
Building, Deploying, and Monitoring Distributed
Applications with Eclipse and R-OSGi∗

Jan S. Rellermeyer Gustavo Alonso Timothy Roscoe
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

{rellermeyer, alonso, troscoe}@inf.ethz.ch

ABSTRACT
Designing and testing distributed applications is still a dif-

ficult task that requires in-depth knowledge about network-
ing issues. Eclipse is, among other things, a powerful and
widely used IDE for the development of complex applications,
in particular modular applications for the OSGi framework.
Our R-OSGi middleware supports the seamless distribution
of OSGi applications along the boundaries of services. By
combining R-OSGi with Eclipse into the R-OSGi Deploy-
ment Tool, we give developers a tool that automatically han-
dles distribution in a transparent way and integrates the ca-
pabilities of R-OSGi into the Eclipse workflow. With this
tool, building, deploying, and monitoring distributed appli-
cations is as easy as writing OSGi applications in Eclipse
and using a graphical editor to visually create distributed de-
ployments of the modules. The tool can also be used to great
effect by researchers to test and benchmark distributed ap-
plications and for education purposes.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; D.3.3 [Programming
Languages]: Language Constructs and Features—Modules,
Packages; K.6.m [Management of Computing and In-
formation Systems]: Miscellaneous

General Terms
Design, Management

Keywords
R-OSGi, OSGi, Deployment, Eclipse, Concierge

1. INTRODUCTION
The Eclipse platform for building, deploying, and manag-

ing software is increasingly based on the OSGi standard [8]
for module management in Java: the platform itself is com-
posed of a variety of OSGi modules, and is extensible through

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

Copyright is held by the author/owner(s).
Eclipse Technology Exchange (ETX) Workshop ’07, October 21–25, 2007,
Montréal, Québec, Canada.
ACM .

plugins which are themselves OSGi bundles. Unsurprisingly,
Eclipse also has built-in support for developing modular Java
applications based on the OSGi standard. However, Eclipse
does not currently provide support for remotely deploying
an OSGi-based application to a node, or for building dis-
tributed applications using OSGi.

In [10] we presented R-OSGi, an extension to OSGi that
allows the user to run modular software in a distributed fash-
ion without changing the OSGi framework implementation
or the application binaries: remote invocation proxies are
transparently interposed at distribution boundaries between
modules, and network or remote node failures are mapped
to module unload events. The result is that modular OSGi-
based applications can be written using OSGi bundles with
little extra effort on the part of programmers.

In this paper, we present an Eclipse plugin that allows
distributed R-OSGi applications to be deployed and man-
aged from within Eclipse. When combined with R-OSGi
itself, the R-OSGi Deployment Tool (RDT) turns Eclipse
into a powerful tool for developing, deploying, and monitor-
ing distributed applications. The result is that developers
can build modular software with little concern for distribu-
tion, and then use RDT to transform the resulting applica-
tion into a distributed system. The contributions of RDT
described in this paper are as follows:

Firstly, RDT can analyze OSGi applications inside Eclipse
and generate graphical representation based on Eclipse’s
Graphical Editing Framework (GEF) [5]. Users of the tool
can turn this initial centralized deployment into a distributed
deployment by dragging and dropping bundles from one ma-
chine to another. The resulting deployment description is
transformed into tasks for R-OSGi.

Secondly, RDT exposes R-OSGi’s transparent support for
load-balancing and fault-tolerance. Such facilities can be
added to existing applications with a few clicks, and the
resulting system immediately deployed from Eclipse.

Thirdly, RDT can be used to visualize the structure and
status of a running distributed application in real time, in-
cluding such issues as node or network failures and concur-
rency issues. As well as its use in a software management
context, this facility can be used to explore the impacts of
different failure models and decide on appropriate fault tol-
erance strategies.

Finally, RDT can capture all network messages and make
them available to the Eclipse user. These traces can be
used by developers to for profiling, testing, debugging, and
benchmarking distributed applications throughout the en-
tire development cycle.



