
Towards Dynamic Plug-in Replacement in
Eclipse Plug-in Development

Allan Raundahl Gregersen
The Maersk McKinney Moller Institute

University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark

allang@mmmi.sdu.dk

Bo Nørregaard Jørgensen
The Maersk McKinney Moller Institute

University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark

bnj@mmmi.sdu.dk

ABSTRACT
Although the Eclipse IDE offers an extremely useful built-in
support for developing Eclipse plug-ins, it lacks the ability to
perform dynamic updates of plug-ins in a running instance of the
application being developed. Because of the nature of the Eclipse
architecture and its strict class-loader delegation, plug-ins can
only communicate through well-defined APIs. By applying a
novel dynamic update approach to the eclipse plug-in
development environment that exploits this knowledge, a new
API are defined, namely the Dynamic API. This paper discusses
some of the ordinary binary compatible changes that lead to
erroneous program behaviour if not properly handled.
Furthermore, it discusses how applying a dynamic update
approach at development time gives developers a unique chance
to experiment with dynamic updates without risking a costly
shutdown of a real-life application.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Modules and interfaces. D2.6 [Software Engineering]:
Programming Environments –Integrated environments

General Terms
Design, experimentation, verification.

Keywords
Binary compatibility, dynamic updating, plug-ins, eclipse.

1. INTRODUCTION
Recent versions of the Eclipse IDE come with a built-in support
for plug-in development. This not only gives developers a great
tool for writing plug-ins for the Eclipse IDE, but also brings the
possibility to write entirely new applications as eclipse plug-ins
on top of the Eclipse RCP. Although this plug-in development
environment (PDE) already offers a lot of rich features, it does
not support the ability to dynamically update a running plug-in at
development time. The eclipse team has taken a step towards full
dynamicity since 3.0 and now encourages well behaved dynamic
plug-ins, so-called fully dynamic plug-ins, [6]. A system
consisting of fully dynamic plug-ins can in theory perform in
place updates of running plug-ins under some circumstances.
Unfortunately it lacks the ability to migrate state, and furthermore
no class of a plug-in can be directly referenced by a dependent
plug-in without having to restart the workbench, which makes
both updating and programming impractical. In order to support

transparent and flexible live updates a more powerful mechanism
is needed.
The problem of dynamic software updating is well known and in
literature there have been a number of different proposals trying
to solve it, e.g. [2], [4], [9], [13], [14], [15]. Although they all
contribute with valuable insight to the problem domain, none of
the proposals have been widespread accepted. The main reason
for this might well be that they have been impractical or not been
truly transparent from a developer’s point of view which is
supported by the statement in [17] “Perhaps the most important
lesson learned from this effort was that we significantly
overestimated the amount of work developers would do in order
to gain the benefits offered by an online software upgrading
system”.
This paper proposes to introduce dynamic update capabilities at
development time to give software engineers a unique opportunity
to learn what can be done and more importantly what cannot be
done when they apply code changes on the fly in a running
instance of the program being developed. The novel dynamic
update approach first presented in [8] is designed with the Eclipse
infrastructure in mind thus it is a good candidate for inclusion in
the Eclipse platform. It makes some assumptions regarding to
binary compatibility, [7] on plug-in APIs in which this paper will
elaborate on. Furthermore, this paper will give examples on how
to deal with API changes that on the surface look unproblematic
but when looking beneath show a number of subtleties that need
to be tackled.
The remainder of this paper is organized as follows. Section 2
will briefly sketch the main ideas behind the dynamic update
approach and thereafter present some of the API changes that
need more attention regarding the approach. Section 3 will
propose solutions to the problems defined followed by section 4
which gives a brief overview of practical implications. Section 5
then turns to the work related of this paper and section 6
concludes.

2. PROBLEMS OF BINARY COMPATIBLE
API CHANGES
In order to understand the problems of specialized changes to
plug-in APIs in relation to the specific dynamic update approach
presented in [8], some introduction is needed.

