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ABSTRACT 
Although the Eclipse IDE offers an extremely useful built-in 
support for developing Eclipse plug-ins, it lacks the ability to 
perform dynamic updates of plug-ins in a running instance of the 
application being developed. Because of the nature of the Eclipse 
architecture and its strict class-loader delegation, plug-ins can 
only communicate through well-defined APIs. By applying a 
novel dynamic update approach to the eclipse plug-in 
development environment that exploits this knowledge, a new 
API are defined, namely the Dynamic API. This paper discusses 
some of the ordinary binary compatible changes that lead to 
erroneous program behaviour if not properly handled. 
Furthermore, it discusses how applying a dynamic update 
approach at development time gives developers a unique chance 
to experiment with dynamic updates without risking a costly 
shutdown of a real-life application. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
Modules and interfaces. D2.6 [Software Engineering]: 
Programming Environments –Integrated environments 

General Terms 
Design, experimentation, verification. 

Keywords 
Binary compatibility, dynamic updating, plug-ins, eclipse. 

1. INTRODUCTION 
Recent versions of the Eclipse IDE come with a built-in support 
for plug-in development. This not only gives developers a great 
tool for writing plug-ins for the Eclipse IDE, but also brings the 
possibility to write entirely new applications as eclipse plug-ins 
on top of the Eclipse RCP. Although this plug-in development 
environment (PDE) already offers a lot of rich features, it does 
not support the ability to dynamically update a running plug-in at 
development time. The eclipse team has taken a step towards full 
dynamicity since 3.0 and now encourages well behaved dynamic 
plug-ins, so-called fully dynamic plug-ins, [6]. A system 
consisting of fully dynamic plug-ins can in theory perform in 
place updates of running plug-ins under some circumstances. 
Unfortunately it lacks the ability to migrate state, and furthermore 
no class of a plug-in can be directly referenced by a dependent 
plug-in without having to restart the workbench, which makes 
both updating and programming impractical. In order to support 

transparent and flexible live updates a more powerful mechanism 
is needed.  
The problem of dynamic software updating is well known and in 
literature there have been a number of different proposals trying 
to solve it, e.g. [2], [4], [9], [13], [14], [15]. Although they all 
contribute with valuable insight to the problem domain, none of 
the proposals have been widespread accepted. The main reason 
for this might well be that they have been impractical or not been 
truly transparent from a developer’s point of view which is 
supported by the statement in [17] “Perhaps the most important 
lesson learned from this effort was that we significantly 
overestimated the amount of work developers would do in order 
to gain the benefits offered by an online software upgrading 
system”.  
This paper proposes to introduce dynamic update capabilities at 
development time to give software engineers a unique opportunity 
to learn what can be done and more importantly what cannot be 
done when they apply code changes on the fly in a running 
instance of the program being developed. The novel dynamic 
update approach first presented in [8] is designed with the Eclipse 
infrastructure in mind thus it is a good candidate for inclusion in 
the Eclipse platform. It makes some assumptions regarding to 
binary compatibility, [7] on plug-in APIs in which this paper will 
elaborate on. Furthermore, this paper will give examples on how 
to deal with API changes that on the surface look unproblematic 
but when looking beneath show a number of subtleties that need 
to be tackled.  
The remainder of this paper is organized as follows. Section 2 
will briefly sketch the main ideas behind the dynamic update 
approach and thereafter present some of the API changes that 
need more attention regarding the approach. Section 3 will 
propose solutions to the problems defined followed by section 4 
which gives a brief overview of practical implications. Section 5 
then turns to the work related of this paper and section 6 
concludes. 

2. PROBLEMS OF BINARY COMPATIBLE 
API CHANGES 
In order to understand the problems of specialized changes to 
plug-in APIs in relation to the specific dynamic update approach 
presented in [8], some introduction is needed.  