Figure 1: Example Setup

2. THE DEPLOYMENT TOOL
The R-OSGi Deployment Tool for Eclipse consists of two

different parts: The actual Plugin which extends the Eclipse
IDE and the Deployment Agent in charge of distributed
deployment. Figure 1 shows an example consisting of the de-
velopment machine running the Eclipse instance and three
nodes running each an OSGi framework with R-OSGi and
the Agent. The graphical representation of the deployment
is transformed into sets of declarative tasks for each nodes.

The purpose of the Plugin is to add support to Eclipse
for creating deployment graphs from an existing OSGi ap-
plication, allowing the user to modify the graph, and to vi-
sualize the resulting application once it is deployed. The
Deployment Agent is the primary communication chan-
nel between the Eclipse instance and the OSGi frameworks
running on the nodes. It mainly features remote manage-
ment commands and processes the tasks disseminated by the
Plugin during the deploying step. Once the application is
running, is also gives feedback about the application state
and the network traffic.

2.1 Code Analysis and Graph Generation
The manifest of OSGi bundles explicitly declares package

imports and exports but does not give any information about
the services provided and consumed by a bundle. There-
fore, the service dependency structure can be normally de-
termined only from the running bundles of an application.
In the R-OSGi Deployment Tool, we use code analysis to
reason about the services used by bundles. Since the source
code of the application bundles is usually available when de-
veloped in Eclipse, our tool uses the Abstract Syntax Tree
(AST) maintained by Eclipse for every Java source code re-
source.

As an initial step, the user specifies the main (root) bun-
dle of the application through a wizard. Starting from this
bundle, an AST node visitor traverses the syntax trees of all
source files belonging to the bundle project to identify which
services are registered (through context.registerService(...))
and consumed (context.getServiceReference(...) and con-

text.getService(...)). For binary resources, the same could be
achieved through bytecode analysis (e.g., using the ASM [1]
library, also internally used by R-OSGi). The code analysis
recurses over all bundle dependencies of the root bundle.

The result of the analysis is the complete set of bundles
making up the application, together with information about
the registered and consumed services for each bundle. In
the next step, the tool creates an initial deployment graph
depicting the structure of the application if it was launched
on a single OSGi framework.

2.2 Creating a Distributed Deployment
This initial graph can be manipulated by the user to turn

the centralized application into a distributed one. New nodes
running OSGi frameworks can be added to the graph. The
bundles of the application can be dragged and dropped from
one node to another, thereby changing the structure of the
deployment. Dependencies between the bundles on the level
of services are illustrated by connection arrows. The amount
of connections between frameworks gives the developer al-
ready a coarse estimation on how much network activity a
specific distribution setup might involve. Figure 2 shows
the Deployment Editor with an opened deployment of an
application on three different nodes.

For each service which is accessed by remote frameworks,
the R-OSGi middleware transparently creates a service proxy
on the consumer peers which calls the original remote ser-
vice. Dependencies on the level of package imports and ex-
ports are automatically resolved by R-OSGi. Events raised
through the OSGi EventAdmin service are transparently
forwarded to those nodes that have a corresponding Even-
tHandler registered.

2.3 Advanced Features
The Deployment Tool does not only facilitate the creation

of distributed applications out of software modules, it also
offers to add advanced features such replicating modules for
load balancing, or failover redundancy. The user can create
redundant copies of bundles through the visual interface by
dragging a bundle to a different node with the control key
pressed. By default, these copies are unbound. With differ-
ent GEF connection tools, the user can (graphically) bind
the services of this copy to consuming bundles and thereby
specify for which purpose the copy should be used. With our
tool, the implications of distributed failures can be tested
and their impact on the running application evaluated. For
education purposes, different failure scenarios can be simu-
lated by disabling nodes of the deployment, or by creating
new channel implementations which simulate network fail-
ures.

