Improving API Usage
through Automatic Detection of Redundant Code

David Kawrykow and Martin P. Robillard
School of Computer Science
McGill University
Montréal, QC, Canada
{dkawry,martin} @cs.mcgill.ca

Abstract—Software projects often rely on third-party libraries
made accessible through Application Programming Interfaces
(APIs). We have observed many cases where APIs are used in
ways that are not the most effective. We developed a technique
and tool support to automatically detect such patterns of API
usage in software projects. The main hypothesis underlying our
technique is that client code imitating the behavior of an API
method without calling it may not be using the API effectively
because it could instead call the method it imitates. Our technique
involves analyzing software systems to detect cases of API method
imitations. In addition to warning developers of potentially re-
implemented API methods, we also indicate how to improve the
use of the API. Applying our approach on 10 Java systems
revealed over 400 actual cases of potentially suboptimal API
usage, leading to many improvements to the quality of the code
we studied.

Index Terms—API usage; code quality; code analysis; recom-
mendation system

I. INTRODUCTION

Large software systems generally rely on reusable collec-
tions of implemented functionality called software libraries.
Functionality provided by libraries is made available through
Application Programming Interfaces, or APIs. In Java, for
example, an API is the set of classes, methods, and fields
that can be accessed by client code (the code making use of
the library/API).!

We have observed many cases where client code uses an
API in ways that are clearly not the most effective. In particu-
lar, it is not unusual to observe client code that independently
re-implements a service provided by an APIL

This phenomenon is not surprising when we consider the
variety of possible causes. First, APIs can grow very large
and complex, and developers using them may not discover
all the functionality they offer. Second, in many cases, APIs
evolve independently from the projects that rely on them, and
developers may remain unaware of improvements to the API
that could translate into improvements to their code. This
situation is compounded by a third factor: APIs sometimes
evolve in a backward-compatible fashion, without any element
being annotated as deprecated. This way, updating an API
will not break the code, and therefore will not always attract

'In many contexts, the terms “API” and “library” can be used interchange-
ably. We chose to use the term “API” except when specifically referring to
an API’s implementation, in which case the term library is more appropriate.

the attention of developers to potentially different ways of
using the API. As we illustrate in Section II, detecting unused
functionality can be far from obvious. Consequently, as a
project and its associated libraries co-evolve, the client code
is at risk of degrading in quality through the ever-growing
presence of needlessly re-implemented library methods.

The re-implementation of services offered through APIs can
have many negative effects on the quality of a system, includ-
ing: decreased modularity, convoluted client code, obscured
intent of a statement’s purpose, suboptimal performance, and
eventual obsolescence. Although the immediate impact of
suboptimal API usage is difficult to assess, the long-term effect
on the maintainability of a system is unlikely to be good. In
fact, “Don’t make the client do anything the library could do”
is an explicit guideline for API designers, and according to
Bloch, violating this rule leads to code that is “annoying and
error-prone” [1]. Ideally, for a system to be well-maintained,
client code should use APIs as effectively as possible.

We propose a static analysis-based technique for finding
a specific class of client code whose usage of an API can
be improved. The main hypothesis underlying our technique
is that client code that imitates functionality provided by a
method of an API can potentially be improved by calling the
method itself, instead of imitating it.

Our technique works by analyzing a target system (and its li-
braries) to discover any method in the client code that imitates
the behavior of a library method. Our definition of the imitates
relation relies on an abstraction of the behavior of both client
and library code. Detected imitations are grouped together into
potential API usage patterns, which include the name of the
API method that is imitated, provided as a recommendation
to improve the code. A software engineer can then inspect the
imitations corresponding to each pattern to determine whether
these truly correspond to re-implementations of API services.
We have completely implemented our automatic detection
technique, along with additional tool support for visualizing
the results, as a plug-in for the Eclipse Platform.?

We applied our approach to ten open-source Java projects to
assess its practicality and usefulness. We analyzed our target
systems to collect potential imitations of library methods,
and manually inspected every reported imitation to assess

Zhttp://www.eclipse.org

its validity. For valid imitations, we measured how much
code improvement could be derived from knowledge about
its corresponding usage patterns. Our experiments led to
the detection of over 400 valid imitations within the target
systems. Adapting the target systems to instead use the rec-
ommended API yielded savings of over 650 method calls. Our
experiments also demonstrated the scalability of our approach,
by supporting the analysis of over 1.5 million lines of source
code in just over 7 minutes.

A brief overview of this approach, together with preliminary
results, has been showcased in a 5-minute presentation and
short report [2]. This paper contributes the first complete report
on our new, fully-implemented technique for improving API
usage through automatic detection of redundant code, with a
considerably expanded description of the technique, new tool
support, and a detailed analysis of our completed experiments.

In the rest of this paper, we illustrate the motivation for
our work with an example in Section II; We then present
the details of our approach (Section III) and describe our
experimental setup and results (Section IV). We conclude with
a discussion of related work (Section V) and a summary of
the paper (Section VI).

II. MOTIVATING EXAMPLE

We illustrate the need for an approach to improve API
usage with a concrete example taken from the source code
of JasperServer v. 3.1.0, an open-source business intelligence
platform.? In our example, references to APIs are in bold, and
client code is in normal monospaced typeface. The example
shows that API method imitations cannot always be detected
trivially using code comparison.

In JasperServer, the client method HttpUnitTest.-
gettingURLResponse does not use the API provided by
the library class WebConversation of package com.meter-
ware.httpunit in the most effective way possible because
it re-implements one of its getResponse methods. The body
of gettingURLResponse is given below

gettingURLResponse (String url) {
URL serverUrl = new URL (url) ;
WebConversation conversation;
conversation = new WebConversation() ;
WebRequest request;
request = new GetMethodWebRequest (serverUrl,"");
return conversation.getResponse (request) ;

A more effective implementation is given below:

gettingURLResponse (String url){
return new WebConversation () .getResponse (url) ;

}

However, discovering that the original implementation is
equivalent to the alternate one is not trivial. A look at the
source code of WebConversation.getResponse (String)

3http://sourceforge.net/projects/jasperserver

does not immediately indicate why the two implementations
are interchangeable:

getResponse (String url){
return _mainWindow.getResponse (url) ;

}

The source code of the actual getResponse method used by
the client also fails to justify the similarity:

getResponse (WebRequest request) {
return _mainWindow.getResponse (request) ;

}

It is only by examining these inner getResponse methods
that the equivalence becomes apparent. However, the fact
that the response behavior is delegated through two levels of
method calls, among other complications, makes it unlikely
that the equivalence could be discovered through traditional
program similarity detection.

