
MTSA: Eclipse support for Modal Transition Systems
construction, analysis and elaboration. ∗

Nicolás D’Ippolito
Departamento de

Computación, FCEyN
Universidad of Buenos Aires
ndippolito@dc.uba.ar

Dario Fishbein,
Howard Foster

Computing
Imperial College London

{fdario,hf1}@doc.ic.ac.uk

Sebastian Uchitel
Departamento de

Computación, FCEyN
Universidad of Buenos Aires

suchitel@dc.uba.ar

ABSTRACT
In this paper we detail the design and implementation of
an Eclipse plug-in that supports construction, analysis and
elaboration of Modal Transition Systems. The plug-in sup-
ports construction of MTS using FSP process algebra and
synthetising from scenarios and FLTL safety properties.
These models could be animated and model checked. The
MTSA-Eclipse plug-in is publicly available at:
http://lafhis.dc.uba.ar/ suchitel/MTSA.html.

Categories and Subject Descriptors
2.1 [Software Engineering]: Requirements/Specifications

General Terms
DESIGN

Keywords
Eclipse, MTS, Synthesis, FLTL, Scenarios

1. INTRODUCTION
The requirements and design of software systems are ame-
nable to analysis through the construction of behaviour mo-
dels, that is, formal operational descriptions of the intended
system behaviour. This corresponds to the traditional engi-
neering approach to construction of complex systems. The
major advantage of using models is that they can be stud-
ied to increase confidence in the adequacy of the product to
be built. In particular, behaviour models used to describe
software systems can be analysed and mechanically checked
for properties in order to detect design errors early in the
development process and allow cheaper fixes.

Although behaviour modelling and analysis have been shown
to be successful in uncovering subtle design errors [2], the
adoption of such technologies by practitioners has been slow.
This is in part due to a mismatch between most widely

∗Funded by IBM Eclipse Innovation Award 2006

adopted software development techniques and a fundamen-
tal characteristic of traditional behaviour models. On one
hand, as part of the essence of widely used iterative and in-
cremental software development processes, the available sys-
tem descriptions tend to be of a partial nature leaving some
aspects of the desired behaviour undefined until a more ad-
vanced stage of the process is reached. On the other hand,
traditional behaviour models such as labelled transition sys-
tems (LTS) [8] and statecharts [10], are assumed to be
complete descriptions up to a fixed level of abstraction: the
existence of a transition models behaviour the system is ex-
pected to exhibit, while the absense of a transitions means
that the system prohibits a particular behaviour. In sum-
mary, traditional behaviour models describe required and
prohibited behaviour but they cannot support partial or un-
defined behaviour yet when the advantages of constructing
models are more rewarding the complete system description
is not available.

Our approach adopts Modal Transition Systems (MTS) [11]
as the basis for describing partial system behavior. MTS
are a natural extension to LTS, which have been proven
to be successful for modeling and analyzing the behavior
of systems. Systems are modeled as a set of components
or sub-systems that communicate and synchronize to pro-
vide system level behavior. Each component is described
as a transition system where labels on transitions represent
an interaction of the component with the environment. In
MTS, each transition can be either required or maybe. The
later means that it is not yet certain if the interaction mod-
elled by the transition is required or prohibited in the final
system. An MTS with no maybe-transitions is a model that
is fully defined up to its alphabet, and hence corresponds
to an LTS. MTS models come equipped with a definition of
refinement that captures the notion of ”more defined than”
or ”more information than”. A refinement step corresponds
intuitively to removing a maybe transition or replacing it
with a required one. Refinement can be shown to preserve
temporal properties [1, 4], hence by refining an MTS we
are guaranteed that all properties that where true (false)
in the partial model will continue to be so in the refine-
ment. The result of applying refinemet of a model M until
no maybe transitions left in it, is called an implementation
of M , in fact, refinement can be thought of as narrowing the
number of acceptable implementations of a partial behaviour
description provided by an MTS.

