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ABSTRACT
The navigation of structural dependencies (e.g., method in-
vocations) when a developer performs a change task is an
effective strategy in program investigation. Several existing
approaches have addressed the problem of finding program
elements relevant to a task by using structural dependencies.
These approaches provide different levels of benefits: limit-
ing the amount of information returned, providing calling
context, and providing global information. Aiming to incor-
porate these three benefits simultaneously, we propose an
approach–called call graph filtering–to help developers nar-
row down the methods relevant to a change task. Our call
graph filtering approach uses heuristics to highlight methods
that are likely relevant to a change task on a call graph. The
size of the set of relevant methods is reduced by our filtering
heuristics, while global information and the calling context
are provided by the call graph. We have performed two pre-
liminary studies: a user study on identifying methods rele-
vant to the understanding of JUnit tests on a small system,
and an empirical study on how our results can help a de-
veloper perform a program navigation task with the Eclipse
framework. The studies show that our approach can provide
useful results: quantitatively in terms of size of the results,
precision, and recall; and qualitatively in terms of finding
non-trivial control-flow and being able to direct developer
to the code of interest.

1. INTRODUCTION
The navigation of structural dependencies (e.g., method

invocations) when a developer performs a change task has
shown to be effective in program investigation [11]. Typi-
cally, only a small fraction of the structurally related ele-
ments are relevant. For example, investigating the body of
program elements such as method wrappers and getters do
not typically contribute much to a developer’s understanding
of the program.

Several existing approaches have addressed the problem of
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finding program elements relevant to a task by using struc-
tural dependency information. Impact analysis approaches—
such as static slicing [5]—attempt to return all program el-
ements that are relevant to a given point in the program by
some criteria related to the control-flow and the data-flow of
the code. Although such analyses provide information that
is sound and global, the results are typically far too large
for a human to understand. Call graph analyses, such as
Rigi [8] and the “Call Hierarchy” view in Eclipse, attempt
to return all the methods that are transitively called from
a given method. The use of a graph or a tree is useful in
providing the calling context for each method. However, the
results are still too large even though the analyses only con-
sider control-flow dependencies. Other approaches, such as
Robillard’s approach [10], use heuristics to rank the likely
relevant methods based on the topology of the structural
dependencies. His approach is effective in limiting the size
of the results, but tends to suggest elements that are struc-
turally close to a given method, providing a relatively local
view of structurally related elements.

To augment existing approaches to help developers narrow
down the program elements relevant to a task, we propose
an approach that incorporates three of the goals from the
existing approaches, while returning relevant results:

G1. limit the amount of information returned
G2. provide calling context
G3. provide global information
Our approach, called call graph filtering, automatically

highlights the methods that are likely to be relevant to pro-
gram navigation on a call graph. The size of the set of rel-
evant methods is reduced by our filtering heuristics (G1 ),
while global information is provided by the call graph (G3 ).
The intuition behind the call graph filtering heuristics is
that methods which do not significantly contribute to un-
derstanding the code have two characteristics in a static
program call graph: (1) they are consistently closer to the
leaves of a call graph for all executions (e.g., getter and set-
ter methods), and (2) they consistently call a small number
of methods for all executions (e.g., method wrappers). The
results are highlighted in a call graph view we have imple-
mented as an Eclipse plugin. Displaying the results in the
context of the call graph provides the calling context of each
method (G2 ).

To validate our hypothesis that the call graph filtering
approach can provide results relevant to developers making
a change, we have performed two preliminary studies. In
the first study, we apply our call graph filtering approach to



the specific problem of identifying the set of methods that
are relevant to understanding a JUnit [1] test case (MRUT).
MRUTs are important to identify during a change task in-
volving a JUnit test case because a JUnit test case may
invoke numerous methods transitively, and this space of in-
voked methods is too large for a human to manage. For-
tunately, only a small subset of these methods are likely
relevant. We use call graph filtering to eliminate irrelevant
methods from the set of methods that can be invoked, tran-
sitively, from a JUnit test case. We validate our approach
by analyzing four JUnit test cases against the MRUTs which
subjects from an empirical study have indicated to be rel-
evant to each of the test cases. The results show that our
approach can identify a small set of MRUTs, covering a good
portion of what the subjects think are relevant (i.e., recall)
and without a lot of noise (i.e., precision). Moreover, our
qualitative analysis reveals that our approach is effective at
filtering out several types of irrelevant methods to under-
standing a JUnit test case.