III. APPROACH

The idea behind our approach is to detect cases where the
quality of source code can be improved by replacing code
that imitates an API method by a call to the method itself. Our
current implementation supports the analysis of Java programs.
The complete approach works as follows:

1) The source code of a library client and the byte code of
its libraries are abstracted to a common representation.
We abstract library byte code because the source code
of a library is not always available or included within
client projects.

2) The abstracted client code is compared against the
abstracted library code to determine if any client method
imitates the behavior of a library method without calling
the method itself. We compare each method within a
given client file against all library methods which are
visible to the type(s) declared in the file.

3) All detected imitations are grouped together into API
usage patterns that describe both the library method
being imitated and how that method is imitated.

4) All imitations corresponding to a given pattern are
filtered for invalid or trivial cases according to a set of
heuristics.

5) A software engineer validates each pattern by inspecting
the client code of the remaining imitations to determine
whether these truly correspond to actual imitations of the
suggested library method. Validated patterns are stored
in a file.

6) Any project using an API for which valid patterns
are documented can be scanned for instances of these
patterns. For the client projects analyzed in steps 1-4,
these instances correspond to imitations classified in
step 4.

7) A developer can inspect the reported instances to per-
form the suggested perfective maintenance based on the
recommended library methods and their imitations in the
client.

In the rest of this section, we provide the technical details
and rationale for each step of the approach, including our
mechanism for matching the behavior of client code with that
of library methods (Section III-A), the heuristics we use to
filter detected imitations (Section III-B), and our process for
reusing patterns (Section III-C). The automated portions of our
approach have been fully implemented as a standalone Eclipse
plug-in, described in Section III-D.

A. Detecting Imitations

Detecting cases where client code imitates the behavior of
a library method requires us to compare program behavior.
Because we seek to determine when different pieces of code
are approximately equivalent, we rely on abstracted represen-
tations of method bodies to do our comparison.

Abstracting Method Bodies: Similar to other approaches
that rely on source code equivalence comparisons (e.g., Strath-
cona [3]), we abstract a method body as the set of program
elements referred to in the corresponding code. Specifically,
we abstract a method body as the set of fully-qualified
signatures of the fields, methods, and types referenced by that
method body.

The body of the imitated getResponse (String url)
method from our motivating example in Section II is abstracted
as the following set of element references:

_mainWindow, WebWindow.getResponse (String),
WebWindow, WebResponse, String*

In this example, the WebWindow type appears because it is the
declared type of the mainWindow field.

Comparing Individual Elements: Establishing behavioral
equivalence requires us to compare individual elements in
method bodies.

Definition 1 (Element match): We say that an element x
matches an element y if x is identical to or specializes y.

Our concept of specialization is slightly adapted from the
general type theoretical definition of substitutability to fit our
goal of estimating potential replacement of client code with
library methods.

Definition 2 (Element specialization): 1If y is a type, then z
specializes y if x is a subtype of y. If y is a field, then x
cannot specialize y. If y is a method then x specializes y if x
implements or overrides y or if x overloads y and its parameter
types form an ordered superset of the parameter types of y.

4We present a simplified form of each element to conserve space.

Client

- it
Library —> Cals

eseesesp Matches

Fig. 1. Matching Types
For example, the constructor GetMethodWebRe-
quest (URL, String) specializes GetMethodWebRe-

quest (String), but the reverse is not true. The intuition
behind our definition is that the shorter version of the
method often calls the longer version with some default
value for the extra parameter. Similarly, if client code calls
the longer version, it may also be using the default value as
the additional parameter, and could actually use the shorter
version instead. This case is found in the motivating example.

Matching Elements in Method Bodies: Our goal is to find a
match between each element in a library method and a client
method. Because early experimentation demonstrated that it
was too simplistic for our purposes to only match elements
directly, we developed three different strategies for matching
the elements abstracting a library method.

We introduce a simple operation to simplify the following
descriptions. The method(m) function is a predicate that
returns true if m is a method (as opposed to a field or type).
The body(m) function returns the set of program elements
M corresponding to the abstraction of m’s body.

Definition 3 (Direct Match): Given a method body M and
an element e, there exists a direct match of e within M if
dm € M such that m matches e.

This is the simplest kind of match. Figure 1 represents
different matching scenarios (rectangles represent abstracted
method bodies, and circles represent referenced elements). In
the figure, there is a direct match of La in client method
{Ca,Cb,Cc} because Ca matches La (i.e., Ca is either
identical to La or specializes it).

Definition 4 (Indirect Match): Given a method body M
and an element e, there exists an indirect match of ¢ within
M if 3m € M such that method(m) and there exists a
direct match of e within body(m).

In this case we say that e is either “indirectly matched”
or “specialized” via m, depending on what element in m is
matching e.

In Figure 1, there is an indirect match of Ld within the client
method because C'c calls C'd, which matches Ld. This strategy
was designed to help detect cases where imitations were
distributed across methods. Note that the definition applies
regardless of whether m is a client or library method.

Definition 5 (Nested Match): Given a method body M and
an element e, there exists a nested match of e within M if
method(e) and there exists a direct or indirect match within
M of every element in body(e).

In Figure 1, there is a nested match of Le within the client
method because Le only calls Lb, which is matched by Cb.
This strategy was designed to help detect nested cases of
imitation, i.e., when client code imitated a method call made
by a library method, instead of matching it.

Definition 6 (Imitation): Given two method bodies M7 and
Mo, M, imitates M; if Ve € body(M>), there exists a match
of e within Mj.

According to this definition, Figure 1 describes a situation
where {Ca, Cb,Cc} imitates {La, Ld, Le}.

