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ABSTRACT

We present a tool that predicts whether the software under
development inside an IDE has a bug. An IDE plugin per-
forms this prediction, using the Change Classification tech-
nique to classify source code changes as buggy or clean dur-
ing the editing session. Change Classification uses Support
Vector Machines (SVM), a machine learning classifier algo-
rithm, to classify changes to projects mined from their con-
figuration management repository. This technique, besides
being language independent and relatively accurate, can (a)
classify a change immediately upon its completion and (b)
use features extracted solely from the change delta (added,
deleted) and the source code to predict buggy changes. Thus,
integrating change classification within an IDE can predict
potential bugs in the software as the developer edits the
source code, ideally reducing the amount of time spent on
fixing bugs later. To this end, we have developed a Change
Classification plugin for Eclipse based on client-server archi-
tecture, described in this paper.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance
and Enhancement—uwversion control; D.2.6 [Software En-
gineering]: Programming Environments—Integrated envi-
ronments, Programmer workbench

General Terms

Algorithms, Measurement, Experimentation

Keywords

Bug prediction, integrated development environments

1. INTRODUCTION

Bug prediction has justifiably been an important field of
research in software engineering, as the amount of effort,
time and expenditure spent on fixing bugs is usually quite
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high. As a result of this research, many techniques have
emerged for detecting and predicting bugs in software. Many
bug detection techniques are based on static and dynamic
analysis of programs [5, 11, 10]. Some techniques analyze
software metrics or a project’s change history to identify
problematic modules [14, 17, 22]. Others use classification
or regression algorithms with features such as complexity
metrics, cumulative change and bug counts to predict risky
entities [12, 4, 14, 17, 23, 21]. Some techniques use statisti-
cal analysis and machine learning techniques to distinguish
between failing and passing program executions [3, 13, 9].

Change Classification [19] uses Support Vector Machines
(SVM), a set of related supervised learning methods that are
particularly effective in text classifications. Change Classifi-
cation learns from the change history of a project to classify
any future change as clean or buggy. Unlike other tech-
niques based on classifier algorithms, here the features are
extracted from all sources of information of a project, viz.,
change log messages, change delta and the source code, com-
plexity metrics, author, time and day of submission, file and
directory names, etc, to create a corpus for the classifier
to train on. This leads to classifications of relatively high
accuracy. In addition, this technique is language indepen-
dent and predictions can be done immediately at the level
of individual source code changes.

In this paper we describe a tool in the form of an Eclipse
plugin that uses Change Classification to effectively classify
changes as buggy or clean during the editing session itself.
This is possible because the features extracted solely from
the change delta and the source code, collectively known as
AND (A:added delta, N:new revision, D:deleted delta) are
seen to have relatively high accuracy in classifying changes.
Thus, the developer has the opportunity to take measures
immediately. These measures could include getting infor-
mation about the change by (a) using his/her memory of
any similar change that resulted in a bug, (b) describing the
change to other developers in the group to enquire about
any similar bug introducing change they might have made,
(¢) manually going through the revisions using the change
logs to look for similar changes; this can be done only if the
project is not very large and does not contain many revi-
sions, (d) obtaining the bug introducing changes using tools
like Kenyon [2] and finding the changes most similar to the
current one using relevant similarity measures, (e) perform-
ing a software inspection on code that was flagged as buggy
before it is checked in or (f) run one or more static analy-
sis tools to detect bugs (knowing that the high false positive
rate of such tools will be acceptable since there is a high like-



lihood of there being an actual bug). The developer could
then make an informed decision about the change. These
measures will necessarily increase time spent in coding, but
will save time in the future since the latent bug will be dis-
covered immediately, without requiring time to isolate the
bug, have a developer refresh their memory on the code,
and then implement the fix. Using Change Classification,
less time is required to isolate the bug and implement the
fix.

The rest of the paper is organized as follows: In Section 2,
we discuss the related work in bug detection and prediction.
In Section 3, we discuss Change Classification in greater
detail. In Section 4, we describe our Change Classification
Eclipse plugin, its architecture and implementation. Section
5 describes the future work and Section 6 concludes.

2. RELATED WORK

Many automated bug finding tools have been proposed
and are in wide use [15, 11, 7, 1, 20]. They are good at find-
ing commonly known bugs but do not detect project-specific
ones. Some tools address this problem, for example, Bug-
Mem [18], by using the projects’ change history to identify
project-specific bugs patterns.

Some bug finding tools have been incorporated into Eclipse
as plugins, for example, FindBugs [15] and Checklipse [20].
They use lightweight static analysis techniques to detect
bugs in Java code. The AMPLE [8] plugin locates failure
causes in Java programs by comparing the method call se-
quences of passing and failing program runs. There are plu-
gins that study the impact of a change request on other
work products to reduce potential bugs [6, 24, 28]. The
HATARI plugin relates the version history of projects to a
bug database to find risky locations in the code [26].

