.g., when using Thread in the input code, it recommends
a KI from the Javadoc of Executor, because this Javadoc mentions Thread.

Figure 2 shows a screen shot of Krec; the programmer looks for recommendations for
lines of code in the program by selecting the code block and initiating Krec. Krec identifies
the API elements in the code and recommends KIs associated with the elements, if it finds
them in the corpus. If a user selects a KI from the list, a browser displays it with its full
context.

Although fully-functional, Krec is a proof-of-concept prototype that we used to facilitate
data analysis and experiment with the approach. This paper focuses on solving the data
extraction challenge underlying API documentation recommendation. For this reason, we
do not claim that Krec could be put in operation without additional engineering efforts.
In particular, a fully-functional recommender system requires support for user profiling, in
particular to model the knowledge of the developer to avoid recommending knowledge that
the user already knows. A basic solution, illustrated by the work on CodeBroker, would be
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Table 3 Target open source systems

System Version Purpose
ArgoUML 0.34 UML modelling application
FreeMind 0.9.0 Mind mapping application
Hadoop 1.0.3 Distributed processing framework
Hibernate 4.1.4 Object-relational mapping framework
JDT 3.7.2 Tools for Java IDE
JEdit 4.5.2 Text editor
Joda Time 2.1 Java library for date and time
JUnit 4.11 Testing framework
Tomcat 7.0.28 Web server
XStream 1.4.2 Serialize Java objects to XML

to maintain a list of KIs assumed to be known by the user (Ye and Fischer, 2002). Fully
solving this problem requires the consideration of a very large number of factors and largely
exceeds the scope of this work (Ying and Robillard, 2014).

5 Evaluation

We conducted three studies to evaluate the potential of pattern-based detection and rec-
ommendation of knowledge items from API reference documentation. In a first study (Sec-
tion 5.1) we generated recommendations for code from a sample of ten open-source systems
to estimate the precision and recall of the patterns in our database. In a second study (Sec-
tion 5.2), we applied Krec to well-documented code examples from the literature to verify
that our approach could identify important knowledge associated with the examples. In a
third study (Section 5.3), we involved ten independent participants to assess the potential
usefulness of KIs detected with our approach.

5.1 Production Code

We generated recommendations for code from ten systems that use the JDK APIs in different
ways (Table 3). The systems in this table represent different domains and vary significantly
in their size. These systems also differ in their use of the JDK APIs. For example, Joda
Time uses only basic APIs such as the collection classes, whereas JEdit relies on AWT and
XStream uses the reflection APIs.

For each system, we randomly selected 20 method definitions from the population of
methods consisting of more than five lines of code and using at least one JDK API element.
Additionally, we stratified our sample and ensured that each method was selected from
a different package. The size of the test sample is limited by the high effort in manual
investigation required to compute the precision and recall metrics used to assess the results.

Table 4 shows the distribution of API elements in the sample. The column Total LoC
indicates the total lines of code across the 20 methods in each system, and Total APIs indi-
cates the sum of the occurrence of all the non-trivial JDK API elements; we obtained the
non-trivial elements by filtering out pervasive elements such as PrintStream, System, etc.
The complete list is in our on-line appendix (see footnote 2). Distinct APIs indicates the
number of API elements in the sampled method definitions in each system with duplicate
occurrences of elements removed. Unique APIs indicates the count of the API elements that
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Table 4 Description of the evaluation sample. Total LoC = total lines of code across the 20 methods; Total
APIs = sum of the occurrence of all the non-trivial JDK API elements (defined in the text); Distinct APIs =
number of API elements in the sampled methods with duplicates removed; Unique APIs = Number of API
elements only present in the sample for that system

System Total Total Distinct APIs Unique APIs

LoC APIs Count (%) Count (%)

ArgoUML 237 119 99 83.2 61 51.3
FreeMind 241 141 125 88.7 94 66.7
Hadoop 222 147 126 85.6 66 44.9
Hibernate 181 148 92 62.2 41 27.8
JDT 307 104 75 72.1 26 25.0
JEdit 313 157 138 87.9 77 49.0
Joda-Time 323 111 86 77.5 44 39.6
JUnit 201 85 63 74.1 19 22.4
Tomcat 217 111 82 73.9 42 37.8
XStream 245 154 101 65.6 36 23.4