We note an important distinction between imitations and
nested matches. A nested match only allows direct and indirect
matches, whereas an imitation includes direct, indirect, and
nested matches. We included the restriction on nested matches
to prevent deep nested matches. Experimentation with nesting
levels showed that nesting imitations beyond a single method
call resulted in the detection of very few additional imitations,
all of which were of dubious validity.

In our motivating example (Section II), the elements
of WebConversation.getResponse (String) are matched
through all three types of matches. The client code contains
a direct match of the String reference, an indirect match of
the mainWindow field access via the method WebConver-
sation.getResponse (WebRequest), and a nested match
of the method WebWindow.getResponse (String).

Representing Matches and Patterns: A match descriptor is
a data structure that comprises both a matched element and
the way in which that element is matched. Different types of
matches have slightly different descriptors.

Definition 7 (Direct Match Descriptor): A direct match
descriptor of an element e is a tuple (e,r), where r €
{identical, specialized}.

For example, if a type reference to ArrayList specialized a
type reference to Collection, the tuple (Collection, spe-
cialized) would embody this direct match between the two
elements.

Definition 8 (Indirect Match Descriptor): An indirect
match descriptor of an element e is denoted as a tuple (e, r)
where 7 € {indirect identical, indirect specialized}.

Definition 9 (Nested Match Descriptor): A nested match
descriptor within M of a method call m is the set of all direct
and indirect matches of the element references in body(m)
occurring within M.

We introduce an ordering between matches so that we are
later able to distinguish between patterns that are likely to be
valid and those in which we have less confidence.

Definition 10 (Match Order): We define a superior to or-
dering as follows: indirect matches are superior to nested
matches, and direct matches are superior to both indirect and
nested matches. Furthermore, we say that identical matches
(direct or indirect) are superior to specialized matches.

Definition 11 (API Usage Pattern): Given an imitation of
library method M; by client method M., the pattern corre-
sponding to that imitation is the set of direct, indirect, and
nested match descriptors for that imitation.

The pattern associated with the imitation in our motivating
example is presented below:

WebClient .getResponse (String)
-_mainWindow: indirect iden.
-String: identical
-WebWindow.getResponse (String) : nested
-WebWindow.getResponse (WebRequest) : indirect iden.
-new GetMethodWebRequest (String) : specialized

We note that the getResponse method above is declared by
WebClient. The familiar WebConversation type from the
motivating example is a direct subtype of the abstract web-
Client type and does not override the latter’s getResponse
methods. We present the WwebClient type in this example to
stay consistent with the actual recommendations made by our
tool, described in Section III-D.

We note also that a given element e € M; might be
matched in multiple ways within M,.. For example, a List
type reference in M; might be directly specialized in M, with a
reference to ArrayList and indirectly matched by an indirect
reference to List. In such cases, the pattern associated with
the imitation of M; by M, includes only the most superior
match descriptor. In our case, we retain the (List,specialized)
descriptor.

Two different imitations of the same library method are
abstracted by the same pattern whenever both imitations
can be described using identical sets of the most superior
match descriptors. We emphasize that a given descriptor
does not include the client code element that was used to
match the descriptor’s library element. For example, if another
client method M/ specializes the List reference in M; with
a reference to LinkedList, then we retain an identical

(List,specialized) descriptor. Similarly, if M, references both
ArrayList and LinkedList, the same single descriptor
would be retained.

B. Filtering Heuristics

We prototyped our approach on the source code of LIME-
WIRE, an open-source file-sharing platform.’> During this
phase, we observed that many imitations returned by the tech-
nique represented trivial or unusable results. After partitioning
these unusable results into different categories, we were able
to design a number of filtering heuristics to remove them from
the final set of imitations presented to developers.

Most of the heuristics test for simple conditions. For ex-
ample, we ignore API methods that reference only fields and
types because such methods are too easily imitated. We also
ignore cases where a client method specializes the API method
it imitates, because in such cases the client method is clearly
meant to provide extended or refined behavior and not the
behavior it was meant to specialize. Similarly, we ignore cases
where a client method indirectly references the method it
imitates because in such cases the client method is probably
extending the imitated method, rather than imitating it.

The following five heuristics improve the accuracy of the ap-
proach in more complex cases. We report on the effectiveness
of these heuristics in Section IV. In the following descriptions,
we assume that a client method M, has been found to imitate
an API method M;.

Restrict Nested Matches: If M; calls a method m and
m calls no methods of its own (but contains only field
accesses and type references), then we do not allow m to be
matched through a nested match. We found that allowing such
method calls to be nested matched leads to many meaningless
results. For example, the String method getLength(),
which only accesses the field count, can be nested matched
by calling many other String methods, such as trim()
or charAt (int), all of which also access count, but for
different purposes. Library methods which call getLength ()
are probably not imitated by clients that only call trim().

Emphasize Types in the Signature of M;: If M. does not
directly match all types in the signature of M; (including the
declaring and return types), then a call to M; by M. is likely to
be specious because there are, for example, no actual objects
in M, that could be passed as input arguments to M;. This
filter is motivated by the LIMEWIRE library method Argu-
ment .setValue (int). A client method was found to imitate
setValue using code similar to

Action action = ...;
action.setArgumentValue ("stringl", int) ;
action.setArgumentValue ("string2", "string3") ;

There is no reference to an Argument instance in this imita-
tion. In fact, the client method does not directly reference an

Shttp://www.limewire.org

Argument instance at all. This makes it unclear how a call
setValue could replace the above code snippet, or how it
could be made in the first place.

Keep Apart Getters and Setters: If the name of M starts
with the prefix “get”, then no field access made by M; may
be indirectly matched via a method call with method name
prefixed with “set”. This filter includes several other prefix
pairs, among them “add” vs. “get”, and “put” vs. “contains”.
This filter is motivated by the LIMEWIRE library method
Packet.setFrom(String). This method sets the field from
to a modified form of the input String. A client method was
found to imitate setFrom by calling code similar to

Packet packet = ...;
String x = parseBareAddress (packet.getFrom()) ;

Although the client method also accesses the from field, it
does so using getFrom. This makes it unlikely that the £rom
field is accessed in the same way as if the client were to call
the recommended setFrom method.

