
Declarative and Visual Debugging in Eclipse

Jeffrey K. Czyz
Computer Science and Engineering

University at Buffalo (SUNY)
jkczyz@cse.buffalo.edu

Bharat Jayaraman
Computer Science and Engineering

University at Buffalo (SUNY)
bharat@cse.buffalo.edu

ABSTRACT
We present a declarative and visual debugging environment
for Eclipse called JIVE.1 Traditional debugging is procedural
in that a programmer must proceed step-by-step and object-
by-object in order to uncover the cause of an error. In con-
trast, we present a declarative approach to debugging con-
sisting of a flexible set of queries over a program’s execution
history as well as over individual runtime states. This run-
time information is depicted in a visual manner during pro-
gram execution in order to aid the debugging process. The
current state of execution is depicted through an enhanced
object diagram, and the history of execution is depicted by
a sequence diagram. Our methodology makes use of these
diagrams as a means of formulating queries and reporting
results in a visual manner. It also supports revisiting past
runtime states, either through reverse stepping of the pro-
gram or through queries that report information from past
states. Eclipse serves as an ideal framework for implement-
ing JIVE since, like the JIVE architecture, it makes crucial
use of the Java Platform Debugging Architecture (JPDA).
This paper presents details of the JIVE architecture and its
integration into Eclipse.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids, Trac-
ing; D.2.6 [Programming Environments]: Graphical en-
vironments, Interactive environments

1. MOTIVATION
There has been increasing interest in recent years in object-
oriented technologies and integrated development environ-
ments (IDEs). While much attention has been given to
the areas of software design and implementation, tools that
enhance understanding program behavior at runtime have
been lagging behind. According to a recent survey, the cost
of inadequate software testing and debugging on the U.S.
economy is estimated at nearly $60 billion annually [16].

1http://www.cse.buffalo.edu/jive/

Hence, there is a critical need for improved techniques for
debugging object-oriented software.

The state of the art in runtime environments for object-
oriented programs is exemplified by IDEs such as Eclipse,
NetBeans, and Visual Studio. Typical features found in such
systems include setting of breakpoints, spying on variables,
stepping forward in execution, and examining variables on
the call stack. Using these features the programmer must
proceed step-by-step and object-by-object to uncover the
cause of an error. While these IDEs also provide graphical
interfaces, they serve mainly as front-ends for traditional
text-based debugging. Such debuggers may be categorized
as procedural and textual in nature. The main contribu-
tion of our research is in providing a declarative and visual
environment for program comprehension and debugging.

There have been a few recent studies on the nature of errors
in object-oriented programs. In general, errors may be due
to a flawed design, incorrect use of language constructs, al-
gorithmic errors, and oversights in coding [8]. Central to the
understanding of any program, whether object-oriented or
not, is comprehending how variables take on certain values.
Often a program error arises because a variable has taken
on an unexpected value, resulting in an exception such as a
null pointer exception. In order to identify such errors, it is
desirable that the debugging environment provides queries
that, for example, elicit all changes to a variable, determine
at what execution point a variable takes on a certain value,
check when an invariant is first violated, etc. This requires
runtime support for examining the current state as well as
past states. Such a query-based debugger may be catego-
rized as declarative in nature because it allows the program-
mer to search the entire execution history without engaging
in a laborious step-by-step procedural process. We believe
the declarative approach complements procedural debugging
just as web searching complements web browsing.

Another common cause of program errors lies in the dif-
ference between a programmer’s mental model of runtime
states and the actual states. Visual depiction of runtime
states can help highlight these difference more easily. In de-
signing an appropriate visualization, it should be noted that
object-oriented programs differ from procedural programs in
that objects are not just data structures but serve as envi-
ronments within which method activations occur, and also
that OO methodology engenders the use of smaller meth-
ods and results in more complex object interactions. Hence,

it is desirable to visualize both the current state and the
history of execution. However, practical experience with vi-
sualizations shows that they do not scale gracefully for large
executions due to the large number of objects and method
activations that arise [2]. In order to achieve scalable visu-
alizations, we not only need the ability to construct concise
and abstract diagrams, but also a query capability by means
of which only relevant portions of the visualization are de-
picted. Thus, declarative queries and visualization work in
concert to provide a more effective runtime comprehension
and debugging environment.

