
Rendering falling snow using an inverse Fouriertransform
Linqiao ZhangS
hool of Computer S
ien
eM
Gill University, MontrealAugust 2003

A Thesis submitted to the Fa
ulty of Graduate Studies and Resear
hin partial ful�llment of the requirements for the degree of M.S
.in Computer S
ien
e


2003 - Linqiao Zhang



Thesis advisor AuthorMi
hael S. Langer Linqiao Zhang
Rendering falling snow using an inverse Fourier transformAbstra
tThis thesis presents an image based falling snow rendering method whi
h is basedon spe
tral synthesis te
hnique. By in
orporating the natural falling snow motionproperty, that is, the image speed and size of the snow
akes are related to the depth,we develop a tent-like surfa
e in frequen
y domain. We synthesize the power spe
trumalong the tent-like surfa
e and use IFFT to bring the data fun
tion ba
k to spa
e-time domain, thus attain a motion parallax image sequen
e. Treating the motionparallax as an opa
ity fun
tion, we 
an 
omposite it with an existing video sequen
eand turn it into a snowing s
ene. Treating the motion parallax as a stimulus for thepsy
hophysi
al study, it 
ould serve as a 
omplex yet natural s
ene-like stimulus, andtherefore being expe
ted to give a new perspe
tive to the psy
hophysi
al study.
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Rendu de 
hute de neige �a l'aide d'une transform�ee deFourier inverseR�esum�eCe m�emoire pr�esente une m�ethode de rendu de 
hute de neige �a partir d'imagesbas�ee sur une te
hnique de synth�ese spe
trale. En in
orporant la propri�et�e du mou-vement de 
hute de neige naturelle { la vitesse des images et la taille des 
o
onsd�ependent de la profondeur { nous d�eveloppons une surfa
e en forme de tente dansle domaine de fr�equen
e. Nous synth�etisons le spe
tre de puissan
e le long de la sur-fa
e et nous utilisons une transform�ee de Fourier inverse pour transf�erer la fon
tionde donn�ees au domaine espa
e-temps, ave
 laquelle nous atteignons une s�equen
ed'images en mouvement parallaxe. En traitant le mouvement parallaxe 
omme unefon
tion d'opa
it�e, nous pouvons le 
omposer ave
 une s�equen
e vid�eo existante etobtenir une s
�ene de 
hute de neige. Le mouvement parallaxe, trait�e 
omme un stimu-lus d'une �etude psy
hophysiologique, peut être utilis�e 
omme un stimulus 
omplexemais naturel d'une s
�ene. Nous nous attendons alors �a 
e que 
e
i donne une nouvelleperspe
tive �a l'�etude psy
hophysiologique.
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Chapter 1
Introdu
tion

This is an information te
hnology age, where 
omputer s
ien
e te
hniques giveus the power to imagine as wild as we like and to 
reate as a
tive as we 
an. Using
omputer s
ien
e to take over the world is 
ertainly the dream of a 
omputer s
ientist.Here, our a
tion is a drop in the o
ean, we tried to simulate the natural phenomenon{ falling snow.As one of the most 
ommon natural phenomena, falling snow simulation is inten-sively used in 
ight simulation, �lm making, video game animation and meteorologystudy. This demands us to render snowfall 
omputationally eÆ
iently and visuallyappealingly. Resear
h to this problem has been 
arrying on sin
e 1980's, and themajor approa
h is to use parti
le systems [26, 31, 17℄.parti
le systems rendering 
onsiders ea
h snow
ake as a parti
le with attributessu
h as initial position, 
olor, velo
ity, size and transparen
y, and also the parti
le'sshape and lifetime. During rendering, by applying for
es { gravity, fri
tion, resilien
eet
. { to the parti
le, its attributes will be updated a

ordingly. The update depends1



Chapter 1: Introdu
tion 2on the prede�ned fun
tions, for example, Newton's �rst law, and a short time inter-val. As we 
an see, this rendering method has an adequate 
ontrol to the motion ofea
h parti
le. It therefore has wide use. Not only 
an it render falling snow, but also�reworks, waterfalls, explosions, falling rain et
. However, sin
e ea
h parti
le has tobe 
omputed, when the number of parti
les be
omes big, the demanded 
omputa-tion in
reases a

ordingly, thus the system rendering 
on
eivably be
omes slow, andtherefore prohibits its further utilization.If the rendering purpose is to 
reate a visual e�e
t of the rendering obje
t, thenwe question whether it is ne
essary to simulate every single parti
le. In this thesis,we have developed an alternative falling snow rendering method. The inspiration
omes from the motion plane model [38℄, that is, a pure translational image motionin spa
e-time domain produ
es a plane of energy in frequen
y domain. We intuitivelyin
orporate the natural motion properties of the falling snow { the snow
akes ingreater depth appear smaller and move slower { with the motion plane model, thisresults in a tent like surfa
e in frequen
y domain. We then synthesisd the powerspe
turm along the tent like surfa
e. The �nal rendering result is transformed tospa
e-time domain by using a global inverse Fourier transform, this will give us theentire falling snow image sequen
e.Sin
e our method renders the entire falling snow motion on
e for all, instead ofapproa
hing by rendering ea
h single snow
ake, it is therefore a 
omputationally el-egant and simple rendering method. Also, this global rendering method produ
es anatmospheri
 snowfall e�e
t, whi
h is the part missed out by parti
le systems. More-over, our rendering method is an image-based one, the rendered image sequen
e 
an