Reject Included Methods: If M, calls some other method
m and body(M;) C body(m), then we reject the imitation
of M;. The intuition behind this heuristic is that the “larger”
method probably performs more services than those provided
by the “smaller” method, and is likely to be the more appro-
priate method to use. This filter is motivated by cases such as
the methods errors () and addError (Test, Throwable)
in the class junit . framework.TestResult. The bodies of
both methods contain the elements
Enumeration, elements ()

Vector, fErrors,

but the body of addError also contains additional references.
If a client calls the “larger” addError method then it is
probably adding an element to £Errors and it is unlikely that
this call should be replaced by a call to the “smaller” errors
method, which only returns the elements found in fErrors.
Although this example shows m and M; to be from the same
class, in general we do not require m to be in the same library
as M.

Avoid Repeated Match Descriptors: If M, imitates two
library methods Ml1 and Ml2, and the imitations for both
methods can be described using the same set of match descrip-
tors, then both imitations are rejected. This situation usually
indicates that the match descriptors are too simplistic to
capture possible differences between M;' and M7, and should
not be used to justify the reported imitations. In LIMEWIRE,
this heuristic allowed us to ignore a number of methods from
the Device class, all of which had the general form:

getPropertyX () {
return getDeviceNode () .getProperty ("X") ;

}

Whenever a client method called one or more of these meth-
ods, all others were automatically considered imitated.

C. Storing and Reusing Patterns

Patterns found in the detection phase of the approach are
persisted to disk in a pattern description file. Each pattern
encodes the library method being imitated, the element refer-
ences being matched, and how those references are matched
(Section III-A). When scanning a project for imitations, pat-
terns are loaded from their pattern description file at run time.
The client source code is again scanned, but this time it is
compared only against loaded patterns. A client method is
said to contain an instance of a given pattern if the client
method imitates the pattern’s encoded library method using
matches which are equivalent or superior to those encoded by
the pattern.

D. Tool Support

We implemented support for our approach in the form
of iMaus, a tool for improving API usage. iMaus allows
users to detect potential API method imitations within their
Eclipse projects and to investigate the structure and quality
of reported imitations. Users can leverage iMaus to discover
new imitations within their projects or to detect instances of
previously validated patterns. iMaus can be used to scan either
a single file, or an entire package or project. In this way, if a
user detects a valid pattern in one file, the user can re-scan the
rest of the project to detect further instances of this pattern in
other files. iMaus also provides mechanisms to group together
similar imitations based either on their underlying patterns
or the set of matches describing each imitation. Groups of
(invalid) imitations can be eliminated in a single operation. In
addition, iMaus allows users to extract the patterns abstracting
detected imitations and to store and reuse these to scan projects
more effectively in the future (because only instances of
validated patterns are detected). iMaus implements the static
analysis required by the detection heuristics by parsing and
analyzing Java source and byte code. Byte code is abstracted
using the asm bytecode analysis framework® and source code
by following standard practice that leverages Eclipse’s JDT
component. We focus our description of iMaus on its user
interface, which has undergone in-house usability prototyping
to ensure a design that would minimize the cost of inspecting
recommendations.

Reported imitations are stored as a list within an Imitation
View. Each imitation in the list is presented as a pair of method
names: the name of the API method being imitated and the
name of the client method that imitates it. Users can display
the details of an imitation by double clicking on its entry in
the view (see Figure 2).

Individual imitations are displayed with the help of the
standard Eclipse editor and a separate Imitation Content View.
The view displays what elements are being matched, while
the editor displays how these are matched by the client

Shttp://asm.ow2.org

U] HttpUnitTest java 52 =08
7 L

private WebResponse gettingURLResponse(String url) throws Exception {
WebResponse response = null;
URL serverUrl = new URL(url);
WebConversation conversation = new WebConversation();
& WebRequest request = new GetMethodwebReguest(serverurl, ""};
& response = conversation.getResponse(request);
return response;

1
< »
£ Imitated Conte% 53 =8

¥ Imitated Library Method
= @ WebClient.getResponse (String)
o _mainwWindow
<~ @ Webwindow.getResponse (String)
© GetMethodWebRequest.GetMethodWebRequest (String)
@ WebWindow.getResponse (WebRequest)

Fig. 2. Viewing Imitations with iMaus

method. In particular, the view displays the fields and methods
referenced by the body of the imitated library method, as well
as the the fields and methods referenced by the bodies of
all nested matched method calls. For example, in Figure 2,
the Imitation Content View displays the fields and methods
referenced by the imitated getResponse method described
in the motivation: a reference to the mainWindow field
and a call to the method WebWindow.getResponse. The
method call is nested matched and its referenced elements also
displayed: a call to a GetMethodWebRequest constructor and
a call to an overloaded WebWindow.getResponse method.
We note that the getResponse method is indeed declared by
WebClient, an abstract super type of the WebConversation
type presented in the motivating example.

The editor displays the imitating client method and un-
derlines all method calls made by the client method that
contribute to the imitation. A method call contributes to an
imitation if it directly or indirectly matches a reference. We
note that if the same method call appears multiple times
within the client method, each call is underlined. We also
note that if multiple method calls contribute matches for
the same element reference, all those contributing the most
superior matches for that element are underlined. The user
must decide which of these are relevant to the imitation, if
any. In Figure 2, the GetMethodWebRequest constructor
referenced by the client method is underlined because it
specializes the GetMethodWebRequest constructor called by
the WebWindow.getResponse method.

A user can view how each underlined method call con-
tributes to the imitation by hovering the cursor over that
method call. Conversely, the user can click on matched ele-
ments in the Imitation Content View to display which method
calls are used to match them. In our figure, an investigation
of the GetMethodWebRequest constructor in the Imitation
Content View leads the user to the (highlighted) GetMethod-
WebRequest constructor.

TABLE I
TARGET SYSTEMS

Project Version kLOC Dlds. (K)
JBoss 5.0.1 539 13879
SpringFramework 255 247 3322
Hibernate 3.3.1 166 4746
ArgoUML 0.20 165 N/A
iReport 3.0.0 144 1716
JasperReports 3.14 131 1672
JasperServer 3.1.0 79 249
FreeMind 0.9.0 53 7512
Jajuk 1.7.1 45 296
Checkstyle 442 20 3604

IV. EVALUATION

Our evaluation sought to determine whether our approach
efficiently supports improvements of API usage through the
detection of redundant code. For our approach to be practical,
the imitations it detects need to:

1) be identified (and filtered) with reasonable accuracy and

efficiency.