Total 2487 1277 987 77.3 506 40.0

Table 5 Evaluation results—production code. KI Rec = Total number of recommended KIs of each type;
Prec = Precision; KI Missed = Total number of KIs of each type present in the corresponding documentation
unit but not recommended; Rec = Recall; Extra = Percentage of text segments in the documentation units for
all the elements in a method declaration that are not KIs; #X number of methods with KIs recommended from
documentation units other that the ones attached to API elements used in the method

KI Rec. Prec. KI Missed Rec. Extra #X

Ind. Val. (%) Ind. Val. (%) (%)

ArgoUML 26 83 87.6 6 26 77.3 85.4 5
FreeMind 13 48 93.8 5 14 76.3 90.3 6
Hadoop 29 59 93.2 9 30 69.3 87.5 6
Hibernate 35 69 87.2 2 24 78.8 87.4 2
JDT 23 51 83.8 3 19 77.1 86.2 1
JEdit 14 50 98.1 9 33 60.4 91.4 2
Joda Time 25 66 90.2 23 53 54.5 82.0 3
JUnit 21 46 89.1 12 34 59.3 82.9 3
Tomcat 19 38 87.7 10 32 57.6 88.5 3
XStream 39 89 90.6 9 34 74.9 82.5 1

Total 244 599 90.1 88 299 68.6 86.4 32

are only present in the sampled method definitions of that system. Hence, on average 50.6
elements are unique to each system in the sample.

We input the method definitions to Krec and measured four metrics: precision, recall,
extraneous information (Extra) and number of methods with cross-references (#X). Precision
is the ratio of recommendations that are actual KIs over all recommendations. Recall is the
ratio of recommendations that are KIs over all KIs found in the documentation units attached
to API elements in respective method declarations. The extraneous information measure is
the percentage of text segments in the documentation units for all the elements in a method
declaration that are not KIs. This measure illustrates to what extent our approach addresses
the information filtering problem. The number of methods with cross-references shows the
number of methods in our sample for which at least one of the recommended KIs came
from a documentation unit not attached with any API element in the method definition (e.g.,
the Executor example in Section 2). This measure illustrates to what extent our approach
addresses the information discovery problem. Table 5 shows the results.
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On average, Krec was able to recommend KIs with 90% precision. It identified one in-
dispensable KI for every 5.2 API elements and 10.2 lines of code, and one valuable KI for
every 2.1 elements and 4.2 lines of code. These results translate into reasonable usability
projections, since the number of recommendations is both manageable (one for every two
elements), and the precision is high. Simple user interface features have the potential to fur-
ther decrease the number of spurious recommendations generated (we discussed this feature
in Section 4.6).

Krec achieved an overall recall of 68.6%. On average, it missed 1 indispensable KI
for every 2.7 that it found, and 1 valuable KI for every 2 that it found. We observe that
Joda-Time has a lower recall compared to other systems because it uses Date, Calendar, and
Locale APIs that apparently have unique sets of information in their associated documen-
tation unit, and were not part of the training set. The implications of the recall measures
are straightforward: developers should not rely blindly on being recommended all the infor-
mation they need. Recommender systems can function as a mean to facilitate information
discovery in reference documentation, but should not be seen as a means to replace it.

In terms of extraneous information, we note that, on average, 13.6% of the crucial doc-
umentation contained all the detected KIs, meaning that the approach helps filter out about
85% of text segments which may be less relevant in our intended usage scenario.

Finally, the number of methods with cross-references shows that in 32/200 = 16% of
recommendation contexts (method declarations), our approach recommended information
not found in the documentation units attached to the API elements used in the method.
Although this number illustrates the basic ability of the approach to support information
discovery, it is still modest and we are considering new ways to link KIs with API elements.
One promising avenue is to also recommend KIs found in documentation units listed under
the “See Also” rubric for a given API element. This idea is only one illustration of the nu-
merous ways possible to increase information discoverability using a recommender system.