Chapter 1: Introdu
tion 3be dire
tly 
omposited with 2D image instead of performing 3D to 2D transformationwhi
h is the pro
edure has to be taken by the s
ene-based rendering methods.As we mentioned before, our rendering method integrates the depth vs. speedvs. size relationship of the falling snow, it thus provides the rendering results strong3D depth e�e
ts. Indeed, it simulates exa
tly the motion e�e
ts of motion parallax.During our rendering experiments, we frequently ask questions as: "how and why dowe per
eive these 
ontinuous layers in depth?"; "what 
ues 
ause us per
eiving therendered motion parallax as falling snow?"; "why the white image spots are per
eived
loser?". Driven by our puzzles, we tried to apply per
eptual transparen
y theoriesof visual psy
hology and the image motion theories to our rendered motion parallax.Besides the plausible explanation we 
ould give to our puzzles, we also �nd that ourrendered motion parallax 
ould be an interesting stimulus to be used in the imagemotion study.Two major topi
s { the falling snow rendering and the psy
hophysi
al study { areaddressed in this thesis. We naturally organize this thesis into two parts. In Chapter2, 3 and 4, we address the falling snow rendering problem. We present a literatureba
kground of our rendering method in 
hapter two. In Chapter 3, we introdu
e ourrendering method in detail. Chapter 4 generalizes the falling snow rendering methodto the 
ase that when falling snow is seen by a panning 
amera. Chapter 5 and 6are related to the topi
 of the psy
hophysi
al study. We give a literature review ofper
eptual transparen
y theory in Chapter 5, and present our attempted experimentsand dis
ussions in Chapter 6.



Chapter 2
Ba
kground of the RenderingMethod

In this 
hapter, we wish to build up the literature ba
kground of our falling snowrendering method. Four topi
s are addressed to serve this purpose, they are:� Spe
tral synthesis { an overview of the spe
tral synthesis method in renderingimages.� Fourier domain and its properties { the fundamental theory used to render thefalling snow.� Image motion properties { the basis of our tent like surfa
e.� Image 
ompositing { the theory used to 
omposite our snow sequen
e withba
kground images.Ea
h topi
 is relatively independent, yet putting them together at the end willfund up a suÆ
ient ba
kground to help reading through this thesis.4



Chapter 2: Ba
kground of the Rendering Method 52.1 Spe
tral SynthesisSpe
tral synthesis method has long been used in 
omputer graphi
s to renderimages su
h as terrain [22℄, o
ean waves [18℄, 
uids [33℄, �re [6℄, smoke [6℄, 
loud[6℄ et
. The 
ommon property of these natural s
enes is that they do not have awell-de�ned surfa
e or shape. This makes the usually used geometry based renderingmethods hard to approa
h, and the existing algorithms are often su�ering from the
omputational expensiveness. On the other hand, behind the randomness, some ofthe physi
s and natural features of these natural s
enes 
an be easily synthesized byspe
tral synthesis method.The fundamental idea of spe
tral synthesis is to sum up large number of sinusoidalwaves and map the pixel intensity and 
olor to the image a

ording to the amplitudeof the sinusoidal waves. Given the huge range of variation of the sinusoidal waves,the key of the spe
tral synthesis method is to 
hoose a proper model to sum up thesinusoidal waves in a proper way.The spe
tral synthesis method 
an be 
arried on either in spa
e-time domain[14, 15, 23, 24, 22℄ or in frequen
y domain [33, 27, 29, 18℄. To the former 
ase,the sinusoidal wave 
olor(x) = sin(x), whi
h is de�ned in spa
e-time domain, is theprimitive for synthesizing images. Further pro
edures su
h as varying its frequen
ies,amplitudes, biasing and weighting the obtained 
olor fun
tion, extending its dimen-sionality, 
ombining with shape fun
tion et
. would apply on this primitive to vary it.Sometimes the variation 
ould be radi
al su
h that the primitive might be altered tobe a step fun
tion or a non-periodi
al signal. Putting the sinusoidal waves togetheris usually 
alled 
onstru
ting the noise fun
tion. Methods of doing so are sto
has-



Chapter 2: Ba
kground of the Rendering Method 6ti
 subdivision [14, 15℄, fra
tional Brownian simulation [6, 22℄, interpolating randomvalue on the dis
rete latti
e [6℄ et
. Ea
h of these methods has fairly deep and wideresear
h spa
e to dive in and to play around, espe
ially when implementing thesemethods to the real s
ene simulation. Here, however, we only have a qui
k glan
e tothem be
ause our rendering method is a frequen
y domain based one.The major advantage of spe
tral synthesis images in frequen
y domain is be
ausethis method is global. The fo
us of this method is not how to sum up all the sinusoidalwaves but how to de�ne a physi
s model for our desired rendering image in frequen
ydomain. On
e we set up a right model, the pro
edure of the inverse Fourier transformwill produ
e the 
onstru
ted noise fun
tion. We say it is global be
ause the entireimage or the entire image sequen
e will be synthesized on
e for all after the IFFT.Further, along with the globality of this method, it is also fast and eÆ
ient. However,things never 
an be perfe
t. Be
ause of the globality, on
e we take the IFFT, we 
annot really modify ea
h single sinusoidal wave in spa
e-time domain. This propertymakes the rendering pro
ess highly rely on the physi
s model whi
h we built infrequen
y domain. Meanwhile, this overly essential physi
s model is usually diÆ
ultto render, be
ause frequen
y domain is not as intuitively understandable as spa
e-time domain. But, many resear
hers have 
hallenged this diÆ
ulty and rendered thes
ene images su
h as o
ean waves [18℄, 
uids [33℄, turbulent gaseous phenomena [27℄,motion under wind [29℄ ... and also, our falling snow quite well by using this method.Constru
ting the physi
s model requires understanding of the power spe
trum dis-tribution of the s
ene we meant to render. Through analyzing the motion properties,the image stru
tures of the s
ene and referring its properties in the Fourier domain,