An initial step towards the realization of such a runtime en-
vironment was taken in our previous research on the Java
Interactive Visualization Environment (JIVE) [6, 7]. JIVE

depicts the current state through an enhanced object dia-
gram (showing objects and method activations) and the his-
tory of execution through a UML-like sequence diagram. It
is interactive in that the user may step forward or backward
in the execution history to revisit previous runtime states.
This feature is invaluable as programmers often step past
errant statements while debugging and must re-execute the
program to examine its state [1]. While the main focus of
the JIVE research has been on interactive visualization, the
goal of our current work is aimed at providing a more com-
prehensive declarative and visual execution environment.

2. JIVE DEBUGGING METHODOLOGY
We have incorporated our declarative and visual execution
environment (JIVE) into Eclipse, which is an extensible de-
velopment platform based upon a plug-in architecture [21].
An overview of the JIVE architecture can be found in Fig-
ure 1. An important component of Eclipse is the Java Devel-
opment Tools (JDT), and hence using Eclipse allows JIVE to
inherit the functionality of JDT. Since both JDT and JIVE

are based upon the Java Platform Debugging Architecture
(JPDA), Eclipse serves as an ideal experimental framework
for our research.

JPDA is the key component of JIVE, allowing it to observe
a running Java program without modifying the compiler or
virtual machine. JIVE requests notification of certain run-
time events using JPDA’s Java Debug Interface (JDI). Such
events include class preparation, step taken, variable modi-
fication, method entry and exit, thread start and death, etc.
The user may specify whether to filter out events related to
certain classes, such as those from the Java Platform. Upon
event notification, JIVE may suspend the target virtual ma-
chine in order to glean any pertinent information from the
call stack that may not be available from the JDI event. This
together with the JDI event forms a JIVE event, and as the
program executes a sequence of JIVE events is formed.

Figure 2 shows a snapshot from our current prototype which
supports object and sequence diagrams with granularity con-
trol and zooming capability, query processing, and reverse
stepping. We will explain each of these capabilities in the
remainder of the section.

JIVE constructs two main models from the above event se-
quence: an object model and a sequence model. The object
model represents the program’s execution state, while the
sequence model details its history of execution. These mod-

Figure 1: Overview of the JIVE architecture.

els serve as the basis from which JIVE’s visualizations are
derived. An object diagram depicts the program’s execution
state by showing objects and their structural links as well
as outstanding method activations. In this sense, JIVE’s
object diagram defers from the UML object diagram. By
depicting method activations in their object context, we not
only clarify the semantics of method activations but also
facilitate program comprehension and debugging. The ob-
ject diagram is also helpful in clarifying Java’s semantics for
overriding and shadowing.

The JIVE sequence diagram is constructed interactively at
execution time. Our approach differs fundamentally from
the UML sequence diagram in that the latter documents
design-time considerations, whereas the JIVE sequence di-
agram reflects the actual sequence of object interactions at
execution time. In this respect, our approach also differs
from other approaches that construct sequence diagrams by
reverse engineering the source code [12]. Our sequence di-
agram also differs from other work [20] in that JIVE con-
structs the diagram interactively rather than as a form of
postmortem analysis after the program has completed ex-
ecution. In JIVE, every point on the sequence diagram is
correlated with the object diagram that would have been
in effect at that execution point. JIVE also supports inter-
active forward as well as reverse stepping of the program.
Through the sequence diagram, a user may direct the JIVE

engine to any previous point in the execution history in order
to inspect the object diagram at that execution point.

Scalable Visualizations. In general, there could be a
large number of objects and method activations arising dur-
ing program execution, and hence we are interested in con-
structing compact object and sequence diagrams. JIVE sup-
ports both abstraction and geometric reduction of the dia-
grams. Abstraction involves suppressing the internal details
of objects and their interactions. For object diagrams, this
includes suppressing superclass details, hiding field tables,
showing only objects involved in the call path, hiding aggre-
gated objects, etc. For sequence diagrams, we are explor-
ing how to obtain reduced sequence diagrams in which sub-

Figure 2: JIVE prototype showing object and sequence diagrams, call stack, source code, and query results.

computations corresponding to large call trees are replaced
by a single, abstract node. This in turn helps compact the
timeline and obtain a concise drawing. Geometric reduction
is similar to a zooming out operation.