The results in Table 5 illustrate the average performance of our approach, and aggregate
multiple occurrences of the same recommendation. Since the recommendations are context
independent, they will always be the same for a given element. In other words, if the recom-
mendations for a given element, such as Thread, are very good, the results will (indirectly)
be a function of the number of references to Thread in our sample. Hence, the results in
Table 5 paint a useful picture of the expected average performance in practice, but do not
allow us to account for the frequency of individual elements.

To control for this factor, we studied the performance of Krec on individual elements
(Table 6).

Table 6 Automatically-generated KIs per element. Total APIs = Number of API elements referenced in the
sample; Distinct APIs = Set of API element referenced in the sample; APIs with auto gen. KIs = Number
of the distinct API element for which at least one KI was generated automatically; Auto Gen KIs = Number
of KIs of each type generated; True KIs = KIs manually verified as correct; Missed KIs = KIs found in
the corresponding documentation units that were not detected; Pmicro = Micro-averaged precision; Rmicro =
Micro-averaged recall

Total Distinct APIs with Auto Gen. KIs True KIs Missed KIs Pmicro Rmicro

APIs APIs auto gen. KIs Ind. Val. Ind. Val. Ind. Val. (%) (%)

1277 660 186 48 167 32 131 36 128 75.8 49.8

Across the 200 method definitions in our sample, there was a combined usage of 1277
API elements. Out of this total, 660 were distinct. From these 660 elements, 31 were part
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of the manually-validated training set, and Krec was able to automatically generate one or
more KIs for 186 of the remaining elements. For these 186 elements, Krec automatically
identified 215 KIs, with a micro-averaged precision of 75.8%. With micro-averaging, the
decisions are accumulated across elements they refer to, and the measures are computed
on the accumulated contingency table (Manning et al, 2008, p.261). The values from the
individual elements were computed by reading their attached documentation unit and ana-
lyzing each text segment for the presence of KIs. This is lower than the average precision per
system reported in Table 5 because Table 5 contains manually validated KIs and multiple
occurrences of some KIs. The macro-averaged precision, i.e., the average of the precision of
KIs recommended per element, did not apply for our case, because the number of KIs per
element is low; for those with a KI in their associated documentation unit, the number of
KIs ranges from 1 to a maximum of 8, with more than 50% of the cases having only one KI.
Because precision (and recall) suffer from high variance (e.g., 0 or 100 on documentation
units with one KI) on such small samples, we report only the micro-averaged value.

For the 660 distinct elements across all the systems, Krec missed 164 KIs for a recall
of 49.8%. On examination, all KIs belonged to 280 elements out of the total 660, which
provided a coverage of 42.4%.

The main reason for a miss is the lack of a matching instance. The KIs that are unique
to an API element are difficult to extract automatically without a precise pattern. This is true
for cases where the sentences representing a KI do not have well-defined headwords. For
example, the following KI, that indicates a probable threat,

This function may cause the component’s opaque property to change.

contains a specific piece of information, without distinct headwords or code-like terms,
hence the probability of it matching a pattern from other KIs is low. We noticed that most
of such cases are true with short sentences. As a solution to this, it would be appropriate to
create a stratified sample of short sentences in the training sets.

5.2 Targeted Examples

We also evaluated whether our current KI database for Java SE 6 would be able to make
useful recommendations in cases where we know a recommendation is necessary. For this
purpose we used a collection of code examples taken from the book Effective Java (Bloch,
2008). This book presents a number of code examples with documented problems and the
accompanying solution. Specifically, Effective Java (EJ) contains 78 rules intended to make
the most effective use of the Java programming language (Bloch, 2008). We broadly cate-
gorized these 78 rules into two types:

1. those that recommend general programming best practices, e.g., “never do anything
time-critical in a finalizer” (Bloch, 2008, p. 27).

2. those that recommend means of effective usage of the fundamental Java SE libraries,
e.g., “always override toString()” (Bloch, 2008, p. 51). The fundamental libraries in-
clude java.lang, java.util, java.util.concurrent, and java.io.