Chapter 2: Ba
kground of the Rendering Method 7we 
ould approa
h a spatial and temporal frequen
y distribution model whi
h bestapproximates and summarizes the physi
s properties of the natural s
ene in frequen
ydomain. On top of this physi
s model, the re�ning steps su
h as 1/f noise �ltering,phase shifting, 
olor mapping, ray tra
ing et
. would be applied on to generate themore desirable image.In spite of the pro
edural 
ommonality of the frequen
y domain based spe
tralsynthesis methods, the 
onstru
ted physi
s models are sharply di�erent from ea
hother. This is expe
table be
ause one 
an hardly 
onne
t the physi
s motion of theo
ean waves with the gaseous turbulent, neither with the falling snow. Therefore,studying the power spe
trum distribution of ea
h s
ene images be
omes fundamentaland primary. This requires a good knowledge of the Fourier domain. Here, the nextSe
tion will follow up to fa
ilitate the ba
kground of the Fourier domain.2.2 Fourier Domain and Its PropertiesBy applying Fourier transform [5℄, image data 
an be transformed from spa
e-time domain to the frequen
y domain, and then by applying the inverse Fouriertransform, the image data 
an be transformed ba
k to spa
e-time domain. Theimage will be un
hanged after the Fourier and its inverse transforms. Therefore,Fourier transform o�ers another way to work on the same image data in anotherdomain. The purpose of transforming data to frequen
y domain is to utilize theproperties of Fourier transform, and therefore, to pro
ess image data more eÆ
iently,or even a
hieve some work whi
h is prohibitive in spa
e-time domain. This se
tionwill give a brief introdu
tion of the Fourier transform and a few of its properties used



Chapter 2: Ba
kground of the Rendering Method 8in the falling snow rendering.2.2.1 Fourier TransformGiven an one variable 
ontinuous fun
tion f(t), the Fourier Transform F(!t) isde�ned as F(!t) = Z 1�1 f(t)e�j2�t!tdt (2.1)and the inverse transform asf(t) = Z 1�1F(!t)ej2�t!td!t (2.2)where j is the imaginary unit and ej� = 
os(�) + jsin(�).In the 
ase of dis
rete fun
tion, the Fourier transform is de�ned in the similarway, ex
ept that it sums over the dis
rete series instead of integrating. If we let I(x)denote the dis
rete fun
tion with N samples, or more spe
i�
ally, taking one rowfrom an image, whi
h is with N pixels, and let I(x) represent the image intensity ofthis row, then the Fourier transform of I(x) is de�ned asI(!x) = 1N N�1Xx=0 I(x)e�j2�!xx=N (2.3)and the inverse Fourier transform is de�ned asI(x) = N�1X!x=0I(!x)ej2x�!x=N (2.4)I(!x) is a 
omplex number, i.e. Ii = Ireal + jIimage , it 
an also be expressed interms of its magnitude A(!x) and phase �(!x).A(!x) = k I(!x) k = qIreal � Ireal + Iimag � Iimag�(!x) = tan�1(IimagIreal ):



Chapter 2: Ba
kground of the Rendering Method 9I(!x) will be
ome: I(!x) = A(!x) ej�(!x) :The magnitude represents the energy of the signal at spatial frequen
y k, whereasthe phase represents how many spatial frequen
y steps of the signal are shifted [16℄.The above dis
ussion is only about the one-variable Fourier transform. In fa
t,Fourier transform 
an be easily extended to multi-variable fun
tions. As an example,three-variable dis
rete Fourier transform is dis
ussed below. It is also the one usedin falling snow rendering.Given a dis
rete fun
tion f(x; y; t) with samples (M;N; T ), whi
h denotes animage sequen
e with T frame and ea
h frame withM �N pixels. Its Fourier transformF(!x; !y; !t) is de�ned as:F(!x; !y; !t) = 1MNT M�1Xx=0 N�1Xy=0 T�1Xt=0 f(x; y; t)e�j2�(!xx=M+!yy=N+!tt=T ) (2.5)and its inverse transform is de�ned as:f(x; y; t) = M�1X!x=0 N�1X!y=0 T�1X!t=0F(!x; !y; !t)ej2�(x!x=M+y!y=N+t!t=T ) (2.6)Here F(!x; !y; !t) is a 
omplex number in the (!x; !y; !t) spa
e.2.2.2 Fourier DomainWithin the (!x; !y; !t) spa
e, i.e. the Fourier domain, the spatial frequen
y(!x; !y) relates to the number of 
y
les of the sine wave per image frame, whereasthe temporal frequen
y !t relates to the number of 
y
les of the sine wave per imagesequen
e. Low spatial frequen
y 
orresponds to small number of 
y
les per image



Chapter 2: Ba
kground of the Rendering Method 10frame. In spa
e-time domain, it 
orresponds to larger size of the image obje
ts. Lowtemporal frequen
y 
orresponds to small number of 
y
les per image sequen
e. Inspa
e-time domain, it 
orresponds to slower image motion.2.2.3 Periodi
ity PropertyThe Fourier sine waves are periodi
 signals. Using this periodi
ity, we 
an repeatthe signal to obtain more samples whi
h are beyond the original sample range. Aswe will see later, given an image sequen
e with samples (M;N; T ), whi
h is obtainedfrom the inverse Fourier transform, one 
an tile ea
h image frame side by side toobtain a larger image, or repeat the image sequen
e to make the motion longer.2.2.4 Conjuga
y PropertyGiven a real image, i.e. the I(x; y; t) is a real number, its Fourier transform obeysthe 
onjuga
y property I(!x; !y; !t) = I(�!x;�!y;�!t) (2.7)Thus, if one synthesizes a signal in frequen
y domain, and wishes to get a real signalin spa
e-time domain, then the signal should obey the 
onjuga
y property.After we had a qui
k refresh at the Fourier domain, let's look at the image motionproperties in this domain.



