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Abstract—Refactoring is a common software development
practice and many simple refactorings can be performed au-
tomatically by tools. Identifier renaming is a widely performed
refactoring activity. With tool support, rename refactorings can
rely on the program structure to ensure correctness of the
code transformation. Unfortunately, the textual references to the
renamed identifier present in the unstructured comment text
cannot be formally detected through the syntax of the language,
and are thus fragile with respect to identifier renaming. We
designed a new rule-based approach to detect fragile comments.
Our approach, called Fraco, takes into account the type of
identifier, its morphology, the scope of the identifier and the
location of comments. We evaluated the approach by comparing
its precision and recall against hand-annotated benchmarks
created for six target Java systems, and compared the results
against the performance of Eclipse’s automated in-comment iden-
tifier replacement feature. Fraco performed with near-optimal
precision and recall on most components of our evaluation data
set, and generally outperformed the baseline Eclipse feature. As
part of our evaluation, we also noted that more than half of the
total number of identifiers in our data set had fragile comments
after renaming, which further motivates the need for research
on automatic comment refactoring.

Index Terms—Software evolution, refactoring, source code
comments, inconsistent code, fragile comments.

I. INTRODUCTION

With the evolution and growth of a software system often
comes the need for internal improvements to its structure and
organization, known as refactoring [1]. Refactoring a system
helps maintain the quality of the code and increases com-
prehensibility. Individual refactorings can take many forms,
including renaming code elements, extracting statements into
a method, and changing a method’s signature. Renaming
elements is, in particular, a very common type of refactoring
performed to maintain a set of names that reveal the purpose
of the code elements to facilitate code comprehension [2].

Many refactorings can be fully or partly automated by
tools [3]. Examples include JetBrains Resharper [4] for C#
and Eclipse’s built-in refactoring tool [5] for Java. Such
tools support code transformation by automatically changing
a system’s source code based on a selection from the catalog
of refactorings and, when applicable, the parameterization of
the refactoring. Studies show that renaming code elements is
one of the most popular refactoring activities performed using
automated refactoring tools [6], [7], [8].

Automating laborious refactoring tasks, such as renaming
identifiers, relies heavily on encoded knowledge of the rules of
the programming language to perform correct transformations.

Unfortunately, references to a renamed identifier in unstruc-
tured comment text cannot be formally detected through the
syntax of the language, and are thus fragile with respect to
identifier renaming. We use the term fragile comments to
refer to comments which, upon modification to the code,
become inconsistent. In one study of three different projects,
the authors observed that 97% of the code changes made while
refactoring also needed to change the comments to maintain
consistency [9]. Inconsistencies between code and comments
are a problem because programmers rely on comments to
understand the code and relationships between the different
parts of code, its usage and to communicate amongst each
other [10], [11], [12]. To avoid introducing inconsistencies
between comments and code during refactoring, automatic
refactoring tools need additional support to detect fragile
comments and potentially update them.

Existing techniques for comment synchronization fall into
two camps. In the first camp, we have simple approaches
based on exact lexical search and replacement. For example,
the refactoring support in Eclipse’s Java development tools
component [13] provides an option to search-and-replace
occurrences of a renamed identifier in text strings including
comments. Pure lexical approaches can be helpful in some
cases, but their precision is too low to be useful in the
general case. In the case of semi-structured comments (e.g.,
when combined with the use of in-comment tags such as
@param in Java), text-replacement based approaches typically
work much better, but these constitute a small subset of all
possible comments that forms the easiest subset of identifier
references to detect. In the second camp, we have specialized
but domain-specific approaches that can detect inconsistencies
between comments and code for programming concepts like
synchronization, locking and memory allocation [14], [15],
[16]. Although domain-specific techniques can achieve impres-
sive precision, they are limited to a specialized subset of all
possible types of comments.

With this paper, we advance the state-of-the-art of refac-
toring techniques by introducing Fraco, a general-purpose
tool-supported approach for detecting fragile comments when
renaming identifiers in a Java source code. Fraco relies on
a new rule-based algorithm that takes into account the type
of an identifier, its morphology, the scope of the identifier,
and the location of comments. By taking into account com-
mon commenting practices and language rules, the approach
avoids the limitation of naive text-replacement approaches that



generate large amounts of false positives, while not including
any domain-specific rules that would limit the approach to a
subset of comment types.

We evaluated Fraco by comparing its precision and re-
call against a manually-created benchmark of six target Java
systems, and compared the results against the performance
of Eclipse’s automated in-comment identifier replacement
feature. The tool performed with near-optimal precision and
recall on most components of our benchmark, and generally
outperformed the baseline Eclipse feature. As part of our
evaluation, we also noted that more than half of the total
number of identifiers in our data set had fragile comments
after renaming, which further motivates the need for research
on automatic comment refactoring.

The contributions of this paper include a) a general and
language-independent formulation of the problem of fragile
comment detection; b) a tool-supported algorithm for the
automatic detection of renaming-induced fragile comments
in Java source code; c) a publicly-available1 benchmark of
fragile comments that can be used for independent research;
d) empirical data evaluating both the proposed algorithm and
a publicly-accessible tool available as part of the Eclipse IDE.

The remainder of this paper is organized as follows. In
Section II we illustrate the challenges of detecting fragile
source code comments. In Section III we present a precise
formulation of the fragile comment detection problem that
can be instantiated for different programming languages. In
Section IV we describe our detection algorithm and tool for
the Java language. Sections V and VI we present the design
of the evaluation study and the results obtained. We describe
the related work in Section VII and conclude in Section VIII.

II. MOTIVATION

We illustrate the challenge of detecting fragile comments
when renaming identifiers with three cases taken from the
source code of the Checkstyle project version 7.2 [17]. We
enhance the discussion with descriptions of the behavior of
Eclipse’s in-comment identifier replacement feature, which we
will refer to as Eccore (Eclipse Comment Refactoring).