2) lead to concrete improvements in the source code’s

quality.

3) generate reusable patterns.

We assessed whether our approach meets these criteria by
applying iMaus to ten large-scale open source projects. These
projects were different from the ones we used to develop
our approach and refine our heuristics. Each project was
scanned with respect to its imported libraries to automatically
identify potential library method imitations. In this phase, im-
itations detected for each project were filtered using all of the
heuristics described in Section III-B. Following a systematic
inspection approach, we then manually classified each reported
imitation as either valid or invalid. We collected and classified
all imitations which were filtered by the heuristics. We used
the results of this process to assess the first criterion. For
each valid imitation, we recorded the method calls saved by
replacing the imitation with a call to the recommended library
method. We used these results to assess the second criterion.
Finally, we counted the number of reusable patterns that could
be inferred from the valid imitations in order to assess the third
criterion.

A. Target Systems

For our set of target systems we retrieved ten popular
open-source Java projects from the SourceForge repository.’
The ten systems we chose are all actively maintained and
widely used. The names of the systems and their version,
size, and overall number of downloads (Dlds.) are presented in
Table I (download statistics, when available, were taken from
SourceForge on 26 April 2009). All projects comprise over
20kLOC, and hence preclude the possibility of manual source
code inspection as a practical alternative for detecting library
imitations.

7http://sourceforge.net

TABLE II
IMITATION CLASSIFICATION

Valid # Reported
Project Imitations Imitations Precision
JBoss 341 974 35%
SpringFramework 7 177 4%
Hibernate 12 153 8%
ArgoUML 15 269 6%
iReport 2 17 12%
JasperReports 5 29 17%
JasperServer 17 61 28%
FreeMind 2 8 25%
Jajuk 1 3 33%
Checkstyle 4 37 11%
Total 405 1322 31%

B. Imitation Classification

We classified reported imitations as either valid or invalid
using iMaus (described in Section III-D). We considered a
reported imitation of a given library method by a given client
method valid if

1) the library method was truly being imitated by the client
method.

2) the true imitation was discovered by assessing client
code explicitly underlined by iMaus.

We included the second criterion to ensure that the rationale
given by the approach was used as the primary justification
for the discovery of true imitations.

Assessment of the first criterion required us to verify if
client methods were re-implementing services provided by
recommended library methods. We did this by examining
the underlined client elements, the signature of the library
method and its referenced elements (all provided by iMaus).
We perused the library method’s API documentation and/or
online source code whenever necessary and available. We
always rejected imitations whenever it was not completely
clear that the client method was indeed imitating the library
method, or if client code reused variables used to store results
of intermediate method calls. If we found that the code of the
client method imitated the suggested library multiple times,
we recorded this as a single valid imitation.

Valid Imitations: Table II lists the total number of imitations
reported for each target system, as well as the number of
imitations which we classified as valid. We found a total of
405 valid imitations, with at least one valid imitation in every
system, and as many as 341 within a single system (JBOSS).
The precision of the analysis varies between 4% (SPRING-
FRAMEWORK) and 35% (JB0ss). The overall precision of the
approach is 31% and the average per-system precision is 21%.
Table IV in Section I'V-D records the number of patterns found
in each system. Systems for which the total number of reported
imitations was above 100 all featured patterns that instantiated
a high number of invalid imitations. In SPRINGFRAMEWORK

for example, 152 of the 170 invalid imitations are instances
of just 5 patterns.

Valid imitations often included specialization, or indirect
and nested matches. Of the 405 valid imitations, 15 included
at least one nested match and 173 included at least one nested
or indirect match. Direct specialization contributed to 7 of the
405 imitations, while indirect specialization did not appear in
any imitations.

Effectiveness of the Filtering Heuristics: Across the ten
target systems, our filtering heuristics rejected a total of 2123
imitations. Of these, only 20 were actual valid imitations.
Without the heuristics, the overall precision of our approach
is 11% (vs. 31% when the heuristics are applied), while the
average per-system precision is 8% (vs. 21%).

Classification Effort: The amount of time taken to scan
projects was above one minute only for JBoss (110s) and
SPRINGFRAMEWORK (69s), which are composed of over
6500 and 3100 client files, respectively. The times reported
include the time needed to abstract all the necessary client
and class files, as well as the time needed to detect and
filter imitations between client and imported library methods.
These measures do not include the time required to classify
individual imitations. By using iMaus, we found that an
individual imitation usually took no more than one minute
to classify, with most invalid imitations requiring just 10 to
15 seconds. Many invalid imitations were as obvious as the
one presented at the end of this section, and could be rejected
almost immediately.

Classification Methodology: To help ensure an overall
objective classification process, each reported imitation was
independently classified by a member of our research group
whose work is not related to the present research. This
additional inspector was provided our plug-in, and trained for
45 minutes on how to use it. He was given instructions to
reject imitations whenever their validity could not immediately
be inferred from the underlined client elements.

Out of the 3851 classified imitations for the two portions
of the evaluation (1728 reported imitations and 2123 filtered
imitations respectively), only 63 were given conflicting labels.
From this result, we infer that the potential error on our manual
classification is about +2%.

Ignoring Irrelevant Method Calls: In the case of valid
imitations, iMaus often method calls that were not actually
relevant to the imitation itself (see Section III-D). For example,
in JASPERSERVER, the library method View.getAction-
Button (String) has the following body

AbstractButton getActionButton (String x) {
TitleBar tbar = getTitleBar() ;
return tbar!=null? tbar.getActionButton (x

}

) :null;

and is imitated by a client method using the following code,
where the method calls are underlined by iMaus:

view.getTitlebar () .addAction(...);
view.getTitlebar () .getActionButton(...)

We see that iMaus underlines an irrelevant call to getTitle-
Bar that is not related to an actual imitation of getAction-
Button. However, the reported imitation is still considered
valid because the other two calls constitute a valid imitation.
We ignored the presence of such irrelevant method calls and
classified an imitation as valid as long as a subset of the
underlined method calls described a true imitation.