Declarative Queries. Another important way to achieve
scalable visualizations is to depict only those portions of the
object and sequence diagrams that are relevant to a query of
interest to the programmer. We presently support queries
not only on a given execution state but also over the entire
history of execution or any subinterval. This is illustrated in
Figure 2 for a query that elicits all changes to variable bal-

ance in object CheckingAccount:1. The query itself was
formulated through the Search dialog, but in general such
queries may also be composed using the object diagram, se-
quence diagram, or the source code. The results are shown
in tabular form in the search view and also as highlighted
execution points on the sequence diagram. Thus, the se-
quence diagram serves as an excellent framework for visually
reporting the answers to queries, as it helps identify where
answers lie spatially and temporally. In general, the queries
may elicit information about objects, method activations,
exceptions, fields, local variables, as well as whether certain
properties are maintained or violated at various points in
the execution history.

Interactive Execution. Another important component
of our debugging environment is the support for both for-
ward and reverse interactive execution. JIVE currently per-
forms incremental state-saving during forward execution and

performs incremental state-restoration during reverse exe-
cution. While this approach incurs minimal storage over-
head, it is less efficient for performing jumps back to distant
runtime states because each state must be restored one-by-
one until the desired state is reached. (Query results may
also refer to points in the execution history, necessitating
jumps to disparate execution states.) We are exploring the
use of three types of checkpoints to facilitate back jumping.
A full checkpoint contains all the information necessary to
recreate a program state. A differential checkpoint records
changes in program state since the last differential or full
checkpoint. An incremental checkpoint records changes in
program state after each step in execution. The current
implementation supports interactive execution using incre-
mental checkpoints.

3. INTEGRATION IN ECLIPSE
An important component of Eclipse is the Java Develop-
ment Tools (JDT), which includes debugging support in the
JDT Debug module. JDT Debug utilizes JPDA in order
to provide traditional debugging capabilities such as setting
of breakpoints, stepping through execution, examining vari-
ables on the call stack, etc. Our goal has been to seamlessly
integrate JIVE into Eclipse in such a way that it inherits
the functionality of JDT Debug. This provides users with
all the traditional debugging tools they are accustomed to
using in addition to the declarative and visual debugging
features which JIVE has to offer. It also saves us the effort
of re-inventing the wheel by not needing to write a full-blown
Java debugger.

JIVE

JDT Debug

Platform Debug

<<interface>>

IThread

<<interface>>

IJavaThread

JDIThread

JiveThread

<<interface>>

IDebugTarget

<<interface>>

IJavaDebugTarget

JDIDebugTarget

JiveDebugTarget

*1

*1

EventDispatcher

<<interface>>

IJDIEventListener

*

1

JDI

*

1

* 1

ObjectModel SequenceModel

ObjectDiagram SequenceDiagram

GEF

Figure 3: Integrating the JIVE debugger in Eclipse.

JDT Debug is a Java-specific implementation of Eclipse’s
language-independent debug model, Platform Debug. The
debug model consists of various debug elements such as de-
bug targets, threads, stack frames, and variables. JDT De-
bug implements these elements using JDI. Event requests are
made through a JDIDebugTarget and events are handled by
IJDIEventListeners. These act as a façade to the JDI event
request model. Unfortunately, this framework is internal to
JDT Debug, and therefore its use is discouraged. However,
in order for JIVE to work correctly alongside JDT Debug,
this framework had to be used. Attempting to use JDI di-
rectly would interfere with its use by JDT Debug. Our im-
plementation involves deriving classes from JDIDebugTarget

and JDIThread which then employ custom IJDIEventLis-

teners. The JIVE-specific JDI event handling is performed
by these listeners before delegating to JDT Debug’s event
handlers. Particular care had to be given in handling the JDI
StepEvent. JDT Debug uses step events to implement step-
ping from breakpoints. However, JIVE also needs to use step
events to determine when local variables have been modified
as JDI does not provide this functionality. Hence, custom
step handlers were developed to collect step events for JIVE

and at the same time simulate stepping from breakpoints
when needed. The relationships between these components
are shown in Figure 3.

Having formed our debug model as an extension of JDT
Debug, we next had to allow Eclipse to use it in place of
the standard debug model. Our goal was to allow the user
to choose between the models. To this end, we made use
of the mixed mode launching extension points introduced in
Eclipse 3.3. Users can specify whether or not they would like
to debug a program with JIVE through a launch configura-
tion. Enabling JIVE will cause Eclipse to use a customized
launch delegate for JIVE instead of the standard launch del-
egate provided by JDT Debug. Our delegate works identical
to the standard delegate except that it uses our customized
debug model elements mentioned earlier. Thus, this allows
the monitoring of JDI events and the formation of the JIVE

event model which supports our visualizations.