Checkstyle defines a class Check that is the base class
for various checking rules. Here the issue is that “check” is
also a very commonly used word when documenting methods,
such as the one illustrated in Figure 1. If we wish to rename
class Check to Rule for example, a naive text replacement
feature, such as Eccore, will erroneously replace all comments
that simply indicate that a method “checks” something, thus
generating an outrageous number of false positives.
/**
* Check whether a class may be considered as

* a checkstyle module. Checkstyle’s modules are

* non-abstract classes [...]

*/
private static boolean isCheckstyleModule(Class<?>

loadedClass) {

Fig. 1. Example of false positive when renaming the class named Check.

1http://www.cs.mcgill.ca/∼swevo/Fraco

Another challenge is to determine where to be permissive or
strict with case and word morphology. For example, Check-
style defines a public inner class Listener. If we wish to
rename Listener to Observer, a general case-insensitive
matching strategy would generate many false positives, while
a case-sensitive matching strategy (such as Eccore) would
miss important comments such as the use of the keyword
listener in Figure 2. In this case the fragile comment
detection technique needs to be sensitive to the scope of the
comments.
/** Represents a custom listener. */
public static class Listener {

private String className; /* Name of the listener */

/** @return the class name of listener. */
public String getClassname() {return className; }

}

Fig. 2. Example of false negatives when using case-sensitive matching.

As a final example, we note that some comments can come
very close to referring to an identifier without actually men-
tioning the identifier. Figure 3 shows a typical case of identifier
re-statement in plain language. In this situation, flipping the
polarity of the boolean field would require a renaming of
the identifier to something like setUseInlineTags, which
would silently render the comment inconsistent with the code.
This case is also not detected by Eccore. These examples
/**
* Sets whether inline tags must be ignored.

* @param ignoreInlineTags whether inline tags

* must be ignored.

*/
public void setIgnoreInlineTags(boolean ignoreInlineTags){

Fig. 3. Example of indirect mentions of identifiers.

only illustrate a small subset of the situations where it is
non-trivial to accurately detect fragile comments. In general,
the richness and variety of commenting practices means that
simple text-replacement algorithms cannot adequately cope
with the problem of detecting fragile comments.

III. PROBLEM FORMULATION

The problem of fragile comment detection is cast in the
context of a software project which comprises a number of
program elements and a number of comment units.

Technically, a program element is any element that can be
defined in a program. In this project, we are only concerned
with program elements that can be explicitly named. Conse-
quently, in our problem formulation a program element has a
corresponding declaration and identifier. The declaration is
the program text that defines the program element, whereas the
identifier is the part of the declaration that names the element.
Declarations fall into different categories based on the type of
element they define (e.g., class, method, local variable).

A comment unit is any bounded unit of text considered
to be comments according to the syntax of a programming
language. Block and line comments are the most common
types of comment units. In the remainder of this paper,
we refer to comment units simply as comments. Within a
comment, a phrase is any coherent set of characters. Note

http://www.cs.mcgill.ca/~swevo/Fraco


that, when necessary, we distinguish between a phrase and
a phrase’s text. This distinction is necessary when comments
have multiple occurrences of some text of interest. We say
that a phrase in a comment refers to a program element if an
informed developer can determine that the phrase purposefully
and specifically refers to the element. We formalize this
concept as the refersTo relation. For example, in Figure 4,
private Buffer buffer;

/** Reloads the existing buffer. */
public void reload() {

if(buffer != null) { buffer.load(); }}

Fig. 4. Examples of the refersTo relation

the phrase “buffer” in the comment block refers to the field
buffer of the same class. In this case, the phrase “buffer” in
the comment can be said to refer to the field buffer.

Conceptually, tuples ⟨phrase, element⟩ that are members of
the refersTo relation fall into two categories:
Lexical match: The phrase’s text is the same as the text
of the declaration’s identifier, with some tolerance for minor
variations (e.g., case sensitivity). It is important to note that
lexical matches do not necessarily imply a refersTo relation
because of synonymy: it is possible that a comment mentions
an identifier that is shared by multiple program elements, or
simply refers to a general concept after which an identifier is
named (e.g., “file”).
Semantic match: The phrase semantically matches a program
element if the most likely interpretation of the phrase by an
expert is that it refers to the element. For pragmatic reasons,
we define semantic matches as the class of matches that are
semantic without being also lexical.

If a phrase refers to an element, we consider that the phrase
is at risk of being invalidated if the identifier is renamed, and
we deem it fragile with respect to this identifier. By extension,
a comment is considered fragile with respect to an identifier
if it contains at least one fragile phrase.

Because the refersTo relation requires human judgment,
it can only be approximated by an automatic approach. To
distinguish between phrases that truly refer to an element
and phrases estimated to refer to an element, we define the
relation matches which contains a tuple ⟨phrase, element⟩ if
the corresponding algorithm estimates that the phrase refers to
the element.

Our proposed approach is therefore an implementation of
the matches relation, and its performance can be measured
on a per element basis. Given an element e, let refersTo(e)
be the set of all phrases that refer to this element, and let
matches(e) be the set of all phrases estimated to refer to
this element. The true set of fragile phrases for e is thus
refersTo(e) and a solution instance given by an algorithm
is matches(e). With these definitions, we easily derive the
standard performance measures of precision P (e) and recall
R(e) for an implementation of matches:

P (e) ≡ |matches(e) ∩ refersTo(e)|
|matches(e)|

R(e) ≡ |matches(e) ∩ refersTo(e)|
|refersTo(e)|

Although precision can be measured accurately, a major
obstacle to computing recall is that in the general case the
extent of refersTo(e) is not known.