We have implemented the Modal Transition Systems Analy-

ser (MTSA), a tool that supports building and model check-
ing MTS, as a plugin to the eclipse framework. We expect
the tool to be used in conjunction with other plug-ins that
aid the modelling, analysis and development of software sys-
tems. In this way, we expect software developers to move
towards implementations with greater ease and confidence.
The tool embodies theory and algorithms for analysing, com-
posing and modifying MTS developed by us (e.g. [1, 14])
and others (e.g. [11]). Our plugin MTSA, which builds
on LTSA [12] (a tool for analysis of LTS), allows the users
to input MTS in a textual language which includes a num-
ber of novel composition, modifier and synthesis operators,
and then visualise a graphical representation of the result-
ing MTSs. In addition, the tool supports MTS validation
by providing animation and Fluent Linear Temporal Logic
model checking features.

In the remainder of the paper we present the main features
of the tool and exemplify their use for building, elaborating
and analysing partial behaviour models of software systems.
We then describe the tool architecture and its integration
into eclipse. We conclude with a discussion on future work.

2. USING MTSA ECLIPSE PLUG-IN
In this section we discuss the main features of the plugin. In
Section 2.1 we show how models are input into MTSA and
how the MTS models can be visualised. We then describe
the construction of complex behaviour models explaining the
various composition operations provided (2.2) and the syn-
thesis techniques from scenarios and properties suppported
by the tool (2.3). Finally we discuss support for model val-
idation (2.4).

2.1 Writing and Viewing Simple Models
MTSA provides an FSP Editor in which MTS models are
described using an extension of the language Finite State
Processes, a textual language used originally to describe
LTS [12]. Figure 1 shows FSP Editor with an example of
FSP code that models a light switch. The code declares
a LIGHT process using action prefix (->) and choice (|) to
model its expected behaviour. Actions terminating with ?

represent actions that may be provided in the final imple-
mentation of the switch, but are not guaranteed to be pro-
vided. The model describes a switch which is guaranteeed to
exhibit an alternating on and off behaviour, but for which
it is not yet known if it can be switched off (resp. on), if the
light is already off (resp. on).

MTSA supports two ways of compiling FSP code into MTS.
The first is using the Outline View and the other one is
using the toolbar associated with the FSP Editor. These
views are depicted in Figure 8. If the user wants to compile
from the toolbar, she must set focus of the plugin on the
FSP Editor to enable the toolbar, on the other hand the
user can compile from the outline view selecting the model
to compile from the tree view in the Compositions node.

After the MTS compilation process ends, the user can see
the result as a graphical representation of the model in the
MTS Draw view. In this view the user is able to manipulate
the model to enlarge or shrink the picture. Figure 2 shows
the graphical representation obtained after compiling the
Light model of the example shown in Figure 1.

Figure 1: Light model - Editor View

Figure 2: Light model - Draw View

2.2 Composing models
MTSA allows construction of complex behaviour models com-
positionally. The tool provides a number of different com-
position mechanisms. Firstly, it provides parallel composi-
tion CSP-style [5] to build models that describe the result
of executing (the models of two different) components con-
currently in an asynchronous fashion yet synchronising on
shared labels. In addition to parallel composition, which
has been the main focus of traditional approaches to be-
haviour modelling, we provide an alternative composition
mechanism, namely model merging: In the context of model
elaboration, we are interested in composing two partial de-
scriptions of the same component to obtain a model that
is more comprehensive than either of the original partial
descriptions. Merging two models should return an MTS
that is their least common refinement. In other words,
the model that is as partial as possible while guarantee-
ing the required and proscribed behaviour of the models
being merged. MTSA currently provides three different op-
eratos for merging: ++ guarantees to find the least common
refinement for models with the same communicating alpha-
bet whether this exists, and provides one minimal common
refinements when multiple incomparable minimal common
refinementes exist.