In the second study, we focus on how the results returned
by our approach can be helpful to a developer performing
a change task in a large system, Eclipse. We chose two
real tasks we encountered during the implementation of the
filtered call tree view. We found that the results returned by
our approach was able to direct a developer to the relevant
code when performing the tasks.

The rest of the paper is organized as follows: Section 2
describes the call graph filtering approach and its implemen-
tation. Section 3 presents two preliminary studies validating
our approach. Section 4 discusses related work, followed by
the conclusion in Section 5.

2. CALL GRAPH FILTERING
In this section, we walk through the design and imple-

mentation of our approach with respect to the three goals
we stated in Section 1. Each of the following subsections
focuses on one of the goals.

2.1 Call graph (G3. Global information)

Conceptually, our approach involves three steps. First,
our approach takes as input a method (or a constructor) of
interest. Second, our approach then produces a call graph
rooted at the given element. A call graph is a graph in
which a node represents a method (or a constructor) and a
directed edge (a,b) represents that method a invokes method
b. Finally, our approach highlights the methods that are
likely to be relevant using filtering heuristics, described in
the following section.

In our implementation, we use static call graphs gener-
ated by the T.J. Watson Libraries for Analysis (WALA) [2].
WALA provides static analysis capabilities for Java byte-
code. The call graph analyses from WALA we use is based
on the rapid type analysis (RTA)[4]. The reason behind
choosing WALA and the RTA algorithm is that RTA is a
practical algorithm, unlike other object or path sensitive
analyses, and the WALA implementation of the algorithm
reduces the deficiency of RTA by handling some common
cases in an object sensitive manner, e.g., an edge from new

Thread(atm).start to atm.run. We configure the call graph
computation to include library calls. For example, a call to
the JUnit framework assertEquals(money1,money2) even-

tually calls the application method Money.equals. If we had
stopped expanding the call graph at assertEquals, which is
the treatment in the Eclipse “Call Hierarchy”view, we would
have missed Money.equals.

2.2 Filtering heuristics (G2. Limiting result size)

To limit the information given by the call graph, we have
developed two heuristics to filter out methods in the call
graph that are likely irrelevant during program investigation:

The Don’t-hit-bottom heuristic filters out methods closer
to the leaf of a call graph. Such methods include getters (a
method whose sole purpose is to access a field) and setters (a
method whose sole purpose is to write to a field). Inspecting
the body of such methods typically do not add value to the
developer’s understanding of the program. We can config-
ure the definition of “bottom” by adjusting the parameter
pbottom, which indicates the minimum number of methods
in the callee chain for the given method to be considered as
relevant.

The Skip-small-methods heuristic filters out methods
with a small number of callees. This heuristic can filter out
methods such as delegation methods which are not likely
to contribute to the understanding of the application logic.
We can configure the definition of “small” by adjusting the
parameter psmall, which indicates the minimum number of
direct callees for the given method to be considered as rele-
vant.

2.3 Filtered call tree view (G1. Context informa-
tion)

The results inferred by the heuristics are highlighted in a
call tree view. The call tree view is a tree representation
of the call graph. If method a calls method b, and method
c calls b, then b would be represented as two nodes. The
method’s calling context, the parent of each method in the
tree, is readily available in the call tree view.

We have implemented our call graph filtering approach as
an Eclipse plugin. Figure 1 provides a screen shot of our
tool. (The underlines, squared box, and rounded box are
added to the image to assist the discussion in Section 3.2.)

3. VALIDATION
To validate our hypothesis that our call graph filtering

approach can provide results relevant to developers making
a code change, we have performed two preliminary studies.
The first study focuses on tasks involving JUnit test case,
and the second one on program navigation in the Eclipse
code base.