IV. APPROACH

Our approach is defined in terms of a given program element
declaration. We divide the processing required to detect fragile
comments into four conceptual phases. First, we detect all
comments and link them to the input declaration (§IV-A). We
then filter out some comments based on the program’s scoping
rules (§IV-B). The remaining comments are then preprocessed
for textual analysis, along with the identifier of the input
program element (§IV-C). Finally, we apply various matching
rules to the resulting data (§IV-D–§IV-F).

We implemented our approach for the Java programming
language, but we hypothesize that it should be straightforward
to adapt it to other programming languages. To facilitate
future adaptations, we describe our approach in a language-
independent manner to the extent possible, and supply the
Java-specific implementation details when applicable. How-
ever, we make no claim about the potential ease with which
the approach can be adapted to other programming languages.
We provide tool support for fragile comment detection in Java
through an Eclipse plug-in called Fraco.

A. Detecting and Linking Comments

Intuitively, comments that are located meaningfully “close”
to a declaration should be treated differently from general
comments in the program. We capture this intuition with the
concept of comment locality. For a given declaration, the
comments in a system’s source code can thus be divided into
two categories: local and global.
Local Comments: To qualify as a local comment for a declara-
tion, a comment must either be a header for the declaration, or
be lexically located within the declaration (which we refer to
as an inner comment). A declaration can have zero or one
header comment. A comment is considered a declaration’s
header if it is located immediately above the declaration
(without any consideration for white space in between). As
for inner comments, only declarations that have a lexical body
can have inner comments. This includes classes and methods,
but excludes fields and local variables. The relation between an
inner comment and its corresponding declaration is transitive,
so that, for example, inner comments for a method or inner
class are also considered inner comments for the declaring
class.
Global Comments: For a given declaration, all comments that
do not qualify as local comments automatically fall into the
global category. For example, given a class declaration, all
the comments that appear within or above other classes are
considered global to the input declaration.

B. Scope-Based Filtering

In practice, the problem of searching for fragile comments
can be mitigated if we observe that the scoping rules of
the programming language greatly affect the likelihood that



a given comment may contain a phrase that refers to a given
declaration. For example, in a realistic Java code base it would
be surprising to see an in-line comment in a method refer
to a local variable defined in a different method. We capture
this intuition by defining the function applies which takes as
input a declaration and all the comments for a program, and
returns the subset of the comments where the declaration can
be expected to be visible.

The precise definition of the applies function is language-
dependent and must take into account both the scoping rules of
the language and practical knowledge of common commenting
practices for this language. We implemented the function for
Java based on the Java Language Specifications, Java SE 8
Edition [18]. The implementation of the applies function can
be reduced to a lookup in a scope table, which we provide as
an appendix.

C. Preprocessing

Both identifiers and comments must be preprocessed before
we can apply matching rules. The preprocessing steps for
identifiers and comments are similar, but for clarity we detail
them separately.
Identifiers: Conceptually an identifier consists either of a
single term, or of multiple terms that can be distinguished
through typographical conventions. The first step in prepro-
cessing identifiers is to split them into terms. We split the
identifiers using camel casing rules, with an additional rule to
preserve acronyms. After a compound identifier is split into
two or more terms, we tag each term with its part-of-speech
(POS) tag and identify its lemma (word root). POS tagging and
lemmatization are two common natural language processing
techniques used for text analysis.

A POS tag is a label that we associate with a word to
indicate its function (generally in a sentence, but also in a
sentence fragment, such as an identifier). For example, in
the identifier addListener, upon tagging a single word at
a time, the term add would be tagged as a verb and the term
listener as a noun. We use the POS tagger of Stanford Core
NLP library [19] to perform POS-tagging. Comparing lemmas
instead of original words can help pave over non-essential
differences such as use of the singular or plural form of a
word, or different conjugations of a verb. For lemmatization,
we use Stanford Core NLP library’s Lemmatizer. The prepro-
cessing step generates two dictionaries as output containing
⟨term,POS-tag⟩ tuples and ⟨term,lemma⟩ tuples respectively
for each term found in the identifier.
Comments: We preprocess the comments by first split-
ting them into sentences using rules based on the regular-
expressions we designed. Standard punctuation-based algo-
rithms do not work well for comments because of the common
presence of source-code elements that include punctuation. For
the purpose of sentence-splitting, block and in-line comments
are treated differently. The Javadoc block comments are split
into sentences based on the list of delimiters we devised. It
includes period, comma, semi-colon, angle brackets and “#”.
We do not split sentences using characters that are legal to use

for Java identifiers (e.g., underscore) to preserve any identifiers
present in the comments. We split in-line comments based
on periods and commas. Sentences are then further split into
tokens using white space as a separator. Finally, tokens that
are detected (through a regular expression) to be compound
code terms (such as addFigure) are further split as identifiers.
However, we keep both the split and un-split version of the
token because some matching rules work with the original
term (see below). After tokenization, we remove stop words
(e.g., “the”, “an”) from the list of tokens obtained. Finally,
we apply lemmatization to the tokens in the list. For POS-
tagging, the comments are tagged with the parts-of-speech on
a sentence basis, i.e. a whole sentence is assigned the parts-
of-speech tags at once, whereas identifier’s terms are tagged
individually.

D. Overview of Matching Rules

We implement the matches(e) function through a number of
matching rules. The matching rules can be roughly organized
into two categories: (mostly) lexical rules that target the text
of phrases and identifiers, and (more) semantic rules that seek
to match comments and identifiers that refer to the same thing
despite having different spelling. We organize the rules in
these two categories to facilitate the presentation, but it should
be noted that most matching rules are neither purely lexical
nor semantic, but involve a combination of features. Given an
element e, the approach returns the union of the results of both
lexical and semantic rules.

In the case of lexical matching, spelling and typographical
errors are technically a potential cause of false negatives. We
originally considered to mitigate this issue by including a rule
that implemented fuzzy lexical matching. We experimented
with a pair-wise comparison of letters in both the identifier
and matching phrase. However, none of the systems in our
development set contained a single instance of a reference
between a phrase and an identifier that was found through
fuzzy matching alone. For this reason we do not consider fuzzy
matching to be necessary and left it out of the final version of
the approach.