Rejected Imitations: We conclude this section with a
typical rejected imitation found in JASPERSERVER. In
that project, our approach detects that a library method
Util.equal (String, String, boolean) is imitated by a
client method. iMaus displays the following element refer-
ences for the library method:

String.equals (Object),
String.equalsIgnoreCase (String)

The underlined method calls displayed in the editor are found
in the following two lines of client code:

ConsoleAppender x = new ConsoleAppender(...);
if (args([i] .equals(...))

iMaus reveals that the constructor is used to indirectly match
the equalsIgnoreCase method call. In this case, it is likely
that the client method is not imitating the library method
because the name of the constructor suggests that it does not
exclusively compare two String instances.

C. Code Quality Improvements

To assess our second criterion we measured improvements
to the quality of the target systems’ source code induced by
our recommendations. To this end we recorded the number
of method calls which could be saved by adapting client
code to use the suggested library method instead of its re-
implementation. As with any software quality metric, our
model for measuring quality improvement resulting from
recommendations is not perfect. In particular, it does not take
into account situations where redundant API usage code would
actually be more readable, or display some other desirable
characteristic. However, we believe our quality improvement
model is fit for our experimental purpose because it objectively
captures cases where more of an API’s functionality and intent
is used, which we hypothesize is a desirable goal in most cases.

We counted all those method calls which would no longer be
needed if the client code were modified. Method calls which
were erroneously underlined by iMaus (i.e., which did not
actually contribute to the imitation) were not counted. If a
client method contained several imitations, then we counted

TABLE III
SAVINGS

Valid # Method
Project Imitations Calls Saved
JBoss 341 527
SpringFramework 7 7
Hibernate 12 33
ArgoUML 15 15
iReport 2 3
JasperReports 5 16
JasperServer 16 36
FreeMind 2 9
Jajuk 1 1
CheckStyle 4 15
Total 405 662

the method calls saved per imitation. Additional savings, such
as variable declarations, the use of literals and if-statements,
were not recorded. In our motivating example, the client saves
two method calls: one to the URL constructor and one to the
GetMethodWebRequest constructor.

Table III summarizes our findings. We see that we could
save at least one method call in each of the target systems,
with as many as 527 saved within a single system (JBOSS).
Most imitations allowed clients to save anywhere from one
to four method calls. Some imitations yielded higher savings
because they appeared multiple times within the same client
method.

D. Pattern Detection

To assess our third criterion we grouped all valid imitations
into patterns and recorded the types of patterns found for each
project in Table IV. The type of each pattern was determined
by considering its instances across all ten projects. We defined
four types of patterns: weak, reusable, strong, and singleton
patterns. A pattern was labeled “reusable” if at least two of its
instances represented valid imitations. If a pattern was reusable
and all of its instances were valid, then the pattern was also
labeled “strong”. A pattern was labeled “weak” if multiple
instances of the pattern were found within the projects, and
only one instance represented a valid imitation. Those patterns
for which a single, valid instance was found were labeled as
“singletons”.

In total we found 76 patterns across the ten systems. Of
these, only four were weak, while the remaining 72 were
evenly divided between singleton and reusable patterns. Of the
reusable patterns, 25 were also strong. The detected patterns
describe a total of 546 instances, 405 of which are valid (see
Table II) and 141 invalid.

In Table IV, the total number of Reusable patterns (36)
is slightly less than the sum of Reusable patterns across the
individual systems (43) because four patterns were found
in multiple systems. In this initial experiment, an across-
system overlap of four patterns is a modest indication of the
reusability of patterns across projects, but this relatively low
figure can be explained by the fact that patterns are tied to
individual libraries, and our target systems implement widely

TABLE IV
DETECTED PATTERNS

Reusable
Project (Strong) Singleton =~ Weak
JBoss 26 (16) 16 1
SpringFrmwk 1 (1) 1 1
Hibernate 2(1) 0 0
ArgoUML 32 5 2
iReport 1(1) 1 0
JasperReports 0 (0) 5 0
JasperServer 6 (5) 4 0
FreeMind 2 (0) 0 0
Jajuk 0 (0) 1 0
CheckStyle 1 (0) 3 0
Total 36 (25) 36 4

different functionality using a total of over 100 different
libraries. The results in Table IV do suggest that if a user
discovers a valid instance (and its associated pattern) by
scanning a single project file, then scanning the entire project
with respect to this pattern will often yield at least one more
valid imitation elsewhere (valid instances of a given pattern
were spread across multiple files in almost all cases). When
this is not the case, the most likely alternative is that the pattern
will detect no further imitations (in which case the user need
not investigate any further). We found that only four of the 76
discovered patterns would have yielded only invalid imitations.
We also note that our implemented approach indeed allows
users to scan individual files (see Section III-D).

E. Qualitative Analysis

We conclude this section with two examples that illustrate
how the output of our approach leads to improved API usage
and the elimination of redundant code. We also summarize
reasons why imitations were rejected.

We were able to replace the following block of code below
in four separate cases in JASPERSERVER

UploadFileSpec[] uploadFile;
uploadFile = new UploadFileSpec|[]

{new UploadFileSpec (file)};
uploadForm.setParameter ("string",uploadFile) ;

with

uploadForm. setParameter ("string", file) ;

The latter implementation is more effective because it avoids
redundant construction of an array and an UploadFileSpec
instance. In ARGOUML, we were able to replace the following
block of code

Collection nodes = ...;
Iterator it = nodes.iterator() ;
while (it.hasNext())

sm.select ((Fig) (it.next()));

with

Collection nodes = ...;
sm.select (nodes) ;

The overloaded select method saves the client two method
calls and an unnecessary while-loop.
In JBOSS, we were able to replace the following code block:

Thread th=Thread.currentThread() ;
ClassLoader loader=th.getContextClassLoader () ;
Class tC=null;

try {
tC=Classes.getPrimitiveTypeForName (type) ;
if(tC == null)

tC=loader.loadClass (attrType) ;
} catch(ClassNotFoundException ignore) { }
PropertyEditor editor=null;
if(tC != null)
editor=PropertyEditorManager.findEditor (tC) ;

with
PropertyEditor editor = null;
try {
editor = PropertyEditors.getEditor (type) ;

} catch (ClassNotFoundException ignore) { }

The latter implementation saves four method calls and avoids
two null checks. It is also much easier to understand than
the previous implementation. Our approach also detected our
motivating example in Section II, which appears four times in
JASPERSERVER.