3.1 ATM study on MRUTs
This study evaluates how good our call graph filtering ap-

plies to a specific problem: identifying methods relevant to
the understanding of a test (MRUTs). We apply our ap-
proach to find MRUTs in a small application, an automated
teller machine (ATM) [3]. The system contains 48 files.
We validate the MRUTs of which subjects from an empir-
ical study have indicated to be relevant to each of the test
cases. The first part of the study assesses the accuracy of
the MRUTs by comparing our results to the MRUTs identi-
fied by the author of the test cases. The second part of the
study evaluates the interestingness of the results by study-



Table 1: Quantitative results for top 10

precision recall h-mean reduction

transfer 0.700 0.636 0.666 7.1

withdrawInsufficient 0.600 0.600 0.600 7.1

startupShutdown 0.100 0.167 0.125 4.9

cashDispenser 0.500 0.429 0.462 3.2

average 0.475 0.458 0.466 5.6

ing MRUTs that novice developers missed to identify but are
correctly recommended by our tool. The rest of this section
describes each of part of the study.

Part 1: Accuracy
The first part of this study involves assessing the accuracy
of the MRUTs suggested by our tool with respect to the
MRUTs declared by the author of the test cases. We asked
the author to identify MRUTs of four JUnit test cases from
the ATM system. We evaluate our results to the MRUTs
identified by the author using precision and recall, two pop-
ular evaluation measures from the information retrieval com-
munity. Precision measures, of all the results returned by our
tool, how much of which are the MRUTs identified by the
author of the test cases. Recall measures, of all the meth-
ods the author indicated as MRUTs, how much of which
are returned by our tool. To compare the precision-recall
pair of measures across different result sets, we combine the
two measures into one, called harmonic mean, also a popu-
lar measure from the information retrieval community. More
formally, if r is the set of results returned by our tool and t

is the set of MRUTs declared by the author, then precision

can be expressed as |r∩t|
|r|

, recall as |r∩t|
|t|

and harmonic mean

as 2×precision×recall

precision+recall
. In addition to the quantitative mea-

sures, we also analyzed qualitatively the types of irrelevant
methods that our approach was able to filter out.

Tables 1 and 2 present the precision and recall in the two
settings of the approach each of which uses a parameter set-
ting that gives the top 10 and the top 15 results, respectively.
The first column in the table lists the tests in question. Our
approach achieves up to precision of 70% and recall of 63.6%
for the top 10 results, and on average achieves precision of
47.5% and recall of 45.8%; the size reduction was 7.1x. As
for the top 15 results, our approach achieves up to precision
of 50% and recall of 63.6%, and on average achieves preci-
sion of 41.4% and recall of 52.5%; the size reduction was up
to 5.1x. The precision of the test startUpShutDown is partic-
ularly low because many of the calls are not captured in a
static call graph due to dynamic dispatch; thus, our filter-
ing approach cannot return such calls. Using a dynamic call
graph can improve the precision, and we plan to explore this
as future work.

Our tool successfully filters out several types of methods
that are not MRUTs:

Mock objects are used in unit tests to help isolate the
part of the system to be tested, often implemented as delega-
tion design pattern. Although a good software engineering

Table 2: Quantitative results for top 15

precision recall h-mean reduction

transfer 0.500 0.636 0.560 5.1

withdrawInsufficient 0.500 0.700 0.583 5.1

startupShutdown 0.154 0.333 0.211 3.8

cashDispenser 0.500 0.429 0.462 3.2

average 0.41.1 0.525 0.462 4.3

practice, the use of mock objects can obscure the under-
standing of a test because such objects do not contribute to
any actual functionality of the system. Our approach cor-
rectly filters out all the calls to mock objects, none of which
were declared to be a MRUT by the author.

Getters and setters are methods whose sole purpose is
to read from or write to a field, respectively. These methods
do not contribute to the functionality of the system, but the
use of these methods is a good object-oriented programming
practice to encapsulate internal data in an object. Of the
37 MRUTs identified by the author of the four test cases,
only one setter method, CashDispenser.setInitialCash, was
significant to the understanding of one of the test cases. Our
approach correctly eliminates all getters and setters.

Part 2: Interestingness
The second part of the study assesses the interestingness
of the results returned by our approach, by analyzing what
novice developers miss when they examined a test. We asked
three subjects, none of whom had seen the code before, to
identify the MRUTs of the four test cases. All the subjects
were researchers at IBM Watson Research Center, and all
of them declared that they were at least “proficient” in Java
programming. The subjects were allowed to use any features
from the standard installation of Eclipse for Java developers.