Chapter 2: Ba
kground of the Rendering Method 112.3 Image Motion PropertiesThere has been a long and ri
h history about image motion analysis in Fourierdomain. Moving sine wave gratings have been used as stimuli in thousands of ex-perimental studies of visual motion per
eption. Su
h stimuli have also played a keyrole in 
omputational models of visual motion pro
essing [38, 1, 30, 8℄. The modelwe used to render falling snow extends from two parti
ular frequen
y domain models:the motion plane model introdu
ed by Watson and Ahumada [38℄ and the opti
alsnow model introdu
ed by Langer and Mann [13, 12℄.2.3.1 Motion Plane ModelWatson and Ahumada observed that an arbitrary stati
 image that undergoes a
onstant translational motion in the image plane over a sequen
e of frames yields aplane of energy in the 3D frequen
y domain. That is, if one takes the 3D Fouriertransform of a translating image sequen
e, then all the energy lies on a plane in the3D frequen
y domain. Formally, suppose an image is translating with velo
ity (vx; vy)pixels per frame, that is,I(x; y; t) = I(x� vxt; y � vyt; 0)Let (!x; !y) be the spatial frequen
ies in the x and y dire
tions, and let !t be thetemporal frequen
y. If one takes the Fourier transform of I(x; y; t), then all the energyin the 3D frequen
y domain lies on the plane:!t = �vx!x � vy!y (2.8)



Chapter 2: Ba
kground of the Rendering Method 12This plane passes through the origin. We refer to it as the motion plane for velo
ity(vx; vy).A few details on the geometry of the motion plane helped us to develop our tentmodel and will help the reader's intuition as well. If one takes the interse
tion of themotion plane with the plane !t = 0, one getsvx!x + vy!y = 0 (2.9)This is a line in the spatial frequen
y plane (!x; !y), namely, the line along whi
hthe motion plane of Eq. (2.8) interse
ts the plane !t = 0. The ve
tor (vx; vy) isperpendi
ular to this line, and the magnitude qv2x + v2y is the slope of the motionplane in the dire
tion (vx; vy). These properties of the motion plane are well-known[38℄.To simplify the notation, we rotate the spatial frequen
y 
oordinates (!x; !y) tonew 
oordinates (!v; !l) su
h that !v is in the dire
tion of the motion (vx; vy) and !lis in the dire
tion of the line of Eq. 2.9. If we let � be the angle between !x and thedire
tion of the line !l, then we 
an relate the two 
oordinate systems by:266666664 !v!l
377777775 = 266666664 sin � � 
os �
os � sin �

377777775 266666664 !x!y
377777775 (2.10)In parti
ular, Eq. (2.8) 
an be re-expressed asv = �!t!v (2.11)Eq. (2.11) will be used in Chapter 3 in our tent model from whi
h we synthesizefalling snow.



Chapter 2: Ba
kground of the Rendering Method 132.3.2 Opti
al SnowA more re
ent frequen
y domain model of image motion is the opti
al snow modelintrodu
ed by Langer and Mann [13℄. These authors observed that falling snowprodu
es motion in whi
h a range of speeds is present and the dire
tion of motionis roughly 
onstant a
ross the image. In the frequen
y domain, falling snow thusprodu
es a family of motion planes:!t = �s vx!x � s vy!y (2.12)in whi
h a range of speeds s is present. The family of motion planes all interse
t atthe line of Eq. (2.9) and ea
h with the motion plane properties as we des
ribed inmotion plane model.In addition, Eq. (2.12) 
an also be expressed in a simple way by rotating the(!x; !y) 
oordinates to the (!l; !v) 
oordinates as in Eq. (2.10). The set of velo
itieswill be
ome sv and Eq. (2.12) 
an be re-expressed asv = � !ts !v (2.13)A more generalized version of the opti
al snow model assumes that the imagevelo
ity of the falling snow is with a range of speed and also dire
tions [12℄. Forexample, in the 
ase that falling snow is seen by a moving 
amera, the set of imagevelo
ity is of form (ux + s vx; uy + s vy), where (ux; uy) is a 
onstant velo
ity ve
tor.The family of motion planes will be
ome:!t = �(ux + s vx)!x � (uy + s vy)!y (2.14)Eq. (2.14) de�nes a set of planes whi
h all pass through the origin (!x; !y; !t) =(0; 0; 0) but do not interse
t with plane !t = 0 at a 
ommon line. In 
ontrast with



Chapter 2: Ba
kground of the Rendering Method 14Eq. (2.12), we name the opti
al snow model represented by Eq. (2.12) as parallelopti
al snow model, and the model represented by Eq. (2.14) as nonparallel opti
alsnow model.Eq. (2.14) 
ould be rewritten as:!t = �s vx!x � s vy!y � ux!x � uy!y (2.15)Analogous to Eq. (2.10) and Eq. (2.13), we 
an express Eq. (2.15) using the (!l; !v)
oordinates as well. If let (sv; sl) represents the rotated velo
ity ve
tor (ux; uy), i.e.266666664 svsl
377777775 = 266666664 sin � � 
os �
os � sin �

377777775 266666664 uxuy
377777775then Eq. (2.15) will be
ome!t = �s v !v � sv!v � sl!lGiven v is a 
onstant velo
ity, we 
an simplify this equation as:!t = �s !v � sv!v � sl!l (2.16)Eq. (2.16) will be referred in Chapter 4 to derive our sheared tent model, whi
h weused to render the falling snow seen by a moving 
amera.The opti
al snow motion model 
aptures the range of velo
ities presented in fallingsnow. However, it does not expli
itly a

ount for depth e�e
ts, nor is the modelused for rendering image sequen
es. Solving these two problems is the main originalresear
h 
ontribution presented in this thesis. The details will be given in Chapter 3.



Chapter 2: Ba
kground of the Rendering Method 15The above two models, the motion plane model and the opti
al snow model areall dis
ussed in the frequen
y domain. Now, let's 
hange our mind a bit and 
omeba
k to the spa
e-time domain. We will introdu
e the 
ompositing method in thefollowing se
tion. This method plays an important role when we apply our renderingresults to the s
ene images.2.4 Image CompositingImage 
ompositing has been ri
hly studied in 
omputer graphi
s [25, 9, 4, 20℄ andwidely used in visual arts and �lm industry. Behind those fas
inating spe
ial imagee�e
ts 
reated by 
ompositing, the basi
 idea of it is quite simple.We treat multiple images as overlapping layers and 
ombine them together toobtain the 
omposited image. For ea
h image whi
h will overlay on the other image,we give an extra � 
hannel to it. The � 
hannel 
ontains the value of opa
ity �of ea
h pixel in the overlaying image. The � value is within range [0; 1℄, 0 is fullytransparent, 1 is fully opaque, and the intermediate values are partially transparent.Mathemati
ally, to 
omposite the foreground image I2 over the ba
kground image I1a

ording to the opa
ity �, we doI(x; y) = (1� �(x; y))I1(x; y) + �(x; y)I2(x; y) (2.17)to obtain the 
omposited image I. Color images asso
iate with three 
hannels { RGB.If this is the 
ase, we apply Eq. (2.17) to ea
h 
hannel.Eq. (2.17) illustrates the general rule of 
ompositing. When it is spe
i�
allyapplied to our appli
ation, both to the falling snow rendering and to building our
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kground of the Rendering Method 16transparen
y study stimuli, we made slight variations to this 
ompositing method.However, the fundamental 
on
epts all still the same. You will see our appli
ation inSe
. 3.3 and Se
. 6.1.1.