The visualization aspect of JIVE takes the form of an Eclipse
view for each of our diagrams. We chose to implement the
drawings using the Graphical Editing Framework (GEF),
now standard with Eclipse. GEF was chosen because its
model-view-controller architecture is a natural fit with our
own architecture. While the business-logic of our models
is not editable by users, the presentation-logic (such as po-
sitioning of objects and granularity control) is modifiable.
This makes GEF an excellent choice for our visualization
needs. GEF also comes standard with useful diagram func-
tionality such as zooming controls and model element se-
lection. The ability to select model elements through their
diagrammatic representations allows us to support context-
sensitive commands such as diagram compaction and declar-
ative querying.

A new feature to JIVE is its support of querying a program’s
execution history. Queries over a program’s execution his-
tory can be formulated through either the source code or
the diagrams. Query results typically correspond to points
on the sequence diagram. We choose to utilize the extension
points available through the Eclipse search plug-in to con-
tribute our ISearchPages and ISearchResultPages to the
Eclipse UI. Our search pages may be filled in automatically
based on the view context (e.g., selected diagram element)
or manually by the user. Results are displayed in the Search
view, which allows for easy result navigation. This also al-
lows us to provide diagram and gutter annotations for search
results in a fashion similar to the JDT search capabilities.

4. CONCLUSIONS AND FURTHER WORK
The integration of JIVE in the Eclipse plug-in architecture
is a continuation of our earlier work on a stand-alone vi-
sual debugging environment for Java. This integration over-
comes several shortcomings of the stand-alone version, and
also provides substantial new capabilities especially in the
area of declarative queries and scalable visualizations. JIVE

has been tested out in a number of settings including in
courses on programming languages. The integration of JIVE

into Eclipse allows this tool to be used in any course where
Eclipse is the chosen development environment. We plan to
use JIVE more extensively in courses at Buffalo to better
determine its effectiveness.

Our initial experiments with JIVE have been conducted on
a laptop with a 1.6 GHz processor and 1 GB of memory.
These experiments indicate that its interactive performance
on small- to medium-sized programs is satisfactory. (While
we have not tested JIVE on large programs, the recent fo-
cus on Test-Driven Development places more emphasis on
executing smaller units of code.) Although we have not per-
formed a formal overhead analysis of JIVE, it may be noted
there are two main areas of interest: (i) event gathering
and (ii) visualization. In the former case, the inherent over-
head to observing a running program is unavoidable. Event
gathering may further slowdown the execution as a result
of suspending the virtual machine in order to elicit addi-
tional information from the call stack (e.g., to determine
which local variables have changed). Ideally, the visualiza-
tions should be updated after each JIVE event. However, in
order to enhance interactive performance, JIVE updates the
visualizations periodically at a user-defined interval.

Our current and future work can be broadly divided into the
following areas. In declarative queries, we are developing a
more comprehensive and composable set of queries as well
as their visual formulation. In scalable visualization, we are
exploring techniques for abstracted and reduced object and
sequence diagrams, as well as optimal/aesthetic drawings of
these diagrams. In reverse execution, we plan to determine
optimal placement of differential and full checkpoints to en-
hance the performance of reverse jumping. In the area of
query processing, we plan to explore efficient data structures
that will facilitate improved performance. We also plan to
explore ‘why’ queries, aggregate queries, etc.

While there a number of approaches for program visual-
ization [3, 6, 17, 18, 19, 22] querying [10, 13, 15], and
interactive forward and reverse execution [6, 14], JIVE is
unique in combining all these capabilities into a single en-
vironment for debugging. We survey closely related ap-
proaches below. BlueJ [11] is an early example of a well-
known pedagogic tool supporting static and dynamic visual-
ization. JavaVis [17] supports visualization with object and
sequence diagrams. However, it does not support query-
ing or revisiting past states. Eclipse’s Test & Performance
Tools Platform (TPTP) Project provides UML sequence di-
agrams of running programs with abstraction techniques,
but it does not support object diagrams, querying, or re-
verse execution. De Pauw et al[2] and Sharp et al [19] of-
fer many useful techniques for reducing the size of program
execution visualizations that could be adapted to our work.
Finally, approaches such as [3, 18] differ fundamentally from
our approach in that they are focused on visualizing runtime
performance metrics.