R-OSGi supports binding service proxies to a single pri-
mary service and adding redundant remote services. If the
failover policy is defined for these additional bindings, R-
OSGi will switch to the next service whenever the invoca-
tion of the primary service fails due to unavailability or net-
work failures. Two different load balancing strategies are
selectable. The ONE strategy selects the best available ser-
vice on the first invocation (the one with the least service
proxies bound to it). The ANY strategy is intended to be
used with stateless, idempotent services. With this strat-
egy, the best available service is reselected with every new
invocation.



Figure 2: Deployment Editor

3. INTEGRATION INTO ECLIPSE

3.1 Task Structure
In a traditional OSGi application, the start order of bun-

dles does not depend on package imports and exports but
is affected by the services that bundles exchange. If bundle
B consumes a service provided by bundle A, A has to be
started before B in the general case so that B will find the
service when it starts. Some bundles are designed to handle
missing services (e.g., leaving out certain features or delaying
the startup until the service is present) but this behavior is
not mandatory and depends on the degree of dynamics that
the author of the bundle has taken into account.

In a distributed setting, these constraints cross the bound-
aries of a single VM. The naive approach to start the lo-
cal bundles, register every local service for remote access
and building a proxy for every remote service on each peer
(thereby making the deployment a fully connected graph)
does not work. If a bundle requires a service provided by a
remote machine, the remote service bundle has to be started
prior to the start of the local bundle. In general, it has to be
assured that not only the total order of bundle installation
is preserved among the peers but also that the remote access
of services is established in the right order.

The R-OSGi Deployment Tool addresses this challenge
by maintaining a global task queue which is processed in
sequential order. This mirrors the behavior of a local frame-
work where the starting of bundles is also sequential. The
total order of bundle installation is not relevant; therefore it
is performed in parallel on all frameworks and prior to the
application startup phase. For each bundle, the service de-
pendencies are determined and a BUNDLE START TASK
is enqueued in such a way that the dependency structure is
properly reflected. If a bundle has any dependencies to ser-
vices of a remote bundle, the system inserts a TASK GROUP

instead that consists of three phases:

1. Importing all remote services that are consumed by
the bundle

2. Starting the bundle

3. Exporting all services that are consumed by remote
bundles

Through this structure, the resulting startup regime is guar-
anteed to be identical to that of a centralized OSGi frame-
work. Since the installation is done in parallel, only lit-
tle communication overhead is incurred for coordinating the
startup order. To minimize the overhead of dependency
analysis, the Deployment Editor keeps an up-to-date task
queue which is initialized with the tasks required for a cen-
tralized application (only tasks to install and start each bun-
dle) and modifies the task queue in response to changes on
the structure of the deployment.

3.2 Deploying the Bundles and Starting the
Application

When the user triggers the deployment of a application,
the bundles are generated from the referenced Eclipse projects.
The current prototype implementation of the tool inter-
acts with the Concierge [9] Eclipse Plugin to create highly
portable OSGi R3 bundles which also run on very resource-
constrained devices.

Each framework involved in a deployment is expected to
run a Deployment Agent bundle offering a Deployment Ser-
vice. The services from all frameworks are transparently
imported through R-OSGi to the Equinox OSGi framework
on which Eclipse and the Deployment Tool run on. As a re-
sult, the tool can use the services of the remote frameworks
(through R-OSGi service proxies) as if they were local ser-
vices making the deployment and all further interaction eas-
ier. The Deployment Service offers methods to control the



Figure 3: Monitoring View

framework remotely, e.g., to install and start bundles or to
establish a connection to another remote framework in order
to import a service required for the application. Since the
bundles involved in the deployment remain unmodified, the
registration of the services for remote access cannot happen
by the bundles themselves (since they were not designed to
support distribution through R-OSGi). However, R-OSGi
allows surrogate registration by a third bundle. In the case
of the R-OSGi Deployment Tool, the surrogate registrations
are performed by the Distribution Services.