Chapter 3
Rendering Falling Snow

We present the falling snow rendering method in this 
hapter. We approa
hthis rendering problem from the frequen
y domain, that is, using an inverse Fouriertransform. This method yields an image sequen
e whi
h is designed to have similarappearan
e as falling snow. In this sense it produ
es a visual e�e
t that is similar tofalling snow. The overall idea of the method is to:1. De�ne a spe
i�
 surfa
e in the 3D frequen
y domain, that is, in the 3D spa
ede�ned by the Fourier transform of spa
e-time (XYT). This surfa
e is derivedmathemati
ally from a motion parallax property of falling snow, namely froma relationship between the image speed and the image size of a given snow
akeand the distan
e of that snow
ake from the viewer (see Se
. 3.1).2. Take the inverse Fourier transform of to get a fun
tion I(x; y; t).3. Treat I(x; y; t) as an opa
ity fun
tion and use it to 
omposite white snow overa ba
kground image (or video). 17



Chapter 3: Rendering Falling Snow 18As an example, Figure 3.1 (b) shows one frame of the falling snow image sequen
e,after 
ompositing over a ba
kground image house [10℄, shown in Figure 3.1 (a). Theentire image sequen
e is available from the video example house.

(a) (b)Figure 3.1: (a) An image of a house on a winter day. (Painting Jimmy's pla
e.Courtesy of artist Gary Johnson) (b) One frame of a rendered image sequen
e inwhi
h falling snow is 
omposited over the still image in (a).
3.1 Tent Model of Falling SnowAs we reviewed in Se
. 2.3.1, the standard model for motion in the frequen
ydomain assumes pure image translation. Falling snow di�ers from pure image trans-lation in that falling snow has multiple depth layers, indeed a 
ontinuum of depthlayers. There are two impli
ations of the 
ontinuum of depth layers. First, the depthlayers give rise to motion parallax. The image speed of the snow
akes in a givendepth layer depends on the depth of that layer. In terms of the motion plane model,falling snow should produ
e energy in a range of motion planes, 
orresponding to



Chapter 3: Rendering Falling Snow 19di�erent depth layers (see Se
. 2.3.2). The se
ond impli
ation of the depth layers
on
erns the size of the snow
akes, namely that the image size of snow
akes in agiven layer depends on the depth of the layer. Let us now restate these two e�e
tsusing mathemati
al formulas, and then 
ombine them.Let the distan
e variable be d. Then the motion of falling snow
akes has two
orrelations asso
iated with it:I: The 
loser the snow
ake, the faster the snow
ake. For simpli
ity, assumeall snow
akes are falling with roughly the same 3D speed. Then snow
akes
loser to the 
amera will appear to move faster be
ause of perspe
tive, thatis, d is inversely proportional to image speed, and so from Eq. (2.11),d / 1!t=!v (3.1)II: The 
loser the snow
ake, the bigger the snow
ake. Bigger obje
ts havemore energy 
on
entrated in lower spatial frequen
ies, i.e. smaller radiusq!2v + !2l . This means that the distan
e d to a snow
ake is proportionalto the radius of the spatial frequen
ies to whi
h the snow
ake 
ontributes:d / q!2v + !2l (3.2)Combining Eqns. (3.1) and (3.2), we get:!t=!v / 1q!2v + !2lFor any �xed proportionality 
onstant C to, we get the surfa
e:!t = C !vq!2v + !2l (3.3)



Chapter 3: Rendering Falling Snow 20This is our falling snow rendering surfa
e. Figure 3.2 shows an example of a surfa
eof Eq. (3.3). These surfa
es have a tent-like form, and so we refer to Eq. (3.3) as thetent model.

Figure 3.2: The plot of Eq. (3.3) with 
onstant (C = 1)If 
omparing our tent model with the motion plane model, i.e. !t = �v!v,and with the parallel opti
al snow model, i.e. !t = �sv!v, we 
an �nd some 
loserelationship among these three. In motion plane model, !t relates to !v a

ordingto 
onstant speed v. In parallel opti
al snow model, !t relates to !v a

ording to arange of speeds sv. In parti
ular, s is a free variable. In our tent model, !t relates to!v a

ording to C=q!2v + !2l , whi
h is a set of speeds varying a

ording to the spatialfrequen
y q!2v + !2l . This set of speeds 
aptures the properties that obje
ts at greaterdepth appear smaller and move slower in the image, whi
h is the fundamental motionproperty of falling snow
akes. In 
on
lusion, our tent model handles a larger rangeof image motion speeds than the motion plane model, and a

ounts more spe
i�
ally



Chapter 3: Rendering Falling Snow 21the falling snow motion property than the parallel opti
al snow model.3.2 Synthesizing a Tent Surfa
eWe synthesize falling snow sequen
es with T frames and N �N pixels per frame.Typi
al values are N=512 and T = 64. The basi
 idea is to synthesize a tent surfa
ein the frequen
y domain and then take the inverse Fourier transform.The (!x; !y; !t) spa
e in whi
h we synthesize the tent surfa
e has N�N�T 
ells.Ea
h 
ell is assigned a 
omplex value, with both its real and imaginary parts de�nedas type double. The 
ells are initialized to the value zero. We then loop through thethree dimensions of the frequen
y domain. If any 
ell (!x; !y; !t) overlaps the surfa
ede�ned by Eq. (3.3), we assign it a 
omplex value with an amplitude varying between0 to 1 and a random phase varying between 0 to 2�.To ensure that the values after the inverse Fourier transform will be real, we enfor
ethat the value in the 
ell (!x; !y; !t) is the 
omplex 
onjugate of the value in the 
ell(�!x;�!y;�!t). This is the standard 
onjuga
y property of Fourier transforms ofreal images (see Se
. 2.2.4), namelyI(!x; !y; !t) = I(�!x;�!y;�!t) (3.4)where I(x; y; t) is the image sequen
e and I(!x; !y; !t) is its 3D Fourier transform. Toa
hieve this 
onjuga
y property, we only assign values to the 
ells within the negative!t halfspa
e. All the 
ells in the positive halfspa
e are then assigned values a