For these cases, the operators +cr and +ca are models used
currently for research purposes to approximate from above
and below the set of minimal common refinements [15]. Fig-
ure 8, depicts the merge ++ of MTS depicted in Figures 4
and 7.

2.3 Model Synthesis
Although compositional operators aid the construction of
complex MTS, building the models to be composed remains
a difficult, labour-intensive task that requires considerable
expertise. To alleviate this problem, MTSA supports au-
tomated synthesis of behavioural models from declarative
requirements specifications (e.g., [13, 7]) and from synthe-
sis from scenarios and use cases (e.g., [10, 16, 9]). The
details of this work are presented in [14].

2.3.1 Synthesis from Constraints
Properties can be thought of as statements that prune the
space of acceptable behaviours of the system to be. A be-
haviour model synthesized from properties should character-
ize all possible behaviours that do not violate the properties.
Such a model provides an upper bound on all the behaviours
that the system will actually provide, once implemented.

A webmail system is required to enforce legal and private
access to the emails it stores. These requirements can be for-
malized in FLTL [3] as properties. Legal access requires the
User be Registered if it is to be LoggedIn (i.e. 2(LoggedIn
⇒ Registered)). Private access requires that the User be
LoggedIn if she is to receive e-mail from the Server (sendMsg)
formalised in FLTL as 2(sendMsg⇒ LoggedIn). Registered
and LoggedIn are fluents that change value according to the
occurrence of events (see top half of Editor View in Fig-
ure 3). A User is Registered once she has been enabled and
not yet disabled. A User is LoggedIn once she has been au-
thenticated and not yet done a logout nor been disabled. An
additional requirement, LogoutsAreAckd, specifies that users
should be sent an acknowledgment on logout, (i.e 2(logout
⇒ X logoutMsg)).

Declaring safety properties like the above using the con-
straint keyword (see Editor View in Figure 3) the user can
build automatically MTS that describe all the behaviour the
system could provide without violating the property. The
Figure 4 shows a model synthetized from logoutsAreAckd
constraint. The MTS synthesised from a FLTL safety prop-
erty is guaranteed to characterise all non-deadlocking LTS
that satisfy the property [14].

Figure 3: Web Mail Properties - MTS Editor View

Figure 4: Synthesis from logoutsAreAckd property

2.3.2 Synthesis from Scenarios
In their simplest, and widely used form, scenarios are exis-
tential statements: they provide examples of the intended

system behaviour; in other words, sequences of interactions
that the system is expected to exhibit. By synthesizing
behaviour models from scenarios, it is possible to support
early analysis, validation, and incremental elaboration of be-
haviour models. A behaviour model synthesized from sce-
narios should provide a lower bound from which to identify
the behaviours that the system will provide but that have
not been explicitly captured by the scenarios.

Figure 5 provides some examples of the intended system be-
haviour using a standard message sequence chart notation
[6]. The scenario describes a repetition (the outer rep box)
of a choice (the inner alt box) between two sequences of ac-
tions: (1) a User requests authentication from the Server
which then sends a number of messages; after that, the User
logs out and receives a logout message. (2) an Admin dis-
ables the User during user activities, effectively expelling the
latter from the system. An example of a sequence of events
required by authenticate, sendMsg, disable, logoutMsg, . . .

Figure 6 shows the FSP code that describes the sequence
chart behiavour. The code declares a WebMailScenario pro-
cess and uses an abstract prefix. The process, without the
abstract prefix, captures the required behaviour described in
the scenarios. This part of the FSP declaration is generated
automatically using standard scenario to LTS techniques.
The abstract keyword modifies the process producing an
MTS that characterises all LTS models that preserve the
WebMailScenario model behaviour (i.e. including LTS that
exhibit more behaviour than that described in the scenar-
ios). The resulting MTS for the scenario in Figure 5 is de-
picted in Figure 7.