E. Lexical Matching Rules

The assumption behind lexical matching is that if a phrase
has the same text as a element’s identifier, it may refer to it. In
practice, however, returning all instances of phrases whose text
matches an identifier produces a deluge of false positives due
to synonymy. Additionally, limiting the search to exact lexical
matches misses cases where the name of some identifiers is
transformed morphologically (e.g., used in the plural, such
as “receives the Events” which refers to class Event). We
therefore devised a new algorithm for lexical matching of
program identifiers that takes into account the type of the
identifier, its morphology, and the location of the comment
containing a phrase.

Table I provides a case-based specification of the algorithm.
Each cell in the table details the matching variant for one of
14 possible cases determined by the type of identifier, whether



the identifier is a single or compound term, and whether the
phrase to match is in a local or global comment. The matching
rules are expressed as predicates using the binary operators and
functions detailed in Table II.

TABLE II
OPERATORS USED IN THE RULES OF TABLE I. WHEN A PHRASE p IS USED
AS INPUT, WE ASSUME THAT ITS COMMENT-CONTEXT (THE REST OF THE

TEXT IN THE COMMENT) IS ALSO AVAILABLE TO THE OPERATOR
(REPRESENTED AS c IN THE EXAMPLES). WHEN AN IDENTIFIER i IS USED

AS INPUT, WE ASSUME THAT ITS DECLARING ELEMENT IS ALSO
AVAILABLE TO THE OPERATOR (REPRESENTED AS d IN THE EXAMPLES).

Operator Description Positive Example
= Case-sensitive match Tag = Tag

≈ Case-insensitive match Tag ≈ tag

=̃
Case sensitive match that
tolerates the plural form Tag =̃ Tags

≈̃ Case-insensitive match that
tolerates the plural form tag ≈̃ Tags

noun(p)

True if the POS tag of p is a
noun or proper noun (sensitive
to the language model used in
the POS tagger)

noun(tag)

paren(p)

True if p is immediately
followed by the opening and
closing round parenthesis
having number of tokens in
between the parenthesis equal to
the number of declaration’s
arguments, if any.

paren(read)
where c =
...read(File)
... and
d =copy(String
file)

decl(i, p)

True 1) If p is present in the i’s
declaring class. OR 2) If first
condition is false, check if the
simple name of i’s declaring
class can be found in the same
comment as p, without
considering case.

decl(copy,copy)
where c = ...copy
this
interval... and
d = Interval

upper(i)
True if i is all in upper case
characters upper(SORTED)

As it can be observed, more complex rules are necessary
to determine the correct matches for simple terms (e.g., add,
copy) due to their common use in program text which creates
a massive amount of ambiguity. We illustrate how to use the
matching rules through an example, assuming that we want
to determine the comments that are fragile with respect to the
declaration of a method copy declared in class Interval of
some given project and that the comment in Figure 5 is under
consideration. We consider two cases: first, if the comment is
a local comment for the method (i.e., its header block), and
then if the comment is a global comment that is not associated
with the method.
/**
* Make a copy of this interval.

*/

Fig. 5. Sample comment unit.

Considering the comment shown in Figure 5 as a local
comment, we look at the Cell2,3 of Table I, which specifies
that a phrase matches the identifier if p ≈ i. The only phrase
in the comment that validates this predicate is copy because
copy ≈ copy, so the rule returns the only instance of the
string “copy” in the comment.

However, in the case where the comment is global, the
rule of Cell1,3 of Table I applies. The first part of the rule
states that any matched phrase must be the same as the
identifier (insensitive of case). However, in this case there is an
additional requirement. To limit false positives, it is necessary
that either the phrase be followed by parentheses, indicating
the reference to a method, or the method’s declaring class must
be found in the comment. Thus, the rule matches the instance
of the string “copy” because of its verbatim similarity with the
declaration in question. But, if the comment did not include
the suffix “of this interval”, the rule would return an empty
set for the comment.

F. Semantic Matching Rule

The lexical rules match identical or near-identical terms
pairwise. In many situations, a set of keywords in the text
of the comments can refer, as a whole, to an identifier. We
designed a matching rule to capture this situation. Because this
rule is intended to match “units of meaning” in comments that
are likely to refer to an identifier, we refer to it as “semantic”
to distinguish them from the lower-level text matching rules
described in the previous section. The semantic matching rule
is applicable only to the local comments.

Given all the (non-stopword) lemmas of an identifier ob-
tained as described in IV-C, the approach looks for identical
lemmas in the text of the comment unit. If all lemmas are
found, the corresponding lemmas in the comment are returned
as the fragile phrase.

For instance, as shown in Figure 6, after preprocessing
the comment and identifier which includes the removal of
stop words like “and”, the sentence contains 4 token-lemmas
matching the 4 term-lemmas of the identifier. The imple-
/**
* Parses block comment as javadoc and prints its tree.

* @param node block comment begin

* @return string javadoc tree

*/
private String parseAndPrintJavadocTree(DetailAST node)

Fig. 6. Example from Checkstyle’s source code.

mentation of this semantic matching heuristic must take into
account some of the idiosyncracies of common commenting
practices that depend on the type of identifier being matched.
Methods: There are two special cases for method identifiers:

(1) If a method’s identifier has the word get as its first
term, the term can be matched with both the word get and the
tag @return or lemma return in a comment. The @return

tag signifies the return of a value which aligns with the main
functionality of the getter methods and therefore justifies the
use of @return in place of the word get. For example, in
the code below the phrase ⟨last,node⟩ would be returned:
/**
* @return the last node that was selected,

* or null if there are no Nodes selected.