Our approach was able to highlight MRUTs missed by the
novice developers in our empirical study. If these developers
were to use our tool, they may have identified these missing
MRUTs:

Retaining non-trivial control flow. Our tool can re-
turn methods that are involved in non-trivial control flow,
such as forking a thread. In Java, one way to fork a thread
is to call Thread.start. In our study, two out of three novice
subjects missed to inspect the method atm.run and all the
methods transitively called from the method. These meth-
ods the subjects neglected to examine actually form the
majority of the methods invoked from a test case. When
we asked the subjects why they did not inspect atm.run

at the end of the study, they admitted that they did not
know or forgot that when a thread is forked after calling
Thread.start, the method atm.run is eventually invoked in
the forked thread. Our approach which was able to infer
atm.run may have helped these two subjects in reasoning
about such non-trivial control flow. The “Call Hierarchy”
view in Eclipse cannot return this call, although the debug-
ger obviously can do so.

Confusion on methods with similar names. Our
analysis based on structural dependencies has the advantage
that the results are independent of the quality of the identi-
fiers. Using the name of a method is a common strategy de-
velopers use to locate code of interest, but this strategy can



sometimes be misleading. In our study, one subject mistak-
enly reported seven calls which were not invoked at all from
the test case, because the name of the test case was similar
to those methods he reported. The results from our tool
summarize the structural information that are transitively
called by a test may have helped this subject in reasoning
the methods that are possibly called from the test case.

Conclusion
Our approach was able to eliminate common types of ir-
relevant methods: mock objects, getters, and setters. The
precision and recall of our initial prototype may seem low,
but it gave a good reduction in size and it has potential
to improve, for example, by using more precise call graph
information from dynamic data.

3.2 Eclipse study on program navigation
The second study focuses on how the results from our

approach can help a developer perform a change task in a
large system, Eclipse. We chose two real tasks we encoun-
tered during the implementation of our filtered call tree view.
For each task, we describe the task, how we investigated the
task, and whether our call graph filtering approach can help.

Task 1
The first task involves figuring out how to display different
Eclipse style images beside Java program elements depend-
ing on the modifiers on the declaration. For example, a
constructor is denoted with a “C” in the image, and a public
method is denoted with a green square in the image. Our
initial thought was to examine the code of the Eclipse “Call
Hierarchy” view, as that view has similar functionality we
wanted to implement. We first guessed that the “Call Hier-
archy” view would be a subclass of the class ViewPart, which
is the abstract base class for all views in Eclipse. Indeed,
we found the class CallHierarchyViewPart in the JDT UI
project. From the class-level JavaDoc of ViewPart, we found
out that CallHierarchyViewPart.createPartControl deserved
further investigation as it is triggered when Eclipse creates a
ViewPart. Thus, we could use our filtered call tree rooted at
CallHierarchyViewPart.createPartControl to help search for
the code, shown in Figure 1. We configured our approach to
filter out pbottom=2 and psmall=2 and only returned nodes
in the same project (i.e., JDT UI project) and the system
libraries. The method createPartControl

1 calls 17 meth-
ods, 7 of which highlighted by our tool. By elimination,
createCallHierarchyViewer and CallHierarchyView

2 looked
promising from their names. Finally, we saw CallGraphLa-

belProvider
3, the class we were looking for that encapsulates

the display of labels on Java elements.

Task 2
The second task involves figuring out how to open a Java
editor given a Java program element. Similar to the first
task, we wanted to examine the code of the Eclipse “Call
Hierarchy” view as the view has similar functionality we
want to implement. Our strategy was to try to look for
the registration of an UI trigger associated with the view,

1underlined in Figure 1
2both underlined in Figure 1
3squared boxed in Figure 1

Figure 1: Filtered call tree view on the Java label

task

and in there we would be likely to find the code that opens
the Java editor. Again, we started with the CallHierar-

chyViewPart.createPartControl in the JDT UI project, and
we investigated the same path4 as in Task 1 to CallHierar-

chyViewer.createCallHierarchyViewer as the creation of the
viewer may contain the registration of the UI trigger. Fol-
lowing this path, we saw OpenLocationAction which worthed
investigating for two reasons: the “action” part of the name
could imply that OpenLocationAction

5 is an Eclipse action6,
which is a UI trigger; the “OpenLocation” could mean open-
ing an editor, although we were not very certain. Investi-
gating the body of the OpenLocationAction class, we found
what we were looking for in this class: a call to open a Java
editor.