We manually separated the 78 rules into these two types; if the rule involved an API
element, i.e., ways of using or not using an API element, we put it in the second category,
and we put all the other rules, including the ambiguous ones, in the first. For all the rules
of the second type, we extracted the associated sample code (Bloch, 2008), and input it to
Krec.
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Table 7 Evaluation results—targeted examples. KI Rec = Number of KIs recommended for the code exam-
ple; KI Missed = Number of KIs present in documentation units associated with API elements in the code
example that were not recommended; Expected = Whether the author’s main recommendation associated
with the code example was also found by Krec

KI Rec. KI Missed Expected

Effective Java Items Ind. Val. Ind. Val.

5 Sum.java 0 2 0 0 NA
8 CaseInsensitiveString.java 0 3 0 2 Yes
9 PhoneNumber.java 6 15 0 2 Yes
10 PhoneNumber.java 8 18 0 4 Yes
11 Stack.java 1 7 0 2 Yes
12 WordList.java 0 3 1 3 NA
14 Complex.java 3 6 5 4 NA
29 PrintAnnotation.java 1 2 0 3 No
36 Bigram.java 2 1 0 6 No
47 RandomBug.java 2 4 1 4 Yes
49 BrokenComparator.java 3 5 1 2 Yes

Table 7 shows the evaluation results on the sample code associated with the EJ rules; the
Java files are downloaded7 from the EJ web location (Bloch, 2008). For these examples, we
studied whether an obvious, expected recommendation was produced by Krec. Out of the
11 EJ examples having to do with API usage, eight have the suggested solution buried in the
documentation unit. Out of these eight, Krec was able to find the corresponding recommen-
dations for six of them.

The 2 cases where it was not able to identify the expected recommendations are:

1. Item 29, which relates to the use of the method asSubClass in Class to safely cast an
object (Bloch, 2008, p. 146). The equivalent fact in the documentation unit of asSubClass
is presented as a purpose, which we do not capture in KIs.

2. Item 36, which uses an overloaded equals instead of overridding it (Bloch, 2008, p. 177).
As a result, Krec could not identify the constraint associated with the original equals
method.

5.3 Perceived Usefulness of the Knowledge Items

The evaluation described in the previous subsections focuses on the quality and generaliz-
ability of the patterns for detecting knowledge items. How useful the knowledge items can
be to developers is a separate question which we investigated through a survey of ten partic-
ipants with software development experience. The study involved asking each participant to
rate 30 knowledge items detected with our approach.

Sampling and Participants

As part of this research we created a corpus of 14 597 automatically-generated knowledge
items (summing the four rightmost values at the bottom of Table 2). For practical reasons it
is not possible to reliably evaluate the usefulness of all these knowledge items. Instead we
must rely on a sample of items to evaluate. Given the resources to evaluate a fixed number
N of KIs, the main experimental design question we faced was how to sample KIs across

7 http://java.sun.com/docs/books/effective/effective2.zip
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all types listed in Table 2 (Indispensable vs. Valuable, Types vs. Methods and/or Fields,
etc.). Sampling broadly (across all classes) supports weak claims across a wide popula-
tion, whereas sampling narrowly (within only a single type) supports reliable claims across
a small population. Given this tradeoff and resources available to evaluate an estimated
N = 250 KIs, we opted to sample within the population of automatically-generated KIs for
types that were associated with the label “Indispensable” (a population of 797 instances).
These numbers produce a binomial confidence interval at the 95% level of ±5.14 for a pro-
portion of 50%. In other words, if 50% of respondent answer “yes” to a yes-no question
about a KI, the true proportion lies within the interval [44.86%,55.14%], 95% of the time.
Our choice of the class “Indispensable KIs for types” as the reference population was based
on our intuition that these would be the most useful KIs. Because this work is our first expe-
rience with this approach, we were interested in collecting initial evidence of the usefulness
of the approach. We removed KIs associated with the packages org.*, such as org.omg.*

and org.xml.*, leaving a total of 749 KIs in our population, because these APIs are not in
common use and unlikely to be familiar to software developers we could recruit for this
study.

We recruited ten participants to complete the evaluation of the sampled KIs. Five of the
participants were from industry (their experience in industry ranged from 1 to 5 years) and
five were from academia (three PhD students and two Masters students). The experience of
the ten participants in Java ranged from 1 to 8 years with a mean of 3.5 years.