*/
public Node getLastNode()

(2) If a method’s identifier starts with is and has a local
comment of type Javadoc, for instance isSelected, the word
is is not matched and instead we look for the presence of the



TABLE I
LEXICAL MATCHING RULES. p REFERS TO THE INPUT AND i TO THE IDENTIFIER OF THE ELEMENT UNDER PROCESSING. EACH NON-HEADER CELL IN

THE BOTTOM TWO ROWS IS REFERRED AS Cellr,c WHERE r IS THE ROW NUMBER WITH VALUE EITHER 1 OR 2 AND c IS THE COLUMN NUMBER RANGING
FROM 1 TO 7. THE OPERATORS ARE DEFINED IN TABLE II.

Comment Type Types Methods Fields Locals
One term Multiple

terms
One term Multiple

terms
One term Multiple

terms

Global
Comment

(p =̃ i)∧(noun(p)∨
paren(p))

p =̃ i
(p ≈ i) ∧
(decl(i, p) ∨
paren(p))

p = i
(p = i) ∧
(upper(i) ∨
decl(i, p))

p = i p = i

Local Comment (p ≈̃ i) ∧ (noun(p)) p ≈̃ i p ≈ i p = i p ≈ i p = i p = i

word “true” or “false” immediately following the @return

tag. This strategy is a performance-motivated proxy for veri-
fying that the method returns a boolean. For example, in the
code below the phrases ⟨member,Enum⟩ and ⟨enum,member⟩
on line 2 and 4 respectively would be returned as fragile:
/**
* Checks if current AST node is member of Enum.

* @param ast AST node

* @return true if it is an enum member

*/
private static boolean isEnumMember(DetailAST ast)

Local Variables: In one special case for matching formal
parameters, if the comment is a Javadoc comment, we match
the parameter’s name only against the tokens present in the
text related to its @param tag, leaving out the rest of the text.

G. Tool Support
We developed our complete approach as an Eclipse plug-

in called Fraco. The plug-in seamlessly integrates the normal
Eclipse-based workflow. The detection of the matches output
is triggered whenever the user renames an identifier using
Eclipse’s usual Rename refactoring feature. The results, i.e.
the fragile phrases with respect to the renamed identifier, are
reported as Eclipse warning markers, which by default appear
in the Problem View and as annotations in the gutter (sidebar)
of Eclipse’s Java editor. From the Problem View, a developer
can click on a fragile comment warning to immediately access
the location of the fragile comment detected by our approach.

H. Development of the Approach
We developed the approach iteratively using three code

bases as a development set. The development set included
Checkstyle, the Google Guava library, and JetUML. We man-
ually studied the relationship between the identifiers and com-
ments to form a collection of heuristics needed to detect the
fragile comments. Initially, we tried lexical matching without
the additional constraints shown in Table I. As one would
expect, it created more false positives than correct matches. We
then integrated the concept of proximity between the identifier
and a comment and introduced the distinction as local and
global comments. This strategy curbed the number of false
positives to a great extent but not enough to achieve practical
usefulness. We then developed the identifier type-sensitive
variants using POS tags, case-sensitivity and inclusion of the
parent identifier in certain cases, which helped us achieve per-
formance levels that aligned with practical usefulness. In the

case of the semantic matching rule, the use of lemmas yielded
the desired results (no false positives) on the development set.

V. EVALUATION STUDY DESIGN

The performance of Fraco can be evaluated in terms of the
metrics of precision and recall (see Section III) for a sample of
input identifiers. The design of our study comprises four main
components: a) The sampling of identifiers; b) The creation
of a benchmark for these identifiers; c) The computation of
baseline results; d) The computation of metrics.

A. Sampling

We wanted to evaluate the approach so as to cover a variety
of potential identifier renaming situations. Because of the
underlying structure of programs and commenting practices, a
naive random sampling approach is not appropriate in our case.
First, in most software projects only a fraction of identifiers is
ever mentioned in comments. By sampling randomly, any ag-
gregated result would be heavily biased by the underlying prior
distribution of identifiers in comments. Second, the proportion
of different identifiers types (e.g., local variables vs. classes)
is not uniform and so drawing from the general population
of identifiers is likely to lead to a glut of local variables,
thus degrading our ability to evaluate the performance of the
approach for other identifier types. Finally, a constraint on the
sampling is scalability and understandability of the underlying
software, given that the resulting benchmark must be created
through manual code inspection (see §V-B).

First, we selected six moderately-sized and well-commented
target systems (see Table III). While these systems offer a
diversity of application domain and open-source communities,
their medium size and general-purpose application domain
makes it reasonable for external investigators to inspect.

Second, we defined the target population of program
elements as only the elements that have at least one fragile
phrase. In principle this means all elements {e | refersTo(e) ̸=
∅}. However, as described in §III, refersTo can only be esti-
mated with matches, which means that our target population
is partially defined in terms of the approach itself. In practice,
this imperfect and unavoidable situation is mitigated by the
high overlap between the output of refersTo and matches.

Third, we used a stratified random sampling strategy to
achieve a diversity of program element types while keeping the
size of the data set to a manageable level. Stratified random
sampling protects against selection bias while ensuring that



all classes of interest are covered in a sampled population.
As part of this procedure, we randomly selected 100 elements
from each of the six systems in proportion to the number of
elements of each type in the target population (of elements
with at least one fragile comment).

Table III shows the number of identifiers in the sample for
each program element type. For each target system (row), the
table indicates the total number of program elements of a given
type, followed by the number (in parentheses) of program
elements of this type for which at least one fragile phrase
was detected. In the right column for each element type, we
indicate the number of program elements of that type in the
sample. For example, for Log4j we detected 244 classes, of
which 116 had a non-empty result for matches, which is 33%
of all identifiers across all types (116 + 139 + 73 + 20).