Note that the models synthesised from properties and sce-
narios can be composed using the merge operation as dis-
cussed above. The merge for the MTS of Figures 4 and 7 is
depicted in Figure 8 and combines in one model the lower
and upper bounds to the intended system behaviour as pro-
vided by the scenarios and properties of the webmail system.

Figure 5: Web Mail Scenario Specification

2.4 Model Validation
We have discussed inputting, visualising, composing and
synthesizing models in MTSA, we discuss suport for model
validation. MTSA supports FLTL and deadlock-freedom
model checking in addition to model animation.

abstract WebMailScenario = (authenticate->SEND_MESSAGE),

SEND_MESSAGE = (sendMsg->SEND_MESSAGE

| disable->logoutMsg->enable->WebMailScenario

| logout->logoutMsg->WebMailScenario).

Figure 6: Web Mail Scenario FSP

Figure 7: Web Mail Abstract Model

2.4.1 Model Checking
Model checking is an automated technique for verifying that
a system satisfies a set of required properties. In the case
of MTSA it supports model checking of MTS models, that
is, to verify if a property is satisfied by all deadlock free
implementations of a MTS model. The result of checking a
formula φ against a model M has three possible outcomes:
true, false y maybe. The result is true if and only if all
implementations of M satisfy the formula φ, false if and
only if all implementations of M do not satisfy the formula
φ, and maybe otherwise. MTSA implements model check-
ing as, essentially, two model checks over LTS derived from
the MTS under analysis [15]. The LTS model checks are
implemented using the core classes of the LTSA tool [12].

In MTSA Plugin properties to be checked are defined in FSP
using the assert keyword as in assert Logout = ([](X

logout -> LoggedIn)). In order to check a property, the
user must right click it in the tree view of the Outline View
(see Figure 8). The Output View shows the operations that
are being executed during MTSA property check, as an ex-
ample, the output of the Logout property check is shown in
Figure 8.

2.4.2 Model Animation
MTSA supports model animation, this allows users to walk
through the behaviour exhibited by an MTS and validate
model. MTSA has an Animator View that it is accessible
from the animator button in the toolbar of the plugin or
simply making the Animator View visible. The user is dis-
played the MTS being animated, with its current state in
red. In addition, a window with the communicating alpha-
bet of the MTS is displayed. Enabled actions on the current

state are depicted with checked boxes. The animation pro-
ceeds with the user selecting one of the enabled transitions.
The MTS model is updated and the new set of enabled ac-
tions is displayed. Figure 8 depicts an ongoing animation.

3. THE MTSA ECLIPSE PLUG-IN
Using the Eclipse framework opens the potential to link the
tool with a network of other Eclipse plug-in contributions
and aims to simplify the number of different, bespoke tools
used in software engineering as a whole. There were sev-
eral reasons why we sought to leverage the Eclipse Inte-
grated Development Environment (IDE) for our work and
develop an IDE based tool rather than extending the previ-
ously standalone MTSA tool. Firstly, a growing number of
editors have been released to support a number of different
languages and specifications (for example, Java and C#)
irrespective of actual technology deployment environment.
Our approach required an IDE which was flexible to mul-
tiple editors and views working closely together. Secondly,
the notion of providing extension points promotes contribut-
ing our plug-in not only to increase the number of available
plug-ins, but also work closely with other contributors to en-
hance the overall engineering experience by plug-ins working
together.

Indeed, the migration of LTSA (MTSA is based on the core
of the LTSA tool [12]) to the Eclipse environment consisted
in rebuilding the model, view and controller pattern using
the Eclipse Plug-in development environment (PDE). There
were a few issues related to moving from a standalone LTSA
to an extended plug-in version of the MTSA tool. Our aim
was to provide a consistent and expandable mechanism to
support cross editing and view updates. As changes occur
to a document, we reflect this in any associated views (i.e
when a user types a FSP in the Editor View then the Draw
View and Output View must reflect these changes). To im-
prove the performance of MTSA we implemented threaded
jobs in translation, synthesis, compilation and process anal-
ysis. Long running jobs should not restrict other work being
undertaken, and should provide continuous feedback to the
user.