2.1 Dynamic updating of active plug-ins 
Component systems including the Eclipse platform are typically 
built on top of a runtime environment controlling the lifecycle of 
its components. In Eclipse its components, namely plug-ins, 
communicate through APIs which are defined in a separate 



configuration file of each plug-in. To facilitate such 
communication and the ability to plug in new functionality at 
runtime a class loading policy, which assigns a class loader on a 
per plug-in basis, is required. While such a policy enables the 
runtime system to load new classes and thereby plug-ins, it does 
not support reloading already running plug-ins due to class-loader 
constraints held by Java. Per se Java only allows a limited 
reloading capability in the JPDA [18] which does not support 
reloading of classes in which methods, fields or inheritance 
relationships have been added or removed. Furthermore, 
additional constraints discussed as the version barrier in [16] 
prohibit type compatibility of any two classes loaded by different 
class loaders including loading of the same physical class file 
using two different loaders, thus excluding the possibility to just 
assign a new class loader with a plug-in that needs an update.  
The approach in [8] overcomes these problems by letting multiple 
representations of classes and objects coexist for each version 
currently in use by any dependent plug-ins. This is done by using 
a technique mentioned as “In-Place Proxification” in combination 
with correct object correspondence handling. The idea behind the 
“In-Place Proxification” is to turn a running plug-in into a proxy 
of the new version on the fly. In order to do so code is 
automatically injected into every method and constructor 
reachable from a plug-in’s API. This code contains a simple 
check to see if it should act as a proxy forwarding the request to 
the latest version in terms of a reflective call or run normally. As 
stated above the version barrier makes classes, and thereby their 
types (loaded by different class loaders) incompatible, which is 
why the approach keeps track of corresponding objects in so-
called correspondence maps. Each live object in a currently 
running version of a plug-in is mapped at update time in an 
appropriate map to a corresponding object automatically created 
from the state of the former one. These maps are then used as fast 
lookup in the process of state migration at update time and at 
runtime for fast parameter and return value lookup when formal 
parameter types and return types have been declared in a plug-in 

from another version than what the caller or callee expects. Figure 
1 illustrates the main ideas in the approach after applying one 
update of a single plug-in. It shows how communications across 
plug-in boundaries take place and the workflow of a method call 
from a class in plug-in A to a class in plug-in B given that plug-in 
B has gone through an update. Note in the figure that the return 
type of the method call has been put in as B_v1 which actually 
states that this type is declared by plug-in B in version 1. 
Furthermore the type of the parameter “a1” used in the first 
method call is likewise declared in plug-in B. This setup has been 
chosen on purpose to show how these objects cross the version 
barrier. What happens when the invocation reach method m in 
plug-in B version 1 is that the injected code checks if the class 
declaring the particular method is marked as a proxy, which 
should obviously be the case in this particular setup. Then the 
injected code asks the type-handler class which is central to the 
update manager to get a corresponding parameter value that will 
be type compatible with the formal parameter of the same method 
in plug-in B version 2. This is reflected in the figure by the arrow 
pointing to the upper correspondence map. Imagine what would 
happen if the parameter received by the original method in 
version 1 was directly redirected to the new version. An error 
would occur due to the version barrier. After retrieving the 
corresponding object, the new version of the method m is invoked 
from the injected code. As seen, the value returned is “b2” which 
has a type declared in plug-in B version 2. Off course, this object 
cannot be returned to plug-in A directly because the type of “b2” 
is not compatible with the one expected by plug-in A. This is why 
the type handler is asked to do a lookup in the reverse 
correspondence map to find the correct proxy version of the 
object which in turn gets returned by the original method m.  
This concludes the brief introduction of the approach, but it 
should be noted that many important details concerning 
dependencies involving more than two plug-ins and type 
inheritance across plug-in boundaries and other specific problems 
have been left out. Please refer to [8] for more information. 

 
Figure 1: Workflow of dynamic update approach when plug-in B has been updated once. 



2.2 The effects of changes in a new plug-in 
version 
Having introduced the concepts of the dynamic update approach, 
this section turns to a discussion on how different changes to a 
plug-in affect the update mechanism. 
As mentioned, the approach automatically injects code at load-
time into the API of a plug-in in order to capture all incoming 
communications. Let us first argue where this code needs to be 
present. In figure 2 a small plug-in is illustrated. 

 
Figure 2:  Plug-in with one API and one internal package. 