ordingto their 
onjugate 
ells.
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kened tent surfa
eThe tent in Fig. 3.2 is an in�nitely thin surfa
e. For this surfa
e, ea
h spatialfrequen
y q!2x + !2y has a single speed asso
iated with it. This is not quite whatwe want, however. Snow
akes at a given depth (and hen
e at a given image speed)
ontribute to a range of spatial frequen
ies. This fa
t suggests that we should usea thi
kened tent surfa
e. We implement the thi
kened tent surfa
e by using a smallrange of !t values around the tent surfa
e. This gives slightly better renderings thanif only a single layer is used.3.2.2 Limiting the range of spatial frequen
iesThe sizes of the snow
akes have to be taken into a

ount. If we allow all possiblespatial frequen
ies to 
ontribute to the tent surfa
e, then the size of the snow
akeswould vary from very big (the image width) to very small (the distan
e betweenpixels). This is not quite what we want to render falling snow, sin
e snow
akesshould be relatively small.To limit the size of the snow
akes { that is, to limit the size of the movingimage stru
ture that we are synthesizing { we limit the energy in the tent surfa
e tothree o
taves of relatively high spatial frequen
ies. This a
ts as 
utting an annulusin the (!x; !y) plane and assigning values only to the 
ells whose spatial frequen
y
omponents lie in the annulus. Be
ause speed is related to size, limiting the range ofspatial frequen
ies also limits the range of speeds.Here are the spe
i�
s. We are synthesizing image frames of size 512� 512, and sowe limit the non-zero values of energy of the tent surfa
es to the three o
tave range
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y
les per image frame. Spatial frequen
ies lower than 16 
y
les perimage frame are not used in order to enfor
e an upper bound on size of moving imagestru
ture { that is, snow
akes are small. Spatial frequen
ies above 128 
y
les perimage frame are not used in order to stay far from the Nyquist limit, whi
h is 256
y
les per frame.3.2.3 1/f amplitude spe
traThe �nal issue is to make the amplitudes of the Fourier 
oeÆ
ients as a fun
tionof spatial frequen
y. It is known that the amplitude spe
tra of natural images obeysa power law [7, 28℄. Spe
i�
ally, the amplitudes of the Fourier 
oeÆ
ients fall o� as1=q!2x + !2y on average. In the image s
ien
e literature, this is known as 1/f s
aling.Su
h an amplitudes distribution will put 
onstant amount of energy in ea
h 
onstanto
tave, thus make ea
h band equally visible [7℄.Our falling snow images are natural images as well, we therefore apply this 1=fspe
tral distribution on synthesizing our tent surfa
e. As we mentioned at the be-ginning of this se
tion that the amplitudes are set to a random value between [0; 1℄,then now we need to divide ea
h amplitude by the spatial frequen
y:j I(!x; !y; !t) j / rand([0; 1℄)q!2x + !2y (3.5)A little reminder is about the phases. We set them as random values between[0; 2�℄ at the beginning of this se
tion and we will keep this randomness throughoutour image rendering without any modi�
ation, sin
e phase 
hanging relates to theimage obje
t shifting, whi
h is out of our 
on
ern in this thesis.



Chapter 3: Rendering Falling Snow 243.3 Compositing MethodTo obtain a falling snow sequen
e, we 
ompute the inverse Fourier transform ofour tent surfa
e. This yields a real valued fun
tion whi
h we denote �(x; y; t). Wewish to treat �(x; y; t) as an opa
ity fun
tion, namely the density of snow
akes at apixel (x; y) in frame t. The reason for treating �(x; y; t) as an opa
ity fun
tion is thatwe 
an then apply standard 
ompositing (see Se
. 2.4).To treat �(x; y; t) as an opa
ity fun
tion, we need to map it to the interval [0,1℄.We also wish to take a

ount of the fa
t that the human visual system is sensitiveto logarithmi
 di�eren
es in intensity, rather than linear di�eren
es in intensity. Forthis reason, after mapping to [0,1℄, we apply a non-linear transformation�(x; y; t)! �(x; y; t)�where we use � = 1:5. This 
ompresses the values of �(x; y; t) to the lower part of theinterval [0,1℄ and makes the variations in opa
ity more visible. In parti
ular, � is not�xed. We let � � 1 and vary a

ording to the rendering purpose and the ba
kgroundimages. Higher � value asso
iates with lighter falling snow appearan
e, be
ause thenonlinear transformation �(x; y; t)� will result low opa
ity value, and therefore, willweaken the foreground snow and strength and ba
kground image.To 
omposite the snow with a ba
kground image, we set the intensity of the snowto be a 
onstant, namely the intensity Iamb of the ambient light in the s
ene. Thereason for setting the intensity of snow to a 
onstant is that snow is white (re
e
tan
enear one). The value of Iamb is not known. So we take it to be a high grey level value,say 250. The reason for 
hoosing su
h a value is that we would like it to be less than
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e (whi
h saturate the pixels at grey level 255). But wewould also like the snow to appear white, so we take it to be high value.To 
omposite with a ba
kground image, we use the formula:I(x; y; t) = Iamb �(x; y; t) + (1� �(x; y; t)) Ibg(x; y) (3.6)This is a variation of standard 
ompositing where the foreground intensity is 
onstantand the opa
ity varies with time. The ba
kground image 
ould itself be a video, butin our example, we only use the still image.A spe
ial feature of this 
ompositing method is that the snow motion will be
omevery weak or even vanish when the ba
kground image region has high intensity, orsay has white 
olor. Be
ause in this 
ase, we 
an assume that Ibg(x; y) = Iamb, thenthis results that I(x; y; t) has the same value within the white image regions over allthe image frames, i.e.I(x; y; t) = I(x + vxdt; y + vydt; t+ dt)thus no falling snow motion being dete
ted.A fa
t from nature is that the snow 
overed surfa
e is white. Another fa
t fromthe natural motion is that falling snow
akes would stop falling when they hit thesnow 
overed surfa
e. These two natural fa
ts demand the similar visual e�e
t fromour rendered falling snow motion. And here, by fooling eyes through the intensitytri
k, our 
ompositing method o�ers this side bene�t with easy.