2.1 Dynamic updating of active plug-ins
Component systems including the Eclipse platform are typically
built on top of a runtime environment controlling the lifecycle of
its components. In Eclipse its components, namely plug-ins,
communicate through APIs which are defined in a separate

configuration file of each plug-in. To facilitate such
communication and the ability to plug in new functionality at
runtime a class loading policy, which assigns a class loader on a
per plug-in basis, is required. While such a policy enables the
runtime system to load new classes and thereby plug-ins, it does
not support reloading already running plug-ins due to class-loader
constraints held by Java. Per se Java only allows a limited
reloading capability in the JPDA [18] which does not support
reloading of classes in which methods, fields or inheritance
relationships have been added or removed. Furthermore,
additional constraints discussed as the version barrier in [16]
prohibit type compatibility of any two classes loaded by different
class loaders including loading of the same physical class file
using two different loaders, thus excluding the possibility to just
assign a new class loader with a plug-in that needs an update.
The approach in [8] overcomes these problems by letting multiple
representations of classes and objects coexist for each version
currently in use by any dependent plug-ins. This is done by using
a technique mentioned as “In-Place Proxification” in combination
with correct object correspondence handling. The idea behind the
“In-Place Proxification” is to turn a running plug-in into a proxy
of the new version on the fly. In order to do so code is
automatically injected into every method and constructor
reachable from a plug-in’s API. This code contains a simple
check to see if it should act as a proxy forwarding the request to
the latest version in terms of a reflective call or run normally. As
stated above the version barrier makes classes, and thereby their
types (loaded by different class loaders) incompatible, which is
why the approach keeps track of corresponding objects in so-
called correspondence maps. Each live object in a currently
running version of a plug-in is mapped at update time in an
appropriate map to a corresponding object automatically created
from the state of the former one. These maps are then used as fast
lookup in the process of state migration at update time and at
runtime for fast parameter and return value lookup when formal
parameter types and return types have been declared in a plug-in

from another version than what the caller or callee expects. Figure
1 illustrates the main ideas in the approach after applying one
update of a single plug-in. It shows how communications across
plug-in boundaries take place and the workflow of a method call
from a class in plug-in A to a class in plug-in B given that plug-in
B has gone through an update. Note in the figure that the return
type of the method call has been put in as B_v1 which actually
states that this type is declared by plug-in B in version 1.
Furthermore the type of the parameter “a1” used in the first
method call is likewise declared in plug-in B. This setup has been
chosen on purpose to show how these objects cross the version
barrier. What happens when the invocation reach method m in
plug-in B version 1 is that the injected code checks if the class
declaring the particular method is marked as a proxy, which
should obviously be the case in this particular setup. Then the
injected code asks the type-handler class which is central to the
update manager to get a corresponding parameter value that will
be type compatible with the formal parameter of the same method
in plug-in B version 2. This is reflected in the figure by the arrow
pointing to the upper correspondence map. Imagine what would
happen if the parameter received by the original method in
version 1 was directly redirected to the new version. An error
would occur due to the version barrier. After retrieving the
corresponding object, the new version of the method m is invoked
from the injected code. As seen, the value returned is “b2” which
has a type declared in plug-in B version 2. Off course, this object
cannot be returned to plug-in A directly because the type of “b2”
is not compatible with the one expected by plug-in A. This is why
the type handler is asked to do a lookup in the reverse
correspondence map to find the correct proxy version of the
object which in turn gets returned by the original method m.
This concludes the brief introduction of the approach, but it
should be noted that many important details concerning
dependencies involving more than two plug-ins and type
inheritance across plug-in boundaries and other specific problems
have been left out. Please refer to [8] for more information.

Figure 1: Workflow of dynamic update approach when plug-in B has been updated once.

2.2 The effects of changes in a new plug-in
version
Having introduced the concepts of the dynamic update approach,
this section turns to a discussion on how different changes to a
plug-in affect the update mechanism.
As mentioned, the approach automatically injects code at load-
time into the API of a plug-in in order to capture all incoming
communications. Let us first argue where this code needs to be
present. In figure 2 a small plug-in is illustrated.