The FSP Editor extends the MultiPageEditorPart class of
the PDE. Extensions to support calling the appropriate ed-
itor are easily configurable in the plugin.xml deployment
config file. The editor content is scanned on an ’input rest’
(i.e. after there is a delay in user editing interactions) and
upon document restore or save actions to provide useful ed-
itor functions, such as syntax highlighting. A full parsing
of source is however, performed on compilation of the FSP
source, whereby an outline view content is updated with
a breakdown of an FSP document. This includes a list of
compositions (such as specified composite processes) and a
list of basic processes (possibly synthesised from scenarios or
properties). Another useful PDE feature we built was the
core Page sub-part of a MultiPageEditor to support views
with multiple tabs (such as in the MTS Draw View to show
graphical MTS models, their alphabets and FSP represen-
tation - see Figure 8).

4. CONCLUSIONS AND FUTURE WORK
We have described the MTSA plug in for Eclipse, which sup-
ports a variety of modelling and analysis features aimed at

Figure 8: MTSA Plugin Full View

assisting developers in producing better systems. We aim to
integrate our work with existing plugins in order to allow for
a more cohesive environment for iterative software develop-
ment practices. In particular, we aim to integrate with plu-
gins that support development of graphical models such as
hierarchical statecharts and scenario descriptions now that
we have synthesis procedures from these languages.

5. REFERENCES
[1] M. Chechik, B. Devereux, S. Easterbrook, and

A. Gurfinkel. “Multi-Valued Symbolic
Model-Checking”. ACM TOSEM, 12(4), October 2003.

[2] E. Clarke and J. Wing. “Formal Methods: State of the
Art and Future Directions”. ACM Computing Surveys,
28(4):626–643, December 1996.

[3] D. Giannakopoulou and J. Magee. “Fluent Model
Checking for Event-Based Systems”. In
ESEC/FSE’03, 2003.

[4] D. Harel, H. Kugler, and A. Pnueli. “Synthesis
Revisited: Generating Statechart Models from
Scenario-Based Requirements”. In FMs in Soft. and
Systems Modeling, pages 309–324, 2005.

[5] C. Hoare. Communicating Sequential Processes.
Prentice-Hall, New York, 1985.

[6] ITU. Recommendation z.120: Message sequence
charts. ITU, 2000.

[7] R. Kazhamiakin, M. Pistore, and M. Roveri. “Formal
Verification of Requirements using SPIN: A Case
Study on Web Services”. In SEFM’04, 2004.

[8] R. Keller. “Formal Verification of Parallel Programs”.
CACM, 19(7):371–384, 1976.

[9] K. Koskimies and E. M Lkinen. Automatic synthesis of
state machines from trace diagrams. Software Practice
and Experience, 24(7):643–658, 1994.

[10] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From
mscs to statecharts. In Distributed and Parallel
Embedded Systems, 1999.

[11] K. Larsen and B. Thomsen. “A Modal Process Logic”.
In LICS’88, pages 203–210, 1988.

[12] J. Magee and J. Kramer. “Concurrency - State Models
and Java Programs”. John Wiley, 1999.

[13] C. Ponsard, P. Massonet, A. Rifaut, J. Molderez,
A. van Lamsweerde, and H. T. Van. “Early
Verification and Validation of Mission-Critical
Systems”. In FMICS’04, 2004.

[14] S. Uchitel, G. Brunet, and M. Chechik. “Behaviour
Model Synthesis from Properties and Scenarios”. In
ICSE’07, 2007.

[15] S. Uchitel and M. Chechik. “Merging Partial
Behavioural Models”. In FSE’04, pages 43–52, 2004.

[16] S. Uchitel, J. Kramer, and J. Magee. “Incremental
Elaboration of Scenario-Based Specifications and
Behaviour Models using Implied Scenarios”. ACM
TOSEM, 13(1), 2004.