To measure how participants agreed on the value of a KI, we randomly selected 50
KIs from our sample and assigned them to exactly two random participants, which gave us
100 ratings. Then we selected another random 200 KIs and assigned them to exactly one
participant, giving us another 200 ratings. This design required a total of 300 ratings, with
each participant rating 30 KIs.

Survey Instrument and Tool

We implemented the survey as a web application that presented each KI and its associated
type one by one to a participant, and asked the participant to choose the statement that best
described the KI from the following four options:

1. This information would help a developer who does not already know it to better use the
above API type in general.

2. This information looks relevant to learning how to use the API type but it requires more
context to be fully usable: It might be worth looking up.

3. This information would not be useful or usable in most programming situations.
4. I am not able to properly answer this question.

Figure 3 shows a screenshot of the survey application. The tool allowed the users to
complete the survey in multiple sittings but it did not allow them to change their responses.

Results

Option 1, which indicates a useful KI, was selected 172 times out of 300 ratings (57%,
sd=21%). Option 2, which indicates some potential for usefulness, was selected in 90 cases
(30% sd=13%). Finally, option 3, indicating a false positive (useless KI) was selected 32
times (11% sd=10%). In only six cases (2%) were the participants unable to answer (op-
tion 4).
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Fig. 3 The Web Application Survey on a Test User

We analyzed the agreement between participants and found that participants agreed on
exactly the same rating for 31 out of the 50 overlapping KIs (62%). Most of the disagree-
ments (12/19) were caused by differences of opinion over whether a KI should be rated as
useful (option 1) or potentially useful (option 2). Six of the disagreements were between
potentially useful (option 2) and not useful (option 3). The other disagreement involved a
participant rating the KI with option 4 (unable to answer). There were no cases were partic-
ipants disagreed between useful and not useful.

We noticed that in a majority of the cases, participants classified a KI as potentially
useful (option 2) if the KI contained code words that were not obviously related to the type
in question, such as in the following case for type javax.xml.validation.ValidatorHandler:

Applications must ensure that ValidatorHandler’s ContentHandler.startPrefix-

Mapping(String,String) and ContentHandler.endPrefixMapping(String) are in-
voked properly. Similarly, the user-specified ContentHandler will receive start-
PrefixMapping/endPrefixMapping events.

Interestingly, one common characteristic for a number of the KIs classified as not useful
(option 3) was their association with concurrent programming. For example, the following
KI in the documentation unit of java.util.LinkedList<E>:

If no such object exists, the list should be ”wrapped” using the Collections-

.synchronizedList method.

Or, the following KI in the documentation of, among others, java.security.cert.PKIXCert-
PathChecker:

Unless otherwise specified the methods defined in this class are not thread-safe.

For cases were participants were unable to decide (option 4), we surmise that the KIs re-
quired an excessive amount of context to interpret. For example, the documentation unit
of java.security.SecurityPermission contains descriptions of multiple permission types,
including the following:
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setPolicy: Setting of the system-wide security policy (specifically, the Policy object)
- Granting this permission is extremely dangerous, as malicious code may grant
itself all the necessary permissions it needs to successfully mount an attack on the
system.

Interpreting this statement would require understanding other permission types in the
class.

If we take the pessimistic view and only consider KIs rated with option 1 to be valuable
recommendations, we can conclude that KIs tagged as Indispensable that are recommended
for API types would be valuable to developers in 57.3± 5.01% of cases, 95% of the time.
If we include potentially-relevant KIs (option 2), this proportion rises to 87.3±3.37%, 95%
of the time. Although this study does not allow us to make usability claims about other
classes of KIs, they provide evidence of usefulness that motivate further effort to deploy
the tool to recommend at least the indispensable KIs for APIs types. In the case of success
in a production environment, other classes of KIs could then be incrementally added to the
system and assessed.