At first sight only methods declared in class A are affected by 
cross plug-in communication as this is the only class in the public 
API. In fact, this might turn out to be true if class A does not 
contain any method that returns an object castable to class A. But 
consider if class A declares the following method: 
  public static A getCurrent(); 

The object returned from this method is either instance of class A 
or class B thus making class B reachable from other plug-ins. This 
actually results in an increase of the number of classes that need 
to have code injected. Throughout the rest of this paper the 
following terminology applies:  

Direct API is the set of classes directly visible from a plug-in’s 
API, whereas the indirect API covers the set of all classes not 
included in the direct API, and in which they are subclasses of 
any class returned directly from the API. Together the direct and 
the indirect API form the dynamic API. 
Basically, the approach must statically analyse a plug-in and 
inject code in every method and constructor in the dynamic API 
to let a plug-in become dynamic enabled. To illustrate the effects 
of code changes from one version to another, the plug-in from 
figure 2 will work as a running example. First consider what 
happens if changes are made to the direct API. In fact, adding 
methods, fields and constructors in a new version of class A 
would not cause any problems as dependent plug-ins of the 
original version of A would still use the existing code as proxy 
without even knowing it. Only an updated dependent would see 
the additional functionality. On the contrary, consider if a method 
is removed from class A. This poses a problem for running 
dependents of this class as they expect the method to be 
reachable. One could argue that this type of problem has nothing 
to do with how the system is updated as a complete restart and 
deployment of the latest versions of the plug-ins will result in the 
same problem. However, the problem must be addressed in order 
to support continued execution even if a new version of a plug-in 
contains API changes that are not binary compatible.  

More interesting scenarios show up when considering changes to 
the indirect API. Imagine that the developer of plug-in A decides 
to rename (or even remove) class B which is a perfectly binary 
compatible change in according to the java language specification 
in [7] as there are no problems from a linking point of view. The 
main issue here in relation to the dynamic update approach is the 
fact that currently running dependents could hold references to 
objects of the deleted classes in any previous version thus making 
them proxies to something that do not exist.  
Another issue arises when adding new classes to the indirect API. 
Consider the addition of a new subclass of class A, say class D. 
When a dependent plug-in of a former version of plug-in A asks 
for an implementation of class A, the injected code might get an 
instance of the newly added class D from the latest version. This 
of course poses a problem for the injected code as it definitely 
fails to retrieve a compatible corresponding proxy instance simply 
because the class did not exist at the time of installing the 
dependent. To summarise, there exist two main categories of 
problems which need to be addressed by the approach. On one 
hand we have ordinary direct API breaking changes that would 
also pose problems for a none-dynamic update mechanism. On 
the other we have changes to internal parts of a plug-in resulting 
in possible erroneous execution if left unhandled. The following 
section will address these problems in turn 

3. CHANGE SET AND DYNAMIC API 
VERIFICATION 
Changes to the direct API are by default not supported in the 
approach. This means that if the update manager finds an API 
breaking change, the update is refused just like it would be in the 
existing update manager of the Eclipse IDE, providing that plug-
in versioning follows the recommended guidelines in [5]. Part of 
the solution for successfully supporting dynamic updates of plug-
ins is to support atomic dynamic updates of a set of plug-ins at 
once. This set of plug-ins, referred to as the plug-in change set, 
must enclose all plug-ins for which binary compatibility conflicts 
exist. Hence, a plug-in subject to a dynamic update and its 
dependent plug-ins with which it has binary compatibility 
conflicts is part of the plug-in change set. Thus, the change set is 
the set of plug-ins that must be redefined together for the dynamic 
update process to succeed. In practice though, this solution may 
result in postponing a particular update infinitively if e.g. a third 
party plug-in, of which further development has stopped, belongs 
to the plug-in change set. This is in fact a problem of general 
concern to any component platform regardless of the update 
mechanism used, which is also why API breaking changes are 
strongly discouraged.  
The problems related to the indirect API are addressed somewhat 
differently. The overall goal of the approach is to allow all 
updates of plug-ins that do not break direct API compatibility 
(that is without having to wait for a new version of a dependent 
plug-in). In order to discover dynamic API incompatibility, the 
static code analyser (the component that also injects code into the 
dynamic API) must mark possible future dynamic 
incompatibilities so that the dynamic update manager can use this 
information when updating particular plug-ins. This actually just 
extends the idea described in [8] where such information is saved 
to a file in order to solve type sharing between three or more plug-
ins or when inheritance across plug-ins occurs which is out of 



scope of this paper. Having the right information at the time of an 
update, the update manager can always perform the correct 
operation. First consider the scenario where a class is deleted 
from the indirect API leaving running dependents with possible 
dangling references (the original objects are still there, but as 
proxies they cannot reference the new version of the object). This 
problem can be dealt with in two ways which are briefly outlined 
and thereafter discussed. 