Figure 2: Plug-in with one API and one internal package.

At first sight only methods declared in class A are affected by
cross plug-in communication as this is the only class in the public
API. In fact, this might turn out to be true if class A does not
contain any method that returns an object castable to class A. But
consider if class A declares the following method:
 public static A getCurrent();

The object returned from this method is either instance of class A
or class B thus making class B reachable from other plug-ins. This
actually results in an increase of the number of classes that need
to have code injected. Throughout the rest of this paper the
following terminology applies:

Direct API is the set of classes directly visible from a plug-in’s
API, whereas the indirect API covers the set of all classes not
included in the direct API, and in which they are subclasses of
any class returned directly from the API. Together the direct and
the indirect API form the dynamic API.
Basically, the approach must statically analyse a plug-in and
inject code in every method and constructor in the dynamic API
to let a plug-in become dynamic enabled. To illustrate the effects
of code changes from one version to another, the plug-in from
figure 2 will work as a running example. First consider what
happens if changes are made to the direct API. In fact, adding
methods, fields and constructors in a new version of class A
would not cause any problems as dependent plug-ins of the
original version of A would still use the existing code as proxy
without even knowing it. Only an updated dependent would see
the additional functionality. On the contrary, consider if a method
is removed from class A. This poses a problem for running
dependents of this class as they expect the method to be
reachable. One could argue that this type of problem has nothing
to do with how the system is updated as a complete restart and
deployment of the latest versions of the plug-ins will result in the
same problem. However, the problem must be addressed in order
to support continued execution even if a new version of a plug-in
contains API changes that are not binary compatible.

More interesting scenarios show up when considering changes to
the indirect API. Imagine that the developer of plug-in A decides
to rename (or even remove) class B which is a perfectly binary
compatible change in according to the java language specification
in [7] as there are no problems from a linking point of view. The
main issue here in relation to the dynamic update approach is the
fact that currently running dependents could hold references to
objects of the deleted classes in any previous version thus making
them proxies to something that do not exist.
Another issue arises when adding new classes to the indirect API.
Consider the addition of a new subclass of class A, say class D.
When a dependent plug-in of a former version of plug-in A asks
for an implementation of class A, the injected code might get an
instance of the newly added class D from the latest version. This
of course poses a problem for the injected code as it definitely
fails to retrieve a compatible corresponding proxy instance simply
because the class did not exist at the time of installing the
dependent. To summarise, there exist two main categories of
problems which need to be addressed by the approach. On one
hand we have ordinary direct API breaking changes that would
also pose problems for a none-dynamic update mechanism. On
the other we have changes to internal parts of a plug-in resulting
in possible erroneous execution if left unhandled. The following
section will address these problems in turn

3. CHANGE SET AND DYNAMIC API
VERIFICATION
Changes to the direct API are by default not supported in the
approach. This means that if the update manager finds an API
breaking change, the update is refused just like it would be in the
existing update manager of the Eclipse IDE, providing that plug-
in versioning follows the recommended guidelines in [5]. Part of
the solution for successfully supporting dynamic updates of plug-
ins is to support atomic dynamic updates of a set of plug-ins at
once. This set of plug-ins, referred to as the plug-in change set,
must enclose all plug-ins for which binary compatibility conflicts
exist. Hence, a plug-in subject to a dynamic update and its
dependent plug-ins with which it has binary compatibility
conflicts is part of the plug-in change set. Thus, the change set is
the set of plug-ins that must be redefined together for the dynamic
update process to succeed. In practice though, this solution may
result in postponing a particular update infinitively if e.g. a third
party plug-in, of which further development has stopped, belongs
to the plug-in change set. This is in fact a problem of general
concern to any component platform regardless of the update
mechanism used, which is also why API breaking changes are
strongly discouraged.
The problems related to the indirect API are addressed somewhat
differently. The overall goal of the approach is to allow all
updates of plug-ins that do not break direct API compatibility
(that is without having to wait for a new version of a dependent
plug-in). In order to discover dynamic API incompatibility, the
static code analyser (the component that also injects code into the
dynamic API) must mark possible future dynamic
incompatibilities so that the dynamic update manager can use this
information when updating particular plug-ins. This actually just
extends the idea described in [8] where such information is saved
to a file in order to solve type sharing between three or more plug-
ins or when inheritance across plug-ins occurs which is out of