Chapter 3: Rendering Falling Snow 263.4 Tiling XYTThe opa
ity fun
tions �(x; y; t) that we 
ompute are periodi
 (see Se
.2.2.3) in allthree variables XYT. The reason for the periodi
ity is that ea
h of the frequen
y 
om-ponents is 
hosen independently. A traveling sine wave of any frequen
y (!x; !y; !t)is periodi
 in XYT, so is the sum of su
h waves.The periodi
ity property is 
onvenient be
ause it means we 
an tile XYT withthe fun
tion �(x; y; t) to obtain videos that are larger (in spa
e) and longer (in time).For example, our 
omputed �(x; y; t) fun
tions are only T = 64 frames long. But ifyou loop the video, then the videos 
an be extended to in�nite length. Noti
e thatlooping the video does not 
reate a jumpping dis
ontinuity.We 
an also tile in spa
e. The snow in video sydney (see Se
. 3.5) uses sixteen(4 � 4) falling snow tiles, ea
h one of size N = 128 and T = 64. The sydney imageitself is 512 � 512, whi
h is shown in Figure (3.3). The tiles are not apparent at thissize. One frame of the tiled snowing video sydney is shown in Figure (3.4). The tilinge�e
t does not appear on the stati
 image either.When very small tiles are used (say N = 64), the tiles do be
ome visible and theperiodi
ity be
omes visible as well. We present the video example sydneysmalltilingto show this e�e
t. One frame of the image example is in Figure 3.5. As we 
an seethe snow appears more like a periodi
 pattern than natural falling snow.
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Figure 3.3: The sydney ba
kground image. Size is 512 � 512.3.5 ResultsWe submit three groups of MPEG videos to demonstrate the falling snow renderingresults. Ea
h group is the rendered snowing s
ene along with its opa
ity fun
tion.These videos use lossless 
ompression (MPEG quality = 90%).I: The video snow shows the opa
ity fun
tion �(x; y; t) itself. The videohouse uses a ba
kground image [10℄ of a s
ene in whi
h there is snow on



Chapter 3: Rendering Falling Snow 28the ground but no snow falling (see Fig. 3.1). The video shows fallingsnow 
omposited over this s
ene.II: The video sydney shows a 
itys
ape of Sydney on a sunny day. We have
omposited snow over this s
ene to show what the 
ity might look like ona snowy day. For sydney, we used the falling snow tiling method (see Se
.3.4). The video tile128 shows the opa
ity fun
tion with size 128 � 128.III: The video sydneytilesmall shows a failure example of the tiling methodwhen the tile size is too small, as 64�64. The video tile64 shows the smalltile of the opa
ity fun
tion with size 64 � 64.Noti
e that the snowfall dire
tion of house is di�erent from the snowfall dire
tion ofsydney. Indeed, the motion dire
tion of the falling snow is a free variable (see Se
.2.3.1 ), and these two examples are used to demonstrate this property.
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(a)

(b)Figure 3.4: One frame of the video example sydney to demonstrate the seamless tilingmethod. (a) One frame of the rendered falling snow, whi
h is with size 128 � 128. (b)The 
omposited snowing s
ene sydney, in whi
h the foreground snow s
ene uses therendered snow in (a) and tiled sixteen (4 � 4) times.
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(a)

(b)Figure 3.5: The failure example of applying tiling method. When the size of the tileis too small to render natural s
ene, it appears as periodi
 patterns on the 
ompositeds
ene images. (a) One frame of a rendered snowfall tile, with size 64 � 64. (b) The
omposited snowfall s
ene, in whi
h the foreground snow uses 8 � 8 tiles.



Chapter 4
Falling Snow Seen by a PanningCamera

The method we presented in Chapter 3 renders parallel falling snow. Althoughthe motion dire
tion of the falling snow is a free variable, on
e it is 
hosen, the imagemotion will be along the 
hosen dire
tion only. When the falling snow is seen bya rotating 
amera, its motion dire
tion will be
ome the sum of the snowfall motionand the panning 
amera motion. Sin
e we render the falling snow image velo
itya

ording to its depth, and the 
amera motion asso
iates with only one image motionvelo
ity, the sum of these two will produ
e a range of velo
ities, in whi
h both theimage motion speed and dire
tion vary a

ording to its depth.
31



Chapter 4: Falling Snow Seen by a Panning Camera 324.1 The Sheared TentLet's re
all Eq: (2.16), whi
h expresses the image motion as the sum of a set ofparallel image motion (s; 0) and a panning 
amera rotation (sv; sl). This set of motionplanes is re-expressed as: !t + sv!v + sl!l = �s !v (4.1)In Chapter 3, we developed our tent model, in whi
h Eq. (3.3) de�nes a set ofparallel image velo
ities whi
h takes into a