5.4 Threats to Validity

The process of identifying KIs involves manual intervention at two points: identifying the
indispensable and the valuable KIs in the training set, and identifying the essential head-
words from the list output by the automated filter. Though we observed high agreement with
an external participant for the classification, both tasks involve personal judgment; a lib-
eral selection will increase recall and decrease precision, and vice-versa. The coding guide
assumes that the documentation follows the Javadoc principles (Javadoc, 2001). If a docu-
mentation author deviates from the convention, the training set would need to be expanded
accordingly. Given that our approach depends on the writing style of documentation, we
emphasize that our quantitative results are a function of the style employed for the reference
documentation of the JDK 6. Although there is much variety in style and quality within the
JDK 6, this corpus cannot be expected to be representative of all existing reference docu-
mentation. Although we evaluated the automated detection of KIs on varying domains, KIs
with a strong domain flavor are less likely to have matching patterns, leading to low recall.

In the case of our evaluation of the perceived usefulness of the KIs, we note that the
quantitative results only generalize to indispensable KIs for types. Additionally, to minimize
the load on participants we did not ask them to rate their expertise with the types associated
with the KIs they evaluated. It may be possible that perceived usefulness of a KI is related
to pre-existing knowledge (or absence of knowledge) about the type. However, during the
study participants had the opportunity to consult the original API documentation to clarify
any question if necessary. In general there is a trade-off between the amount of contextual
information collected from the participants and the total number of KIs we could evaluate:
the higher the number of data points, the less the aggregated results will be sensitive to
internal validity threats. Finally, we point out that the evaluation of the usefulness of KIs
is based on a subjective assessment from the survey respondents. Although the number
of responses eliminates the threat of an individual bias, it is nevertheless possible that the
responses may be affected by a collective bias.
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6 Related Work

This work builds on studies of API documentation and a vast body of work on the application
of natural language processing in software engineering. We highlight representative work in
both areas.

API Documentation

The impact of documentation on the usability of APIs has been an area of active research (Sty-
los et al, 2009; Brandt et al, 2009; Robillard, 2009; Dekel and Herbsleb, 2009; Robillard and
DeLine, 2011). Researchers have made proposals to make API documentation easily acces-
sible and understandable to programmers.

Nykaza et al (2002) found that programmers used reference documentation only when
they fail to get enough information from other possible sources. This could be due to the na-
ture of the presentation or the content of the documentation. Among other findings, Nykaza
et al. identified the importance of an overview section in API documentation, and Jeong et al
(2009) identified the importance of explaining starting points to increase the quality of the
documentation. We developed techniques to distinguish parts in the reference documenta-
tion that are irrelevant to programming situations from the parts that are relevant.

Dekel and Herbsleb (2009) worked on highlighting directives present in Javadocs of
several major APIs. Their tool, eMoose, can push directives from documentation into the
foreground to apprise the programmer of their presence. eMoose, however, relies on tags
in the documentation to identify directives. Even though their approach provides several
helpful directives to the API user, it puts an overhead on the API developers and contributors
to include such tags in the documentation. Also, it would be difficult to identify directives
in existing documentation that are void of such tags. Their work was one of the sources
of inspiration that stimulated our interest in developing automated techniques for finding
knowledge to push to developers. In addition to just directives, we automatically identify
other important forms of information, for example, alternative API recommendations.

Monperrus et al (2011) performed an extensive empirical study and identified all pos-
sible directives in three large Java projects: JDK, JFace, and Commons Collections. We,
however, claim that not all directives are equally important, hence we identify only those
that require the programmer to make a decision. Such directives provide an immediate API
usability improvement to the programmer.

Maalej and Robillard (2013) categorized API reference documentation into twelve pat-
terns of knowledge. They did an elaborate study to summarize knowledge in API documen-
tation into these patterns and then involved 17 participants over several weeks to identify
the patterns in the JDK and the .NET API documentation. In contrast to this work, which
focused on determining the quality of API reference documentation, we focus on the auto-
mated extraction of information in the documentation that can be effectively recommended
during a task.

Stylos et al (2009) proposed Jadeite, which studies source code and statistically provides
recommendations to the programmers on the most used classes, constructors, methods, and
objects. These specifications helped detect bugs which were introduced due to developers
using APIs for purposes that were not intended by the API. Kim et al (2009) proposed
eXoaDocs, which uses code snippets, mined from search engines, to improve documenta-
tion, by integrating the code with the text. In contrast to Jadeite and eXoaDocs, which need
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external input to improve the documentation, our work is focused on making the existing
information in the reference documentation more accessible by extracting the relevant and
eliminating the irrelevant pieces of information.