scope of this paper. Having the right information at the time of an
update, the update manager can always perform the correct
operation. First consider the scenario where a class is deleted
from the indirect API leaving running dependents with possible
dangling references (the original objects are still there, but as
proxies they cannot reference the new version of the object). This
problem can be dealt with in two ways which are briefly outlined
and thereafter discussed.

1. Allow the update and let dependent plug-ins continue
their execution unnoticed.

2. Allow the update and perform additionally virtual
updates of dependent plug-ins.

Well, of course, a third alternative could be to disallow the update
in the first place which is really not an option in the sense that one
of the most important goals is to support every possible none
direct API breaking update. Looking at the first option it leads to
a discussion of how the errors should be handled if or when they
occur. Given that the approach is applied at development time one
could argue that simply printing out a meaningful error would be
a good choice. Indeed, the developer would be confronted with
the error, but she will have no chance to deal with it at runtime
resulting in a program breakdown. Instead, the approach could
incorporate the second of the two options given above. The idea
in a virtual update, as also described in [8] although used for a-
different purpose, is to bring all dependents up to date with the
plug-in causing a type-related problem as the one seen here. The
idea is quite simple and mainly consists of replacing the class
loaders of the dependent plug-ins so that the new types are
recognized directly by all dependents. The virtual update process
itself does not differ from a normal dynamic update, but a virtual
update is easier in the sense that there are for sure no code
changes between versions due to the fact that the same code base
(same jar or simply a transient copy of the jar) is used. By using
this approach no in-place proxy will ever end up in a situation
where a corresponding method does not exist. However, problems
may still surface because of the possible loss of state in a
dependent plug-in of which a virtual update has been applied.
Consider what happens in the following update scenario. The
developers of plug-in A from figure 2 decide to delete class B
from the indirect API and apply the update of plug-in A. Now a
dependent plug-in of plug-in A, say plug-in B, holds a field of
type A that before a dynamic update of plug-in B references an
instance of class B. When the dynamic update process gets to the
point where this particular field is migrated to the new version, it
finds out that this class no longer exists. In general, there is no
automatic way of replacing this field value with a corresponding
object that could truly replace the former value. Therefore, the
approach simply nulls such occurrences leaving a risk of
unforeseen null pointer exceptions in the new client code. One
could argue that following good practice for dynamic awareness
as stated in [6] would solve the problem, but using this advice is
not enough, because it does not take state migration into account.
Now consider the example where a class is added to the indirect
API. Recall that in this case a proxy instance could not be
obtained because the corresponding class was inexistent in the
version used by running dependents. Contrary to when a class was
deleted from the indirect API, this issue manifests itself at runtime
after a dynamic update process. In fact, it shows only when the
new version of a plug-in returns an instance of the newly added

class to another plug-in through its direct API. More specifically,
it returns to the proxy version of the direct API method called in
the first place. To support this kind of change to the indirect API a
mechanism to create a corresponding proxy class on the fly in the
correct namespace is needed. This automatically created class
should in turn be loaded by the class loader of the original
version. Java provides some support for dynamic proxy
generation through dynamic proxy classes [19]. Unfortunately
dynamic proxy classes are limited to generating implementations
of interfaces only, thus a more powerful mechanism is needed.
Before choosing specific tools, in which in-place proxies can be
automatically generated, it is in its place to give a brief outline of
what kind of transformation it needs to support.
In-place proxy classes require a number of fields to support the
dynamic update approach (all dynamic-enabled classes have these
fields). All methods implemented by the newly added class
should also be present in the proxy class. Furthermore, any
interface implemented or super class extended by the newly added
class that is not known by the “old” namespace of the original
plug-in must be stripped out to avoid linkage errors or no-class-
definition-found exceptions. At this point the attentive reader
might wonder why the newly added class is not loaded directly
with the class loader of the former version of the plug-in. In this
case only unknown interfaces and extended classes should be cut
off using some byte code manipulation tool and indeed it would
provide a solution. The problem with this approach is the
unnecessary memory footprint you get from the fields present
before any dynamic enablement occurs, in addition to the
application code written in every constructor and method.
Therefore, it is by far better to generate a completely clean in-
place proxy from the details of the class it should reference. The
ASM byte code manipulation tool, [1] provides all the
functionality needed to generate such classes. Furthermore, a
number of relevant class and method transformations are
presented in [12]. In this way the approach supports additional
classes, whether they represent direct or indirect API classes,
without introducing any runtime issues from a syntactic point of
view. This concludes the description of solutions to the problems
in relation to direct and indirect API changes.