The Change Classification plugin, like HATARI, uses the
software’s version history to predict bugs. It is based on
Change Classification [19], a bug prediction technique that
uses machine learning classifier algorithms to classify changes
made to the source code as buggy or clean. Also, besides be-
ing language independent, our plugin is different from others
in that it can classify changes as the developer edits. There-
fore, the developer has immediate feedback on any potential
errors they have made.

3. CHANGE CLASSIFICATION

Change Classification [19] is based on Support Vector Ma-
chines (SVM) [16], a set of related supervised learning algo-
rithms, that are effective in a wide range of text classifi-
cations. An SVM is a discriminative model which tries to
find the maximum margin hyperplane between the differ-
ent classes. SVM is first trained on labeled data instances,
which are known to belong to one class or the other. Sub-
sequently, unlabeled instances can be classified to belong to
one class or the other by the SVM. In Change Classifica-
tion, the binary classification is between a clean change and
a buggy change.

The Change Classification project has created training
sets for 12 mature open source projects [19]. They extract
file level changes from the project histories of the 12 projects
using Kenyon [2]. They, then identify the changes that in-
troduce bugs and those, which don’t. The techniques used
are described in [19]. Every term in the added delta (A),
new source code (N), deleted delta (D), change log and file
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Figure 1: Prototype of the Change Classification
plugin.

name is used as features. They are extracted by using Bag
of Words (BOW) [25] and its variants BOW+ and BOW++
[19]. The author name, commit hour and day, cumulative
change and bug counts, length of the change log, LOC of
the change log, new revision source code are all used as fea-
tures. In addition, complexity metrics are also computed to
be used as features. With these features, they create a cor-
pus of labeled changes with a set of features associated with
each change; this is used as the training set for the SVMs.

The performance of Change Classification is evaluated us-
ing 10-fold cross-validation method. Its accuracy is seen to
range between 63% and 92% in the projects analyzed by the
developers of this technique. Buggy change recall ranges be-
tween 43% and 86%. Buggy change precision is between 44%
and 85%. The feature group consisting of the new revision
source code (N), the change delta (added (A) and deleted
(D)) leads to a relatively high accuracy of prediction.

Therefore, Change Classification predicts bugs at a file
level granularity with accuracy at par with the best bug-
prediction techniques. This would be an ideal technique to
incorporate into an IDE. Since Change Classification learns
from past changes, it can only be applied to projects with
some revision history. However, it was observed in the Change
Classification project that changes could be effectively clas-
sified based on a history of about 250 revisions [19].

4. ECLIPSE PLUGIN

The main advantage of having Change Classification as
a plugin in a fully featured work environment like Eclipse
is that it can give immediate feedback on a developer error
during the editing session itself.

4.1 Plug-in Prototype

The Change Classification prototype is that of a client-
server system (Fig. 1). The user commands the client
(Eclipse) to collect the changes made to the source code
since the last time Change Classification ran in that editing
session. The client ships the changes to the server, along
with the project name, file name, author’s name, time and
the hour of submitting the change. The server maintains a
collection of projects with trained classifiers. If the project
is present in this collection, the corresponding classifier clas-
sifies the change as buggy or clean. The result is then sent
to the client, which then displays it to the user in a human-
readable format. If the project is not present in the collec-
tion, an appropriate error message is sent to the client.

4.2 Change Classification Client
The client is a plugin that works within Eclipse 3.2 with
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Figure 2: The preference page of Change Classification in Eclipse.

Web Tools Platform *. The plugin has a preference page and
a view associated with it. The preference page is where the
user sets the URL of the server, the project name, his/her
name and whether the classification is user-controlled or au-
tomatic (Fig. 2). For the latter, the user must specify the
interval of classification in minutes in the preference page.
The automatic mode can be used if the user knows approx-
imately how long it takes for them to make the changes
before committing. Therefore the user can continue work-
ing on the code, without stopping to classify the changes.
On the other hand, if the user wants the classification to be
done only when they want it (for example, exactly before a
commit), the user-controlled mode is more appropriate. The
default mode of Change Classification is user-controlled.
Clicking on “Change Classification”, that appears in the
pop-up context menu of the files in the Package explorer
view, opens the workbench editor on that file and takes a
snapshot of the initial state of the text. If the classifica-
tion is set to be automatic, a document listener ( TimeDocu-
mentListener, implemented as a subclass of IDocumentLis-
tener of the package org.eclipse.jface.text) is added to the
underlying document (IDocument). This listener listens to
changes made to the text and at user-specified time inter-
vals, takes snapshots of the current state of the text. On the
other hand, if the classification is user-controlled, the user
clicks on “cclassification” on the workbench menubar or on
the icon of a blue planet in the workbench toolbar (Fig. 3),
whenever they want to take snapshots of the text. Then,
the differences between subsequent snapshots are obtained
using the RangeDifferencer class contained in the package
org.eclipse.compare.rangedifferencer. The added delta, the
new source code and the deleted delta (AND) are obtained
as simple strings and sent to the server, along with other

! www.eclipse.org/webtools/

information like the project and the author names, the time
and the day of submitting the change.