When piloting our evaluation on our development set, we
discovered that the performance of the semantic rule contribu-
tion to the matches relation had very low coverage. In other
words, there were relatively few cases where the semantic rule
yielded results. For this reason, we evaluated the semantic rule
separately using a sample that consists of all elements in each
system (e.g. 244 classes of Log4j).

B. Benchmark

We created a benchmark for fragile comments that con-
stitutes a general contribution of this work. The benchmark
includes, for each element e as reported in Table III, the
full set refersTo(e). The benchmark was created through
manual inspection by the first author of this paper. For each
phrase returned as the results of the matches(e) relation for
an element e, the researcher made a binary decision as to
whether the phrase referred to the element’s identifier or
not. The validation or invalidation of phrases as fragile is a
low subjectivity task given that comments are intended for
human consumption and therefore generally not ambiguous to
a human reader. In addition, we included the false negatives
discovered through the computation of the approximations of
recall as described in §V-D.

C. Baseline

Although the performance of our approach can be inter-
preted in absolute terms, we were interested in comparing it
with an existing baseline. Basic lexical matching is technically
an option, but as described in §IV-H it performs so poorly
that it cannot reasonably qualify as a baseline for this type
of work. A more appropriate baseline is offered by Eclipse’s
refactoring tool. Along with refactoring the code, Eclipse’s
refactoring tool allows the user to select an option to replace
the textual matches present in comments when renaming an
identifier. Hereinafter, for convenience, we refer to this feature
as Eccore (“Eclipse comment refactoring”). Eccore is only
available for type and field code elements (so not available
for methods and local variables). To use Eccore as a baseline
when conducting the evaluation, we programmatically rename
all the applicable declarations (types and fields) and consider
all textual replacements to be fragile phrases.

D. Metrics

We evaluate our approach using the standard metrics of
precision and recall. For a given program element e, we
compute precision exactly a defined in Section III. In general,
precision measures the degree of absence of false positives,
which in our case are phrases falsely reported as fragile.
In contrast, recall measures the degree of absence of false
negatives. In our case, false negatives correspond to fragile
phrases that remain undetected. Recall is not generally possible
to compute, since to compute refersTo(e) one would need to
manually inspect the entire source code of a system. For this
reason we must resort to approximations. The Eccore feature
is applicable to class and field identifiers and therefore, we
use the union of the sets of true positives for both approaches
as the approximation of refersTo(e) in the denominator of the
recall equation. We denote this version of recall as Recall∪. As
Eccore is not applicable to methods and local variables, we
require an alternative strategy to estimate the recall, which,
is done with a liberal equivalent defined as follows. For a
given program element e, we perform a textual search for
all instances of the element’s identifier in comments in the
same file as e, and identify any fragile phrase in the set.
We then take the union of the set of these fragile phrases
and matches(e) as the equivalent of refersTo(e). We refer to
this version of recall as Recall∗. In general, we can expect
both of our approximations of recall to be an upper bound
approximation of the true recall of the approach.

E. Threats and Limitations

The threats to validity and limitations of our experimental
design are as follows. First, we define the population from
which we draw our sample of program identifiers as a function
of our approach, as described in §V-A. However, this will only
introduce bias as a function of the number of identifiers for
which our approach generates a) only false positives, or b) no
positives in the presence of false negatives. Case a) can be
precisely controlled and we verified that across all our target
projects the sampling error is between 0 and 3 elements for
all projects except for Spring Data Redis for which 8 elements
are erroneously part of the sample. Case b) is impossible to
determine reliably, but can be estimated to be very low given
the high recall reported in the next section. There exists the
threat of investigator bias when deciding whether a match is
a true positive or not as the investigator is familiar with the
working of Fraco. However, this threat is mitigated by the fact
that the task is of low subjectivity, and that we released our
benchmark publicly. Third, for the experiment to be useful we
selected Java systems that were not only popular, but well-
commented. Finally, as mentioned above, the computation of
recall we designed is an approximation of a theoretical value
that is not feasible to compute precisely. In consequence of
these experimental conditions, the way to interpret the results
in the next section is as an illustration of the potential of
the approach in six distinct contexts, as opposed to a general
prediction of the operational performance of the tool.



TABLE III
COMPOSITION OF THE EVALUATION SAMPLE

Project Name Version Class Type Method Type Field Type Local Variable Type
Total (Pop.) Sample Total (Pop.) Sample Total (Pop.) Sample Total (Pop.) Sample

Log4j 1.2.17 244 (116) 33 853 (139) 40 640 (73) 21 776 (20) 6
JUnit 4.12 218 (96) 54 587 (72) 40 144(11) 6 377 (0) 0
Joda time 2.9.6 227 (118) 32 933 (223) 54 500 (52) 12 706 (18) 2
JFlex 1.6.1 71 (36) 28 297 (66) 40 250 (34) 20 307 (26) 12
Chronicle Map 3.11.0 265 (68) 42 784 (67) 41 342 (23) 14 473 (10) 3
Spring Data Redis 1.7.8 426 (194) 54 1199 (119) 33 624 (50) 13 689 (3) 0

VI. RESULTS AND DISCUSSION

We report the results of our evaluation in three parts
organized to facilitate the interpretation of the data collected.
First, we present the results of the evaluation of the lexical
matching rules for methods and local variables (§VI-A). These
results must be interpreted in absolute terms because Eccore
does not support replacement for identifiers of these types. We
then report the results of the lexical matching rules for types
and fields (§VI-B), which we compare against Eccore’s. The
results of the first two sections are based on the same sample.
Since the comparison with baseline, i.e. Eccore, is done using
the same sample, we annotated the precision results for both
the techniques separately and later compared the results of
both techniques to calculate recall. Finally, we report on the
results of the semantic matching rule (§VI-C) which is based
on all of the identifiers in the target systems.