A few recent projects use the concept of declarative queries
for program analysis (finding errors and security flaws) [9,
13, 15]. An important difference in our approach is our em-
phasis on interactive debugging without having to develop a
compiler/preprocessor to perform source code instrumenta-
tion or modifying the JVM. Our queries related to the cause
of various program events are closely related to the Whyline
interrogative debugger [10]. Our analysis of the execution
history is related to the trace-based analyzer of Opium [4].

5. ACKNOWLEDGEMENTS
Funding for this research was provided by a 2006 IBM Eclipse
Innovation Award. Thanks to Paul Gestwicki for develop-
ing the first version of JIVE [5] which served as an inspira-
tion and a basis for our Eclipse implementation. Thanks to
Dennis Patrone for implementing an initial set of debugging
queries for JIVE.

6. REFERENCES
[1] H. Agrawal, R. A. Demillo, and E. H. Spafford.

Debugging with dynamic slicing and backtracking.
Soft.—Prac. & Exper., 23(6):589–616, June 1993.

[2] W. De Pauw, D. Lorenz, J. Vlissides, and
M. Wegman. Execution patterns in object-oriented
visualization. In Proceedings of the 4th USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS), pages 219–234, April 1998.

[3] W. De Pauw and J. M. Vlissides. Visualizing
object-oriented programs with Jinsight. In ECOOP

’98: Workshop ion on Object-Oriented Technology,
pages 541–542, London, UK, 1998. Springer-Verlag.

[4] M. Ducassé. Opium: An extendable trace analyser for
Prolog. The Journal of Logic Programming, 1999.

[5] P. V. Gestwicki. Interactive Visualization of
Object-Oriented Programs. PhD thesis, University at
Buffalo, June 2005.

[6] P. V. Gestwicki and B. Jayaraman. Interactive
visualization of Java programs. In Proceedings of the
IEEE 2002 Symposium on Human-Centric
Computing, Languages, and Enviornments (HCC ’02),
pages 226–235, September 2002.

[7] P. V. Gestwicki and B. Jayaraman. Methodology and
architecture of JIVE. In SoftVis, pages 95–104, 2005.

[8] H. Z. Girgis, B. Jayaraman, and P. V. Gestwicki.
Visualizing errors in object-oriented programs. In
OOPSLA ’05 Companion, pages 156–157, 2005.

[9] S. Goldsmith, R. O’Callahan, and A. Aiken.
Relational queries over program traces. In OOPSLA,
pages 385–402, October 2005.

[10] A. J. Ko and B. A. Myers. Designing the Whyline: A
debugging interface for asking questions about
program behavior. In CHI, pages 151–158, April 2004.

[11] M. Kölling and J. Rosenberg. Guidelines for teaching
object-orientation with Java. ACM SIGCSE Bulletin,
33(3):33–36, 2001.

[12] R. Kollmann and M. Gogolla. Capturing dynamic
program behavior with uml collaboration diagrams. In
Proc. CSMR ’01, page 58, 2001.

[13] R. Lencevicius, U. Hölzle, and A. K. Singh.
Query-based debugging of object-oriented programs.
In OOPSLA, pages 304–317, October 1997.

[14] B. Lewis. Debugging backwards in time. In ArXiv
Computer Science, pages 225–235, 2003.

[15] M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: A
program query language. In OOPSLA, pages 365–383,
October 2005.

[16] National Institute of Standards and Technology
(NIST). The economic impacts of inadequate
infrastructure for software testing. Technical Report
02-3, May 2002.

[17] R. Oechsle and T. Schmitt. JAVAVIS: Automatic
program visualization with object and sequence
diagrams using the Java Debug Interface (JDI). 2002.

[18] S. P. Reiss. Visualizing Java in action. In ACM
SoftVis, pages 57–65, 2003.

[19] R. Sharp and A. Rountev. Interactive exploration of
UML sequence diagrams. In VisSoft, pages 8–13, 2005.

[20] T. Systä, K. Koskimies, and H. Müller. Shimba—an
environment for reverse engineering java software
systems. Soft.—Prac. & Exper., 31(4):371–394, 2001.

[21] The Eclipse Foundation. Eclipse Platform.
http://www.eclipse.org/.

[22] A. Zeller and D. Lütkehaus. Ddd—a free graphical
front-end for unix debuggers. SIGPLAN Not.,
31(1):22–27, 1996.