The response from the server is a string, which is displayed
in the Change Classification view of Eclipse (Fig. 3). Also,
Change Classification does not slow down typing as it is
executed in a separate thread.

4.3 Change Classification Server

We have implemented the server as an Apache Axis Web
service?, running within Tomcat®. The server and the client
communicate using SOAP?. CClassifyService is a document
style Web service. The two operations defined for C'Clas-
sifyService are train and cclassify and the corresponding
messages are trainRequest and cclassifyRequest, respectively.
The response messages of both are strings. The message
trainRequest contains a string, viz., the project name, while
cclassifyRequest contains 8 strings, viz., AND, names of the
file, project and the author along with the hour and day of
submitting the request (all these are used as features during
classification).

The server maintains a Hashtable of projects, with trained
SVM classifiers. The project names act as the keys. The
training sets, which trained the classifiers, are present in
directories named after the projects. Upon receiving the
project name from trainRequest, the server checks whether
the project is present in its Hashtable. If so, the message is
sent to the client indicating the same; else, if there exists a
training set for the project, a new SVM classifier is instan-
tiated and trained. The project, with its trained classifier is
then added to server’s Hashtable of projects. If there is no
training set for this project, an appropriate error message is
sent back to the server.

2ws.apache.org/axis

3jakarta.apache.org/tomcat
*http://www.w3c.org/TR/SOAP
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Figure 3: Screenshot of Change Classification in Eclipse. The bottom panel is the Change Classification view,

where the results of the classification get displayed.

The cclassifyRequest , on the other hand, operates as fol-
lows. Upon receiving the message, the server extracts fea-
tures from AND, author name, file name, hour and day of
submission, by using techniques described in [19]. The server
gets the trained classifier for the project from its Hashtable
(if present) and classifies the instance obtained from the ex-
tracted features as buggy or clean. An appropriate message
is sent back to Eclipse, where it is displayed in the plugin
view (Fig. 3).

The developers of Change Classification [19] use the Weka
Toolkit [27] implementation of Support Vector Machines and
we do the same. The time taken by the Change Classifica-
tion server to process a request depends on the number of
features in the training set. As the number of features in-
creases, the amount of time taken to classify a change also
increases. We classified instances with 300, 3000 and 10800
features and found that the average time taken to process
each one was 0.086 seconds, 0.867 seconds and 2 seconds, re-
spectively. Hence, the number of features should be kept in
check for a good performance. This can be done by devising
a way to select only the “essential” features and by limiting
the number of revisions considered while making the train-
ing set. It was observed in the Change Classification project
that training sets based on as few as 250 revisions are enough
to get classification results of relatively high accuracy.

5. FUTURE WORK

A tool that can predict bugs while a developer is writing
code is new; hence, we would like to study the following
aspects: how convenient it is to use and how do developers
react to the change classification. For the former, we would
like to collect anecdotes about users’ experience with the
tool. In particular, we would like to know if the users find
the tool easy to use, obtrusive or not obtrusive enough.

The second aspect we would like to study are the develop-
ers’ reactions to the results of our plugin. The possibilities
are that the developer (a) takes the classification seriously
most of the time; if so, what are the kind of changes that
get ignored, (b) ignores the classifications most of the time
due to constraints like time, etc; if so, what kind of changes
get taken seriously, (c) takes every classification seriously or
(d) ignores every classification. We believe, this study could
give us an idea about the “serious” and the “non-serious”
changes, as per the developer.

Another issue is that of creating the training sets. For
this project, we have used those created by the developers
of Change Classification. Since Weka requires this set to
be in the ARFF format [27], there is some amount of pre-
processing involved. This step could be incorporated in our
server itself or could be kept separate in a different server.

6. CONCLUSIONS

In this paper, we have presented a bug-prediction tool
that classifies changes made to the source code as buggy or
clean during the editing session itself. This is in the form of
an easy-to-use Eclipse plugin, based on the Change Classi-
fication technique. This technique has been evaluated and
found to be very effective in classifying changes. Learning
from the past history of changes, our plugin can help the de-
veloper find out if the changes they have made to the source
code are potentially buggy.

Change Classification can be user-controlled or automatic.
The classification doesn’t effect the Ul responsiveness as it
runs in a separate thread. We believe that running the
Change Classification plugin in combination with other bug-
detection and bug-prediction plugins of Eclipse can poten-
tially save much effort, time and expenditure in the long
term.
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