A. Lexical Matching of Methods and Local Variables

Table IV shows the results of the evaluation of the lexical
matching rules for the methods and local variables. We note
that JUnit and Spring Data Redis do not have mentions of local
variable identifiers in the comments in the sample, so perfor-
mance results in these cases are not available. For methods
the precision is above 95% for all evaluation systems except
Spring Data Redis. However, all of the false positives in Spring
Data Redis are caused by the artificial case where a comment
refers to a method that is being overridden, which is not a
likely scenario in practice given that renaming an overriding
method changes the behavior of the code. The recall∗ is
generally very good, with only Chronicle Map registering eight
false negatives. Seven of these cases are caused by overloading
or other types of ambiguity related to arguments. For example,
a method named of(first,second) is not matched to an
in-comment reference of(...). The eighth case was one of
confusion between a field and method name. Local variables
are seldom referred to in comments. In our sample, we observe
perfect recall∗ but equivocal precision for both JFlex and
Chronicle Map. For these systems, the precision is lower due
to the use of common English words like move as a local
variable identifier, which generates natural ambiguity in the
refersTo relation.

B. Lexical Matching of Types and Fields

Table V shows the results of the evaluation of lexical match-
ing rules for types and fields. The results can be interpreted in

the same way as those in Table IV except that in this case we
use recall∪ as defined in Section III. The main observation
for types is that it is relatively a simple problem to solve.
Eccore shows perfect precision across all projects and Fraco
only generates one false positive.

On the other hand, the recall of Fraco is superior for five out
of the six projects because of the additional context-sensitive
tolerance for plurals and case-insensitive matching. For Spring
Data Redis, the recall∪ is lower due to some unexpected
uses of fully-qualified names. In the case of fields, Fraco
clearly dominates with perfect precision and very high recall
for all but one system. In contrast, Eccore flounders in many
situations. For example, if both a field and a method’s param-
eter have the same identifier, Eccore replaces the references
of the formal parameter as well. In a more egregious case,
when we rename a field named it in Chronicle Map, Eccore
generates 244 false positives in various comments including
the copyright block of files.

C. Semantic Matching

Table VI show the precision of the semantic matching rule
for all identifiers that produced at least one match. We do not
attempt to compute the recall for semantic matching because it
is not possible to reliably determine the extension of the set of
true positives. The main observation we can draw from these
results is that although coverage is relatively low, precision
is again very high. The few false positives for methods were
generated by the first special case for the return values of
method identifiers (see §IV-F). However, the handful of false
positives generated by this rule are largely offset by the true
positives it properly captures. Finally, when we project the
evaluation of the semantic matching rules back onto the sample
used for lexical rules, we conclude that the number of fragile
phrases detected increases by ratios between 4.4% (JFlex) and
51.8% (Chronicle Map).

VII. RELATED WORK

The work to mitigate the problem of inconsistencies be-
tween comments and code can be split into three categories:
preliminary attempts at comment-aware refactoring, research
on detection of inconsistencies between code and comments,
and approaches to obviate the need for consistency mainte-
nance by generating comments automatically.

A number of early proposals for comment-aware refactor-
ing have focused on the problem of retaining the comments



TABLE IV
RESULTS OF THE EVALUATION FOR IDENTIFIERS OF LOCAL VARIABLES AND METHODS. THE COLUMNS INDICATE THE NUMBER OF IDENTIFIERS

SEARCHED (IDS), THE NUMBER OF TRUE POSITIVES (TP), THE NUMBER OF FALSE POSITIVES (FN) THE NUMBER OF FILE-RELATIVE FALSE NEGATIVES
(FN), THE PRECISION (P), AND FILE-RELATIVE RECALL (R*, DESCRIBED IN §V-D)

Project Name Method Type Local Variable Type
Ids TP FP FN P R* Ids TP FP FN P R*

Log4j 40 110 2 3 98 97 6 6 0 0 100 100
JUnit 40 102 0 1 100 99 0 0 0 0 NA NA
Joda time 54 214 0 1 100 99 2 2 0 0 100 100
JFlex 40 60 0 0 100 100 12 10 2 0 83 100
Chronicle Map 41 139 7 8 95 94 3 2 1 0 67 100
Spring Data Redis 33 57 16 0 78 100 0 0 0 0 NA NA

TABLE V
RESULTS OF THE EVALUATION FOR IDENTIFIERS OF TYPES AND FIELDS. SEE TABLE IV FOR THE LEGEND.

Project Types Fields
IDs Eccore Fraco IDs Eccore Fraco

TP FP FN P R TP FP FN P R TP FP FN P R TP FP FN P R
Log4j 33 161 0 29 100 84 174 0 17 100 91 21 10 15 11 40 47 87 0 3 100 96
JUnit 54 372 0 65 100 85 407 1 46 99 90 6 4 0 3 100 57 7 0 0 100 100
Joda time 32 272 0 49 100 84 323 0 7 100 97 12 4 0 23 100 15 28 0 0 100 100
JFlex 28 138 0 103 100 57 223 0 29 100 88 20 28 107 0 20 100 26 0 2 100 93
Chronicle... 42 297 0 51 100 85 350 0 27 100 93 14 9 3 12 75 42 21 0 0 100 100
Spring... 54 225 0 17 100 93 223 0 52 100 81 13 11 49 6 18 65 17 4 0 80 100

TABLE VI
RESULTS OF THE SEMANTIC MATCHING BASED ON ALL APPLICABLE IDENTIFIERS.