3.3 Monitoring the Running Application
As soon as the application is running in the network, the

Deployment Tool opens the Monitoring View for this specific
application (Figure 3). The view shows the actual state of
the OSGi framework on each involved node, i.e., the bundles
and services. Once again, the Agents on the frameworks
are contacted to get this information. Changes in the state
of bundles and services are propagated to the Plugin via
EventAdmin events which are transparently forwarded by
the R-OSGi middleware.

Furthermore, the system determines which pairs of frame-
works communicate through channels. A channel is estab-
lished if there are remote accesses to services from one frame-
work to the other. R-OSGi offers an extensible model for
channels through NetworkChannelFactories. The tool takes
advantage of this and registers its own channel type for the
protocol “r-osgi+managed”. These channels provide feed-
back about activity and exchanged messages. This infor-
mation is as well propagated to the Plugin through events
and visualized in the Monitoring View. The developer can
not only supervise the network activities of the deployment

through visual feedback but also inspect the messages in the
style of tools like Ethereal/Wireshark[12].

4. RELATED WORK
Several approaches have proposed the partitioning of ex-

isting applications in order to create distributed applica-
tions. The Coign [6] project uses instrumentation of COM
components through binary rewriting, analyzes the depen-
dencies between the components and calculates a graph-
cutting based on a cost model for introducing network com-
munication between the subgraphs. Similarly, JOrchestra [11]
partitions a Java program by rewriting bytecode to replace
local methods with remote invocations, and object refer-
ences with proxy references. However, JOrchestra requires
in-depth knowledge of the source program in order to do
the fine-granular distribution of the mobile classes through
a distribution plan. The high number of classes in modern
Java applications can make this procedure time-consuming
and error-prone. In the Eclipse-R-OSGi Deployment Tool,
we exploit existing modularization and use the visualiza-
tion capabilities of Eclipse to allow the developer to create
deployments in a more intuitive way. Furthermore, parti-
tioning of existing applications is an iterative process that
has to be revised from time to time in order to adapt to
the changing environment or to optimize for performance.
Hence, we support monitoring of the deployments and ad-
vanced features like load-balancing.

Visualization of distributed systems for testing and ed-
ucation purposes has been proposed by projects like Pa-
rade [7], PVaniM [2], or ConcurrentMentor [3]. However,
these projects describe standalone tools which operate on



existing deployments and do not help to actually develop
and deploy distributed application. Since the R-OSGi De-
ployment Tool is based on Eclipse, visualization can be easily
applied to any of the intermediate steps during the design
phase. The OverView [4] project has proposed a comparable
extension to visualize distributed applications developed in
Eclipse. However, they achieve the high level abstractions
through explicit modeling in their own Entity Specification
Language. In contrast, the R-OSGi Deployment Tool uses
existing abstractions of the application based on OSGi bun-
dles and services and does not require any further modeling
efforts. Thereby, it provides a more rapid and intuitive way
of designing and visualizing distributed applications.

5. CURRENT LIMITATIONS AND FUTURE
WORK

The main limitation of the current implementation is the
simplifying assumption that all services provided by a bun-
dle will be registered within the startup of the bundle (and
not in response to an interaction with the bundle) and un-
conditionally. Although reasonable for a large amount of
bundles, this assumption does not hold for every bundle
since the OSGi specifications allow the bundle to register
services at any time.

Since the plugin already does source code analysis, it would
be possible to do symbolic processing of the code and reason
about the environmental settings that cause the bundle to
register a specific required service. This information could
then be used to create exactly the environment for a bundle
that causes the service to be registered.

Furthermore, it is currently assumed that all bundles are
available as Eclipse projects. Binary dependencies are not
handled in the current prototype. As discussed before, the
same algorithm implemented on the AST of the source code
could as well be implemented as bytecode analysis, thereby
allowing binary-only bundle resources to participate in the
deployment.