Conclusion
From the two tasks we examined, we have shown that our
call graph filtering approach was able to direct to the code
we are looking for in a change task. However, there are
several assumptions for our approach to work. First, we
need to know which method the call graph would be rooted
on. Second, when expanding the call graph, the developer
must further filter out possible candidates, for example, by
inspecting the name of a method.

4. RELATED WORK

Suggesting related program elements
Robillard has proposed to recommend methods of interest
based on the neighbouring structurally related program ele-
ments specified as interesting by the user [10]. Their ap-
proach is very effective in limiting the amount of results

4The path contains methods underlined in Figure 1.
5round-boxed in Figure 1
6The Eclipse action mechanism allows actions to be added
to different menus automatically.



returned and can take multiple seed points. The general
hypothesis of exploiting the topology of the call graph is the
same as ours. However, we use a different intuition of us-
ing the global topology of the call graph in addition to the
topology of the neighbours of a given program element. To
find relevant elements structurally far from the interest point
using his approach, the user has to iteratively refine this in-
terest set and reapply the analysis until one of its elements
has become structurally close to an unknown target method.
In addition, the results are shown in a list without calling
context. It would be interesting to explore integrating Ro-
billard’s heuristics to our filtered call graph view.

Impact analyses such as slicing (e.g., [5]) try to identify
all statements in a program that might affect the value of
a variable at a given point in a program by analyzing the
data-flow and control-flow of the source code. Slicing ap-
proaches can provide sound information about code related
to a given point in the program, but they suffer from practi-
cal limitations. The results from slicing are often very large.
A recently proposed approach called thin slicing addresses
the large size of a slice by limiting the slice to only the state-
ments with a value dependency the seed point [12]. Thin slic-
ing is effective to help in tasks dependent on the data flow,
e.g., locating bugs given the location of the crash; while our
approach is useful in tasks that relies on control flow, e.g.,
navigating API of a framework data-flow of the framework
intended to be encapsulated.

Test understanding
Marschall attempts to find the methods a unit test focuses
on [7]. Our notion of MRUTs used in the validation is simi-
lar to that of Marschall, but with several major differences:
Marschall only focuses on unit tests, whereas our approach
can apply to any kinds of tests or methods in general. In ad-
dition, our call graph filtering approach can return relevant
methods that are transitively called from a test, whereas
Marschall only analyzed the direct calls from a test.

Xie et. al. purposed an approach that helps a user reason
test cases by classifying them into two categories: tests ex-
hibiting special cases and common cases [14]. Their results
can help developers catching special cases or even common
cases they had missed to test. Even after understanding
whether a test exhibit special or common, a developer can
use our approach to assist them understand the tests.

Change impact analysis correlating tests and code
Chianti finds affected tests given a change in the source code,
by finding the changes that caused behavioural differences in
the tests [9]. Chianti is subsequently used to classify whether
a change caused a failure indicated by a failing test [13].
Our approach differs from theirs in purpose: their approach
requires a change to trigger the tool to find the part of the
change that induces the failure, our tool is targetted to assist
navigation which is more exploratory in nature.

Jones et. al. proposed a technique to visualize the state-
ments in a program according to whether it participated in
failing tests only, in passing tests only, or in both passing and
failing tests [6]. Our approach differs from their technique in
purpose: their approach provides a summary of test results,
whereas our technique provides a summary for navigation.

5. CONCLUSION
In this paper, we have presented our approach of call

graph filtering to help a developer identify pertinent meth-
ods from the sea of structurally related program element.
Our approach is based on simple filtering heuristics on a
call graph, aiming to limit the amount of information re-
turned to the user, provide calling context of the methods,
and provide global information. We have shown some initial
evidence that our approach can provide useful information:
our approach achieves good precision and recall on identify-
ing methods relevant to the understanding of tests, on the
basis of what the author of the test cases declared. In addi-
tion, our approach can filter out several kinds of irrelevant
methods, such as mock object calls, and retain interesting
calls that are non-trivial to subjects in our study. Our vali-
dation also shows that our approach can direct developer to
the code of interest in a large framework, Eclipse.

In the future, we would like to extend our work in three
directions: more evaluation on both the effectiveness of the
filtering heuristics and the effectiveness of the highlighted
call tree view UI; exploring other filtering heuristics; and
exploring different UIs.
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