The most common rejected imitations were similar to the
one shown in Section IV-B, i.e., the meaning of method
names used by the client method made it clear that the
client performed a task different from the one offered by the
library method. Many imitations were deemed invalid because
the client method’s control structure required the individual
method calls to be used instead of a single call to the library
method. Often this structure took the form of temporary
variables used to store the results of method calls appearing in
the pattern, the contents of which would then be accessed for
additional processing not related to the imitation in question.
In a few cases, the fact that elements matched between client
and library methods were not in the same order in the code
invalidated the result.

F. Discussion

Value of the Approach: The current version of our
approach is the result of extensive iterative development aimed
at maximizing the number of detected imitations (through
sophisticated matching mechanisms), while limiting the num-
ber of false positives (through filtering heuristics).® At this
point we believe that the results reported in Tables II and III
indicate that the approach has crossed the threshold of practical
usability. It is important to note that the precision levels
reported in Table II cannot be compared directly with that of
more standard bug detectors such as FindBugs [4], since newly

8This experimentation was conducted on systems that were not used as part
of the evaluation.

detected valid imitations yield potentially reusable patterns.
As opposed to individual instances of bugs or other issues
in the code, it makes sense to invest more effort vetting
new imitations (patterns) as the cost of their detection and
validation can be spread over the number of instances found
in other systems or in subsequent locations or versions of a
system. In our preliminary investigation in Section IV-D, we
found that instances of four out of 76 patterns are actually
present in more than one target system. While we expect most
patterns to yield maximal benefits for a single evolving system,
our results suggest that some validated patterns can indeed be
reused to detect imitations in other systems. Moreover, we
found that the total number of invalid instances of validated
patterns (141 out of 545) is low enough to suggest that
developers will not have to scan through long lists of useless
recommendations to find ways to improve their code, if that
code is scanned against validated patterns. Finally, although
very few cases of actual library imitations were found in five
of our ten target systems, this is simply an indication that
the types of usage pattern we detect were not found on these
systems, possibly because they are too recent, too small, well-
maintained, or because the developers are proficient with the
APIs they use. In any case, we expect that our approach will
be maximally beneficial for very large systems that have had
a significant evolution (such as JBOSS).

Limitations of the Approach: A tacit limitation of our
approach is that it only detects a specific class of cases where
API usage can be improved: those involving client methods
that imitate functionality provided by individual library meth-
ods. Other types of improvements, and in particular usage
of a library that severely decreases run-time performance,
will not be detected by our approach. In addition, given its
heuristic nature, our approach also detects cases that cannot
lead to clear code improvements (i.e., where replacing code
with the imitated library method would lead to an incorrect
transformation). For this reason, it is paramount that users of
the approach understand the nature of the recommendations
and not blindly perform changes based on the results.

Threats to Validity: Two main factors potentially impact
the results reported in this section: our choice of target projects
and the manual assessment of the results of our approach. We
applied our approach to ten open-source projects that may not
be representative of all software systems. The relative youths
of the system we considered, and the number of programmers
typically looking at the source code of open-source systems,
give us confidence that the results we obtained may in fact
represent a low estimate of what we can find in many large,
long-lived systems. With respect to the manual classification
of imitations, we limited the risk of investigator bias by cross-
checking our classifications against those made by a second
investigator.

Future Work: Our approach can be further improved
by reducing the number of false positives in the set of de-

tected imitations. This can be achieved through improvements
to the filtering heuristics based on the experimental results
themselves. For example, our approach could determine if
temporary variables storing intermediate results are reused by
client methods, and filter those cases where this is true. We
have also considered abstracting method bodies as ordered lists
instead of sets, although initial exploration of this idea did
not indicate that it would necessarily yield improvements that
would justify the increased complexity.

V. RELATED WORK

A wide variety of tools and techniques has been proposed to
help developers detect and mitigate problems in source code.
These range from techniques modeling program execution [5]
to those combining static and dynamic analysis [6]. Lint [7],
a tool developed to help enforce type rules in C code, is an
early representative of lightweight static checking techniques.
In practice, many static checkers work by detecting situations
that are likely to be associated with errors. For example,
Xie and Engler [8] detect nonsensical redundancies in source
code and show that they are usually indicative of hard bugs.
Our approach works in a similar way, but seeks to improve
API usage based on imitation instead of bugs based on
redundancies.

Among the copious work on defect detection, a number
of tools specifically address API-related problems. For ex-
ample, FindBugs [4] and PR-Miner [9] analyze API usage
patterns within projects to detect inconsistencies (bugs) in
those projects. Tools have also been developed to help prevent
API-related bugs in the first place by finding usage examples
in existing code [10], [11]. SemDiff [12] provides support for
adapting client code to updated libraries by analyzing how the
code of the library evolved. Although SemDiff could also be
used to improve API usage, it can only make recommendations
based on patterns of updates to the library itself. The issue
of API deprecation has been studied by Perkins [13], who
proposes that API-deprecation be addressed by automatically
in-lining deprecated API elements in source code. Although
these techniques can all be effective in dealing with API-
related problems, none of them specifically addresses the
problem of improving API usage by eliminating redundant
code.

Other work relevant to the problem of improving library
usage includes work on the detection of code similarity for
the purpose of finding useful methods when initially writing or
porting code. For example, Michail and Notkin [14] use name
standardization and free-text indexing to compare methods
(and classes) across libraries. Similarly, CodeBroker [15] relies
on comments and identifiers to recommend components for
reuse. The textual content of identifiers that refer to standard
Java API elements in client code has also been proposed as
an indexing scheme for that API [16]. In contrast, we seek to
recommend alternate, more effective API usage for client code
based on structural imitations appearing within that code.