In the current state of the system, the visualization oper-
ates purely online. If combined with a data lineage facility,
the feedback generated by the monitored deployment could
be used to replay certain situations and thereby allowing
in-depth post-mortem analysis. In addition, the main focus
of the prototype implementation is to support the develop-
ment, testing, and monitoring inside Eclipse. For productive
systems, a headless deployment facility would be required.
Nothing in the described setup prevents to build such a fa-
cility and using the saved state of a deployment graph to
deploy applications without user interaction.

As part of future work, we will turn the static deployment
tool currently created into a dynamic deployment platform
that can autonomously relocate bundles to optimize the per-
formance of the application, depending on cost metrics spec-
ified by the developer.

6. CONCLUSIONS
With the R-OSGi Deployment Tool for Eclipse, we present

a solution for effectively turning modular into distributed
applications. Since this process is inherently difficult for the
developer, we needed an environment in which programmers
feel familiar and which has support for visualizing the differ-
ent steps of creating a deployment. With the Eclipse IDE,
we found this platform and could use several of its feature

to implement our system.
On the other hand, our tool adds the capability to de-

velop, deploy and monitor distributed systems directly in
Eclipse and as part of one coherent design process, in which
the developer can focus on the application rather than the
distribution aspects. It embeds into the typical look-and-feel
and the workflows of Eclipse and allows to observe the re-
sults of the program even though it is running in a network.
The ease of use and the visualization capabilities of the R-
OSGi Deployment Tool facilitates simulation, testing, and
benchmarking of distributed systems throughout the whole
design process. The tool is an ideal choice for exploring the
behavior of distributed system in research and education.

7. REFERENCES
[1] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A

Code Manipulation Tool to Implement Adaptable
Systems. Technical report, France Telecom R&D,
November 2002.

[2] C. D. Carothers, B. Topol, R. M. Fujimoto, J. T.
Stasko, and V. Sunderam. Visualizing Parallel
Simulations in Network Computing Environments: A
Case Study. In WSC ’97: Proceedings of the 29th
conference on Winter simulation, pages 110–117, 1997.

[3] S. Carr, C. Fang, T. Jozwowski, J. Mayo, and C.-K.
Shene. ConcurrentMentor: A Visualization System for
Distributed Programming Education. In Proceedings
of the 2003 International Conference on Parallel and
Distributed Processing Techniques and Applications,
2003.

[4] T. Desell, H. N. Iyer, C. Varela, and A. Stephens.
OverView: A Framework for Generic Online
Visualization of Distributed Systems. In Proceedings of
the Second Eclipse Technology Exchange: ETX and the
Eclipse Phenomenon (ETX 2004), pages 87–101, 2004.

[5] Eclipse Graphical Editing Framework.
http://www.eclipse.org/gef.

[6] G. C. Hunt and M. L. Scott. The Coign Automatic
Distributed Partitioning System. In Proceedings of the
3rd Symposium on Operating Systems Design and
Implementation (OSDI 1999), 1999.

[7] T. L. Naps and E. E. Chan. Using Visualization to
Teach Parallel Algorithms. SIGCSE Bulletin,
31(1):232–236, 1999.

[8] Open Service Gateway Initiative.
http://www.osgi.org.

[9] J. S. Rellermeyer and G. Alonso. Concierge: A Service
Platform for Resource-Constrained Devices. In
Proceedings of the 2007 ACM EuroSys Conference,
2007.

[10] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi:
Distributed Applications Through Software
Modularization. In Proceedings of the
ACM/IFIP/USENIX 8th International Middleware
Conference, 2007.

[11] E. Tilevich and Y. Smaragdakis. J-Orchestra:
Automatic Java Application Partitioning. In
Proceedings of the 16th European Conference on
Object-Oriented Programming (ECOOP 2002), pages
178–204, 2002.

[12] The Wireshark Project. http://www.wireshark.org.