1. Allow the update and let dependent plug-ins continue 
their execution unnoticed. 

2. Allow the update and perform additionally virtual 
updates of dependent plug-ins. 

Well, of course, a third alternative could be to disallow the update 
in the first place which is really not an option in the sense that one 
of the most important goals is to support every possible none 
direct API breaking update. Looking at the first option it leads to 
a discussion of how the errors should be handled if or when they 
occur. Given that the approach is applied at development time one 
could argue that simply printing out a meaningful error would be 
a good choice. Indeed, the developer would be confronted with 
the error, but she will have no chance to deal with it at runtime 
resulting in a program breakdown. Instead, the approach could 
incorporate the second of the two options given above. The idea 
in a virtual update, as also described in [8] although used for a-
different purpose, is to bring all dependents up to date with the 
plug-in causing a type-related problem as the one seen here. The 
idea is quite simple and mainly consists of replacing the class 
loaders of the dependent plug-ins so that the new types are 
recognized directly by all dependents. The virtual update process 
itself does not differ from a normal dynamic update, but a virtual 
update is easier in the sense that there are for sure no code 
changes between versions due to the fact that the same code base 
(same jar or simply a transient copy of the jar) is used. By using 
this approach no in-place proxy will ever end up in a situation 
where a corresponding method does not exist. However, problems 
may still surface because of the possible loss of state in a 
dependent plug-in of which a virtual update has been applied. 
Consider what happens in the following update scenario. The 
developers of plug-in A from figure 2 decide to delete class B 
from the indirect API and apply the update of plug-in A. Now a 
dependent plug-in of plug-in A, say plug-in B, holds a field of 
type A that before a dynamic update of plug-in B references an 
instance of class B. When the dynamic update process gets to the 
point where this particular field is migrated to the new version, it 
finds out that this class no longer exists. In general, there is no 
automatic way of replacing this field value with a corresponding 
object that could truly replace the former value. Therefore, the 
approach simply nulls such occurrences leaving a risk of 
unforeseen null pointer exceptions in the new client code. One 
could argue that following good practice for dynamic awareness 
as stated in [6] would solve the problem, but using this advice is 
not enough, because it does not take state migration into account.  
Now consider the example where a class is added to the indirect 
API. Recall that in this case a proxy instance could not be 
obtained because the corresponding class was inexistent in the 
version used by running dependents. Contrary to when a class was 
deleted from the indirect API, this issue manifests itself at runtime 
after a dynamic update process. In fact, it shows only when the 
new version of a plug-in returns an instance of the newly added 

class to another plug-in through its direct API. More specifically, 
it returns to the proxy version of the direct API method called in 
the first place. To support this kind of change to the indirect API a 
mechanism to create a corresponding proxy class on the fly in the 
correct namespace is needed. This automatically created class 
should in turn be loaded by the class loader of the original 
version. Java provides some support for dynamic proxy 
generation through dynamic proxy classes [19]. Unfortunately 
dynamic proxy classes are limited to generating implementations 
of interfaces only, thus a more powerful mechanism is needed. 
Before choosing specific tools, in which in-place proxies can be 
automatically generated, it is in its place to give a brief outline of 
what kind of transformation it needs to support.  
In-place proxy classes require a number of fields to support the 
dynamic update approach (all dynamic-enabled classes have these 
fields). All methods implemented by the newly added class 
should also be present in the proxy class. Furthermore, any 
interface implemented or super class extended by the newly added 
class that is not known by the “old” namespace of the original 
plug-in must be stripped out to avoid linkage errors or no-class-
definition-found exceptions. At this point the attentive reader 
might wonder why the newly added class is not loaded directly 
with the class loader of the former version of the plug-in. In this 
case only unknown interfaces and extended classes should be cut 
off using some byte code manipulation tool and indeed it would 
provide a solution. The problem with this approach is the 
unnecessary memory footprint you get from the fields present 
before any dynamic enablement occurs, in addition to the 
application code written in every constructor and method. 
Therefore, it is by far better to generate a completely clean in-
place proxy from the details of the class it should reference. The 
ASM byte code manipulation tool, [1] provides all the 
functionality needed to generate such classes. Furthermore, a 
number of relevant class and method transformations are 
presented in [12]. In this way the approach supports additional 
classes, whether they represent direct or indirect API classes, 
without introducing any runtime issues from a syntactic point of 
view. This concludes the description of solutions to the problems 
in relation to direct and indirect API changes. 