Code similarity analysis also guides example recommenda-
tion tools such as Strathcona [3] and XSnippet [17]. These

tools abstract a developer’s code content and context as a
set of structural facts, and use these facts to extract similar
code fragments from large repositories. Like Strathcona, we
detect code similarity at the granularity of element references,
although we do so with extended matching relations intended
to capture sophisticated imitations. Our results (Section IV-B)
demonstrate that additional imitations were discovered by
means of the extended relations. Other tools addressing exam-
ple recommendations, such as Prospector [18] and ParseWeb
[19], detect code that exhibits object-instantiation sequences
based on user queries, rather than code similarity. In contrast
to these tools, we recommend single API methods based on
imitations, as opposed to implicit or explicit queries by a
developer.

Finally, there exists a wide array of techniques for detect-
ing duplicate code (code clones) within projects [20]. Most
approaches in this area require the source code of the project
analyzed, which is not necessarily available when analyzing
libraries. One well-known approach proposed by Baxter et
al. [21] uses similarity within the abstract syntax trees of
code fragments to find duplication at the textual level. Like
most approaches in this area, Baxter’s approach scans the
source code of the project being analyzed, which is not
necessarily available when analyzing libraries. Furthermore,
as clone detection in general detects duplicate code rather
than imitations, it would not detect the cases we detect using
specialization or indirect and nested matches.

VI. SUMMARY

API imitations can arise through a number of factors and
typically add unnecessary complexity to client code, a known
hindrance to maintainability. We proposed a novel approach to
automatically detect such API imitations in software projects.
Our approach involves automatically detecting code that im-
itates API methods without calling them. We detect such
imitations by extending existing code similarity detection
techniques with new matching relations between abstractions
of the implementation of client and library methods. Our
approach also includes a mechanism for abstracting the de-
tected imitations as patterns, thus allowing future analyses to
benefit from previously validated discoveries. Patterns encode
a reference to the imitated library method, so that this method
can be recommended to developers when an imitation is
detected. We implemented our approach, along with additional
tool support for visualizing detected imitations and reusing
validated patterns, in an Eclipse plug-in called iMaus.

We evaluated the usefulness of our approach by applying it
to 10 open-source systems comprising over 1.5 million lines of
Java code. This investigation showed that our approach was
able to detect over 400 actual imitations of library methods
in the code of popular open-source systems. Moreover, the
recommendations associated with the detected imitations led
to many concrete improvements in the quality of the client
code.

ACKNOWLEDGMENTS

The authors extend special thanks to Tristan Ratchford for
his help with the evaluation, and for comments on the paper.
The authors also thank Barthélémy Dagenais, Ekwa Duala-
Ekoko, and the anonymous reviewers for comments on the
paper. This work was supported by NSERC.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

J. Bloch, “How to design a good API and why it matters,” in Companion
to the 21st ACM SIGPLAN International Conference on Object-Oriented
Programming Systems, Languages, and Applications, 2006, pp. 506—
507.

D. Kawrykow and M. P. Robillard, “Detecting Inefficient API Usage,”
in Proceedings of the 31st ACM/IEEE International Conference on
Software Engineering—Companion Volume, 2009, pp. 183-186.

R. Holmes, R. Walker, and G. Murphy, “Approximate Structural Context
Matching: An Approach to Recommend Relevant Examples,” [EEE
Transactions on Software Engineering, vol. 32, no. 12, pp. 952-970,
2006.

D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,” in Proceedings of
the 19th ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2004, pp. 132—
136.

Y. Xie and A. Aiken, “Scalable Error Detection Using Boolean Sat-
isfiability,” in Proceedings of the 32nd Symposium on Principles of
Programming Languages, 2005, pp. 351-363.

E. Bodden, P. Lam, and L. Hendren, “Finding Programming Errors Ear-
lier by Evaluating Runtime Monitors Ahead-of-Time,” in Proceedings of
the 16th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering, 2008, pp. 26-47.

S. Johnson, “Lint, a C Program Checker,” Bell Telephone Laboratories,
Tech. Rep. 65, 1978.

Y. Xie and D. Engler, “Using Redundancies to Find Errors,” IEEE
Transactions on Software Engineering, vol. 29, no. 10, pp. 915-928,
2003.

Z. Li and Y. Zhou, “PR-Miner: Automatically Extracting Implicit
Programming Rules and Detecting Violations in Large Software Code,”
ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp. 306-315,
2005.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as Partial
Orders from Source Code: From Usage Scenarios to Specifications,”
in Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2007, pp. 25-34.

T. Xie and J. Pei, “MAPO: Mining API Usages from Open Source
Repositories,” in Proceedings of the 3rd International Workshop on
Mining Software Repositories, 2006, pp. 54-57.

B. Dagenais and M. P. Robillard, “Recommending Adaptive Changes
for Framework Evolution,” in Proceedings of the 30th International
Conference on Software Engineering, 2008, pp. 481-490.

J. Perkins, “Automatically Generating Refactorings to Support API Evo-
lution,” in Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, 2005, pp.
111-114.

A. Michail and D. Notkin, “Assessing Software Libraries by Browsing
Similar Classes, Functions and Relationships,” in Proceedings of the 21st
International Conference on Software Engineering, 1999, pp. 463—472.
Y. Ye and G. Fischer, “Supporting Reuse by Delivering Task-relevant
and Personalized Information,” in Proceedings of the 24th International
Conference on Software Engineering, 2002, pp. 513-523.

H. Ma, R. Amor, and E. Tempero, “Indexing the Java API Using Source
Code,” in Proceedings of the 19th Australian Conference on Software
Engineering, 2008, pp. 451-460.

N. Sahavechaphan and K. Claypool, “XSnippet: Mining for Sample
Code,” in Proceedings of the 21st ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications, 2006, pp. 413-430.

D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, “Jungloid Mining:
Helping to Navigate the API Jungle,” in Proceedings of the 26th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2005, pp. 48-61.

S. Thummalapenta and T. Xie, “Parseweb: A Programmer Assistant for
Reusing Open Source Code on the Web,” in Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2007, pp. 204-213.

R. Koschke, Software Evolution. Springer, 2008, ch. 2. Identifying and
Removing Software Clones, pp. 15-36.

I. Baxter, A. Yahin, L. Moura, M. SantAnna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” in Proceedings of the 14th
IEEE International Conference on Software Maintenance, 1998, pp.
368-377.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