NLP in Software Engineering

Natural Language Processing has been used in a wide variety of applications intended to
assist software engineering tasks. Most applications of NLP involve preprocessing and lin-
guistic analysis similar to what is described in Section 4. However, the research challenge
in designing NLP systems to assist software engineering is one of domain adaptation: to
determine how to process, adapt, and combine data sources and text analysis methods to ef-
fectively support a software engineering task. The following discussion illustrates the major
classes of applications that can be supported with NLP.

Software requirements are to a large extent expressed in textual form, so natural lan-
guage processing can assist with a wide variety of tasks. For examples, NLP techniques
have been used to support the discovery of new requirements by mining the text of on-line
forums (Hariri et al, 2014). At the other end of the spectrum, NLP techniques have also been
used to identify missing objects and actions in requirements documents (Kof, 2007), as well
as to quantitatively estimate the quality of existing requirements (Fantechi et al, 2002).

Natural language processing is also at the core of techniques intended to discover un-
documented software specifications. For example, Arnout and Meyer (2003) proposed a
technique to infer invariants, like preconditions and postconditions, from the documenta-
tion; Tan et al (2007) proposed iComment, which extracts specifications from comments in
source files; Work has also been done by Xie and colleagues to infer various types of spec-
ifications from natural language text, including method call protocols (Pandita et al, 2012),
resource specifications (Zhong et al, 2009), and security policies (Xiao et al, 2012).

Finally, NLP techniques are invaluable for helping users sift through the massive amount
of information available to software developers, be it in documentation or in the source
code itself. For example, Pagano and Maalej (2011) used an unsupervised text clustering
technique called latent Dirichlet allocation (LDA) to classify blog posts to infer the nature
of their contents. Henß et al (2012) also used LDA, but to semi-automatically build sum-
maries in the form of “Frequently Asked Question” (FAQ) documents. Our work explores
a different dimension of language analysis in software engineering by both focusing on a
different linguistic register (systematic, official documentation), a different approach (semi-
supervised pattern discovery), and a different application (recommendation as opposed to
summarization). In the area of software comprehension, applications of NLP include the
work of Shepherd et al (2007), who used NLP to locate and comprehend specific concerns
in source code, and that of Panichella et al (2012), who mined bug reports and developer
mailing lists to discover descriptions that can suitably explain methods.

7 Conclusion

We presented an approach to detect knowledge items (KIs) in API reference documentation
that may be indispensable or valuable to a programmer who has already selected an API el-
ement to be part of a solution. Our approach relies on the automated detection of knowledge
items based on word patterns that capture the essence of the knowledge being conveyed.
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With a training set of 556 knowledge items extracted from a corpus of over 1000 docu-
mentation units for elements from the Java 6 SE API, we produced a database of over 14 500
knowledge items that can be recommended during programming tasks when a programmer
uses an API element associated with a KI.

We evaluated the approach using an Eclipse plug-in, Krec, on 200 method definitions
extracted from 10 varied open source systems. With our KI database, under estimated op-
erating conditions we could issue recommendations with, on average, 90% precision and
69% recall. At this level of performance, the approach was able to filter 86% of the docu-
mentation text attached with the corresponding source code, and recommended knowledge
found in non-obvious documentation locations in 16% of the 200 recommendation contexts.
We also verified that obvious recommendations from textbook examples could be recom-
mended, with a success rate of 6 out of 8 cases. Finally, an evaluation with ten independent
assessors showed that Indispensable KIs associated with JDK SE 6 types were expected to
be useful to software developers at least between 52.3% and 62.3% of cases, 95% of the
time.

Naturally, building an industrial-strength recommender for API documentation will re-
quires much additional performance optimization and feature development work. However,
our results provide us with the evidence that using word patterns is a cost-effective approach
for finding important knowledge in reference documentation, thus opening the door to a
practical way to support recommending API documentation.
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