4. PRACTICAL IMPLICATIONS 
Having discussed solutions to the problems stated, this section 
briefly outlines how developers will use this feature in practice.  
One of the main benefits of the approach is that it is practically 
transparent from a developer point of view. This makes it easily 
plug-in-able to the eclipse infrastructure, which is also reflected in 
the prototype implementation already spoken of in [8]. In fact the 
approach is completely automated and does not expect any 
metadata about the system other than that already present in the 
mandatory bundle manifest file. Adding it to the eclipse IDE as 
part of a development feature requires only a communication 
channel from the IDE instance to the currently running 
application. Once this channel is established it only takes one 
method invocation to the enhanced core plug-in in the running 
instance to perform the update.  
Although the code injection and the actual update are completely 
automated the subtleties of dynamic API changes discussed can 
result in runtime exceptions after applying a dynamic update. In 
order for developers to understand them, they need some basic 



knowledge of why these exceptions occur. For that reason 
introducing the approach at development time at first, gives 
developers a fair chance to familiarize with the implications. 

5. RELATED WORK 
In literature a lot of proposals to dynamic software updating exist. 
Some offer this support to languages that are not object-oriented 
e.g. [3], [9], thus not directly comparable to our work. Others 
extend a virtual machine to allow dynamic class replacement 
(e.g., [12, 16]). Malabarba et al. [12] propose dynamic Java 
classes in which a class can be replaced at runtime. Contrary to 
our approach, their update granularity is a single class. Due to 
Java’s binary compatibility rules this reduces the set of applicable 
updates as it locks the class signature for all classes, not only 
those defined in an API. 
A number of approaches suggest new language constructs to 
support runtime adaptation, e.g. [4]. Although these approaches 
are very useful for identifying the set of requirements for dynamic 
software updating, they are not likely to make it into the 
mainstream languages. Other techniques require a meta level 
programmer to write either the updated code as a separate layer as 
seen in [15] or to write patches/adapters as done in [2]. 
The approach presented in [14] shares similarities with our work 
as it does not require VM support nor does it need to introduce 
new language constructs. The approach uses a hot swapping 
mechanism based on indirection via object wrappers. One benefit 
of this approach is its negligible performance overhead. However, 
unlike our work, this comes at a price of less flexibility as class 
signatures cannot change without significant loss of state. 
Bialek et al. in [2] present an approach based on partitioning Java 
applications to make those partitions the updateable unit. 
Although the approach provides a flexible solution to dynamic 
software evolution, it burdens the programmer with the 
responsibility of writing version adapters and state transfer 
functions, which is in deep contrast to the statement about how 
much work a developer would do to gain the benefits of dynamic 
updating capabilities. 
The work done in JSR 277, [10], and JSR 291, [11], will 
hopefully bring a new module level into the Java language. If 
support for modules is added, the approach in this paper could be 
applied even outside the eclipse platform or any other component 
platform which has already implemented a module system itself. 

6. CONCLUSION 
This paper has suggested including a novel dynamic software 
updating approach into the eclipse infrastructure so that 
developers of eclipse plug-ins can do live updates while 
developing. The basic mechanism of the approach is the In-Place 
Proxification technique which lets already running objects 
become live proxies after an update. Furthermore a number of 
subtleties that manifest itself in the so-called dynamic API have 
been discussed and solutions are proposed so that any non 
breaking API change to a plug-in is directly supported. In addition 
virtual updates of dependent plug-ins are proposed as a mean to 
support API breaking changes, thereby enlarging the total change 
set when such changes occur.  
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