4. PRACTICAL IMPLICATIONS
Having discussed solutions to the problems stated, this section
briefly outlines how developers will use this feature in practice.
One of the main benefits of the approach is that it is practically
transparent from a developer point of view. This makes it easily
plug-in-able to the eclipse infrastructure, which is also reflected in
the prototype implementation already spoken of in [8]. In fact the
approach is completely automated and does not expect any
metadata about the system other than that already present in the
mandatory bundle manifest file. Adding it to the eclipse IDE as
part of a development feature requires only a communication
channel from the IDE instance to the currently running
application. Once this channel is established it only takes one
method invocation to the enhanced core plug-in in the running
instance to perform the update.
Although the code injection and the actual update are completely
automated the subtleties of dynamic API changes discussed can
result in runtime exceptions after applying a dynamic update. In
order for developers to understand them, they need some basic

knowledge of why these exceptions occur. For that reason
introducing the approach at development time at first, gives
developers a fair chance to familiarize with the implications.

5. RELATED WORK
In literature a lot of proposals to dynamic software updating exist.
Some offer this support to languages that are not object-oriented
e.g. [3], [9], thus not directly comparable to our work. Others
extend a virtual machine to allow dynamic class replacement
(e.g., [12, 16]). Malabarba et al. [12] propose dynamic Java
classes in which a class can be replaced at runtime. Contrary to
our approach, their update granularity is a single class. Due to
Java’s binary compatibility rules this reduces the set of applicable
updates as it locks the class signature for all classes, not only
those defined in an API.
A number of approaches suggest new language constructs to
support runtime adaptation, e.g. [4]. Although these approaches
are very useful for identifying the set of requirements for dynamic
software updating, they are not likely to make it into the
mainstream languages. Other techniques require a meta level
programmer to write either the updated code as a separate layer as
seen in [15] or to write patches/adapters as done in [2].
The approach presented in [14] shares similarities with our work
as it does not require VM support nor does it need to introduce
new language constructs. The approach uses a hot swapping
mechanism based on indirection via object wrappers. One benefit
of this approach is its negligible performance overhead. However,
unlike our work, this comes at a price of less flexibility as class
signatures cannot change without significant loss of state.
Bialek et al. in [2] present an approach based on partitioning Java
applications to make those partitions the updateable unit.
Although the approach provides a flexible solution to dynamic
software evolution, it burdens the programmer with the
responsibility of writing version adapters and state transfer
functions, which is in deep contrast to the statement about how
much work a developer would do to gain the benefits of dynamic
updating capabilities.
The work done in JSR 277, [10], and JSR 291, [11], will
hopefully bring a new module level into the Java language. If
support for modules is added, the approach in this paper could be
applied even outside the eclipse platform or any other component
platform which has already implemented a module system itself.

6. CONCLUSION
This paper has suggested including a novel dynamic software
updating approach into the eclipse infrastructure so that
developers of eclipse plug-ins can do live updates while
developing. The basic mechanism of the approach is the In-Place
Proxification technique which lets already running objects
become live proxies after an update. Furthermore a number of
subtleties that manifest itself in the so-called dynamic API have
been discussed and solutions are proposed so that any non
breaking API change to a plug-in is directly supported. In addition
virtual updates of dependent plug-ins are proposed as a mean to
support API breaking changes, thereby enlarging the total change
set when such changes occur.