Project Name Class Type Method Type Field Type Local Variable Type
Ids TP FP P Ids TP FP P Ids TP FP P Ids TP FP P

Log4j 12 15 0 100 80 94 4 96 5 6 0 100 2 2 0 100
JUnit 26 39 0 100 73 85 1 98 0 0 0 NA 0 0 0 NA
Joda time 10 11 0 100 90 157 0 100 0 0 0 NA 0 0 0 NA
JFlex 9 9 0 100 41 54 1 98 2 2 0 100 2 2 0 100
Chronicle Map 17 27 1 96 9 11 0 100 1 1 0 100 2 2 0 100
Spring Data Redis 37 40 0 100 61 71 1 98 0 0 0 NA 0 0 0 NA

at their proper location in a declaration element’s abstract
syntax tree (AST), and to preserve their indentation [20],
[21]. Existing refactoring tools, like Eclipse’s, implement a
similar idea to keep the comments linked to the appropriate
code elements. However, these approaches neglect the possible
inconsistencies introduced between the modified source code
and existing comments. Eclipse [22] also comes with an in-
comment text replacement feature we called Eccore, which
supports comment refactoring to a certain extent. As discussed
earlier, Eccore only detects and replaces identical lexical
matches for two types of code-elements (types and fields),
and so does not support name replacement for methods and
local variables. Fraco detects fragile comments for all types
of code elements. In addition to the lexical matches detected
by Eccore, Fraco also detects phrases that involve multiple
non-contiguous tokens in the comments.

As for inconsistency detection, Tan et al. proposed a tech-
nique to automatically extract program rules to detect incon-
sistencies related to locking mechanisms in source code [15].
They also devised an approach to extract information from
comments to detect inconsistencies in source code related
to specific programming concepts like memory allocation

and synchronization [14]. Apart from detecting inconsisten-
cies related to specifically targeted programming concepts,
various approaches have been devised to keep the source
code of methods consistent with comments. @TComment is
a technique that detects inconsistencies between a method’s
parameters tolerance of null values and its related Javadoc
comments [23]. This approach is however constrained to
Javadoc method parameter comments. Zhou et al. devised
a similar approach that detects inconsistencies between API
documentation and source code by extracting documentation
from Javadoc comments and performing a static analysis of
the code of methods [24]. Corazza et al. devised an approach
to detect the coherence between comments and a method’s
implementation using information retrieval concepts. There are
also proposals that focus on a specific type of comments for
detecting inconsistencies. For example, Sridhara has developed
a tool to detect the fragility of “TODO” comments [16].
All these techniques focus on a subset of either comment
types or programming concepts. In contrast, Fraco supports
the detection of the possible inconsistencies produced for all
possible types of comments upon renaming an identifier for
any type of program element.



Automatic comment generation tools offer a different
solution to the problem of code-comment consistency mainte-
nance by relieving some of the manual work involved in the
creation (and thus maintenance) of comments. JSummarizer
generates comments for Java classes by utilizing the stereo-
types of classes and methods present in the class [25], [26].
Sridhara et al. developed a tool for automatically generating
comments for methods based on the code of the method [27].
Autocomment automatically generates comments for methods
by utilizing the information mined from QA websites for
code fragments similar to those in the method [28]. Guo et
al. propose an approach to automatically generate comments
for design patterns [29]. Li et al. designed an approach to
automatically document test cases by identifying important
aspects of a test case and use templates to generate the
documentation automatically [30]. Although they share our
goal of providing high-quality comments to developers, these
approaches involve a completely different strategy in that they
do not take into consideration the pre-existing relation between
code and comments.

VIII. CONCLUSION

This paper formalized the problem of detecting fragile
comments with respect to rename refactorings and proposed
a novel rule-based approach for detecting fragile phrases in
source code comments by taking into account the type of
identifier being renamed, its morphology, the scope of the
identifier and the location of the comments. By limiting
the input of the analysis to general programming language
features and common naming conventions, our approach can
remain general-purpose and detect fragile phrases in comments
of any type. Although our approach relies on language-
independent principles, we developed a prototype for the Java
programming language as an Eclipse plug-in called Fraco.
We evaluated Fraco on a sample of 600 identifiers taken
from six medium-sized systems and, when possible, com-
pared the results against Eccore, Eclipse’s identifier reference
replacement feature. While detecting fragile comments for
type declarations, both Fraco and Eccore performed at par.
However, when renaming fields, the performance of Eccore
showed dramatic unreliability, with precision varying between
20% and 100% between systems, and recall varying between
15% and 100%. In contrast, the more sophisticated rule set
of Fraco showed a precision of 100% for five of the six
systems, and a recall above 90% for all test systems. While
Eccore currently does not even support the detection of fragile
comments when renaming methods and local variables, Fraco
was able to detect fragile phrases in these cases with precision
and recall of 95% or above for a majority of systems.

The two clear avenues for future work in this area are
comment repair and a broadening of the definition of semantic
matching. Currently, our approach detects fragile phrases with-
out repairing them. Although it is unlikely that the problem
of repair is fully automatable for semantic matches, it will
be interesting to explore how to differentiate matches that
can be reliably repaired from those that require developer

assistance. As for semantic matching, our current approach
purposefully remains very close to the lexical layer because it
targets the invalidation of references to specific identifiers. In
the greater context of software evolution research, the problem
of detecting general inconsistencies between source code and
unstructured text remains a major challenge, which we could
modestly approach with an expansion of the semantic rules to
include additional components such as synonym analysis and
entity recognition.

APPENDIX
SCOPING RULES FOR THE applies FUNCTION

For an element declaration, the applies function can be
computed by inspecting the access modifier of the declared
element and its parent type (when applicable), looking up
the corresponding scope, and then returning all comments
linked to a declaration within the same scope. For example, a
private type with no parent type maps to the class scope, so
applies would return all the comments in the same class. The
scope for all local variables (including formal parameters) is
the method scope, which includes only comments linked to
the variable’s declaring method.

Element Parent Type Scope
Types
public public global
public default or protected package
public private parent class
private any type parent class
protected private parent class
protected public or default or protected package
public None global
private None class
protected None package
default None package
Methods
public public global
public private parent class
public default or protected package
protected public or default or protected package
protected private parent class
default public or default or protected package
default private class
private any type class
Fields
public private parent class
public default or protected package
public public global
private any type class
protected private parent class
protected default or protected or public package
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