7. REFERENCES
[1] ASM project web site, http://asm.objectweb.org/

[2] Bialek, R., Jul, E., J.-G. Schneider, J. –G., Jin, Y.:
Partitioning of Java applications to support dynamic updates.
In proceedings of APSEC’04, pp. 616-623.

[3] Chen, H., Yu, J., Chen, R., Zang, B., and Yew, P. 2007.
POLUS: A POwerful Live Updating System. In Proceedings
of ICSE’07, pp. 271-281.

[4] Duggan D.: Type-based hot swapping of running modules. In
proceedings of ICFP’01, ACM Press, pp. 62–73.

[5] Eclipse Foundation, Inc.: Eclipse Version Numbering.
http://wiki.eclipse.org/index.php/Version_Numbering

[6] Eclipse Foundation, Inc.: FAQ What is a dynamic plug-in?
http://wiki.eclipse.org/FAQ_What_is_a_dynamic_plug-
in%3F

[7] Gosling J., Joy B., Steele G., Bracha G.: The Java™
Language Specification, Third Edition. Prentice Hall (2005),
ISBN 978-0-321-24678-3

[8] Gregersen, A. R., Jørgensen, B. N.: “Extending eclipse RCP
with dynamic update of active plug-ins”, in Journal of Object
Technology, vol. 6, no. 6, July-August 2007, pp. 67-89.
http://www.jot.fm/issues/issue_2007_07/article1

[9] Hicks M., Nettles S.: Dynamic Software Updating. In ACM
Transactions on Programming Languages and Systems, Vol.
27, No. 6. (2005) pp. 1049–1096.

[10] Java Community Process. JSR 277: Java Module System.
Available at: http://jcp.org/en/jsr/detail?id=277.

[11] Java Community Process. JSR 291: Dynamic Component
Support for Java SE. Available at:
http://jcp.org/en/jsr/detail?id=291.

[12] Kuleshov, E.: Using ASM framework to implement common
bytecode transformation patterns. Available at:
http://aosd.net/2007/program/industry/index.php

[13] Malabarba S., Pandey R., Gragg J., Barr E., and Barnes F.:
Runtime Support for Type-Safe Dynamic Java Classes. In
proceedings of ECOOP’00. Lecture Notes in Computer
Science, Vol. 1850. Springer-Verlag, (2000) pp. 337-361.

[14] Orso, A., Rao,A., Harrold M.J.: A Technique for Dynamic
Updating of Java Software. In proceedings of ICSM’02, pp.
649-658.

[15] Redmond B., Cahill V.: Supporting Unanticipated Dynamic
Adaption of Application Behavior. B. Magnusson (Ed.). In
proceedings of ECOOP’02, Lecture Notes in Computer
Science Vol. 2374. Springer-Verlag (2002) pp. 205-230.

[16] Sato Y., Chiba S.: Loosely-separated "Sister" Namespaces in
Java. In proceed. of ECOOP’05. Lecture Notes in Computer
Science, Vol. 3586. Springer-Verlag, (2005) pp. 49-70.

[17] Segal, M. E.: Online Software Upgrading: New Research
Directions and Practical Considerations. In Proceedings of
COMPSAC’02, pp. 977-981.

[18] Sun Microsystems inc.: Java Platform Debugger
Architecture.
http://java.sun.com/javase/6/docs/technotes/guides/jpda/

[19] Sun Microsystems inc.: Dynamic Proxy Classes.
http://java.sun.com/javase/6/docs/technotes/guides/reflection
/proxy.html

	1. INTRODUCTION
	2. PROBLEMS OF BINARY COMPATIBLE API CHANGES
	2.1 Dynamic updating of active plug-ins
	2.2 The effects of changes in a new plug-in version

	3. CHANGE SET AND DYNAMIC API VERIFICATION
	4. PRACTICAL IMPLICATIONS
	5. RELATED WORK
	6. CONCLUSION
	7. REFERENCES