ount the falling snow motion properties.More spe
i�
ally, it spe
ify the set of velo
ities sv of the parallel opti
al snow asC=q!2l + !2v . If we substitute C=q!2l + !2v for s in Eq. (4.1), we obtain the equationwhi
h expresses the falling snow motion seen by a panning 
amera with velo
ity(sl; sv). !t + sv !v + sl !l = C !vq!2v + !2l (4.2)We wish to simplify the 
amera panning motion and only 
onsider the 
ase thatthe 
amera is panning in perpendi
ular to the snow falling. Therefore, the 
amerapanning velo
ity be
omes (sl; 0), and Eq. (4.2) be
omes:!t = C !vq!2v + !2l � sl !l (4.3)Geometri
ally, Eq. (4.3) expresses a tent-like surfa
e added to a plane. A plotof Eq. (4.3) with 
onstant C = 1 and sl = 0:3 is shown in Figure 4.1. Given thatthe shape of the plotted surfa
e looks like the tent surfa
e is sheared up, we namethis rendering model as sheared tent model. Synthesizing the sheared tent surfa
e and
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Figure 4.1: The plot of Eq. (4.3), with 
onstant C = 1 and s!t = 0:3
ompositing with the snowing s
ene follow exa
tly the same as in Se
. 3.2 and Se
.3.3.There are two 
oeÆ
ients in Eq. (4.3). The 
onstant C relates to the fallingsnow motion speed, and sl relates to the 
amera panning speed. Theoreti
ally, the
amera 
an pan with in�nitely high speed. However, given that the 
onstant C islimited to [0; �℄ and (!l; !v) are limited to [��; �℄, the high 
amera panning speedwill result in sl � C, thus result in sl !l � C !v=q(!2v + !2l ). If we refer ba
kto Eq. (4.3), we 
an see that this will lead to !t � sl � !l. This is equivalent insaying that the snowfall motion will be diminished and the image motion will appearto be translational only. To avoid this e�e
t, we need to keep these two 
oeÆ
ients
ompatible. Sin
e !v=q!2v + !2l � 1 and !l � �, we wish sl=� � C to ensure the
ompatibility of these two 
oeÆ
ients. One side e�e
t of the 
onstraint sl=� � C isthat it limits the 
amera panning speed. This might be 
onsidered as the limitationof the shearing tent method.



Chapter 4: Falling Snow Seen by a Panning Camera 344.2 ResultsWe present three video examples to demonstrate the rendering results of oursheared tent model. All the videos use lossless 
ompression (MPEG quality = 90 %).The video panningsnow is the falling snow opa
ity fun
tion whi
h is rendered fromthe sheared tent model. It demonstrates the snowfall motion when it is seen by thepanning 
amera. The video panningsnows
ene is the panningsnow 
omposited withthe snowing s
ene house [10℄. The panning motion of the s
ene house [10℄ is made byone pixel per frame. However, from the video panningsnows
ene we 
an per
eive thatthe panning motion of the ba
kground s
ene is faster than the panningsnow's. This isbe
ause the panningsnowmotion speed is less than one pixel per frame, for the reasonof 
ompatibility. A better result 
an be a
hieved by 
ompositing the falling snow witha video whose shooting 
amera has roughly equal velo
ity as the panningsnow's.We also present the video panningbgstill, whi
h 
omposites the video panningsnowwith the still ba
kground image house [10℄. The panning motion of the falling snowis more per
eivable in this video, we therefore present it as a 
omparative example.To this end, we presented our falling snow rendering te
hnique, whi
h in
ludesintrodu
ing the literature ba
kground, in Chapter 2, mathemati
ally formulating andpra
ti
ally implementing the rendering te
hnique, in Chapter 3, and extending thefalling snow rendering as it is seen by a panning 
amera, in Chapter 4. Moreover, dur-ing the development of our rendering te
hnique, we looked up and inspired by somepsy
hophysi
al theories. After we developed our falling snow rendering method, we�nd that our rendered motion parallax 
ould be used as a stimulus to help psy
hophys-i
al study. In the following two 
hapters, we will present the literature ba
kground of
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hophysi
al theories and show that how our rendered motion parallax 
ouldbe used for psy
hophysi
al study.



Chapter 5
Per
eptual Transparen
y TheoryReview

During studying the rendering experiments of the falling snow motion parallax,we frequently observe snow
akes passing through ea
h other with per
eivable depth.In order to make more 
ompelling rendering e�e
ts, we wish the motion parallax with
ontinuously many depth and wish the per
eived motion as vivid as the real fallingsnow
akes. These rendering obje
tives motivate us to have a deep investigation ofthe transparen
y theory in human visual per
eption. Along with 
arrying on thoseinteresting experiments, a ni
e side-e�e
t we had is that the rendered motion parallax
ould be a new moving stimulus to study per
eptual transparen
y. We will review theper
eptual transparen
y literature in this 
hapter. In Chapter 6, we will introdu
eour preliminary transparen
y study experiments and dis
uss the results.
36



Chapter 5: Per
eptual Transparen
y Theory Review 375.1 Metelli's TheorySin
e Helmholtz(1866) spoke of seeing one 
olor through another, Ko�ka(1935)related this problem to per
eptual transparen
y, and later on many other resear
herstried to answer when to s
ission 1, i.e. when the visual system initiates the per
eptsof transparen
y, and how to s
ission, i.e. how the visual system assign transmittan
eand re
e
tan
e values to the per
eived layers, per
eptual transparen
y theory hasbeen ri
hly studied. Among them, the most histori
al one is Metelli's \epis
otistermodel" [19℄.
(a) (b)Figure 5.1: Metelli's epis
otister model. (a) a dis
 with re
e
tan
e t, and an opense
tor of relative area �, is rotated rapidly in front of a bipartite ba
kground. (b)when the dis
 is rotated fast enough, a transparent layer is per
eived overlying thebipartite ba
kground.Metelli built up the \epis
otister model" (see Figure 5.1) and derived the Metelli'sequations to answer how to s
ission. Also, he addressed the geometri
 and photometri

onditions to approa
h when to s
ission. As showing in Figure 5.1, when a dis
 withre
e
tan
e t and an open se
tor of relative area �, is rotated fast enough in front ofa bipartite ba
kground image, it will lead to per
eive a transparent surfa
e overlying1Here we refer s
ission as visual system per
eiving multiple transparen
y layers from single imageintensity.
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eptual Transparen
y Theory Review 38the bipartite ba
kground. From Talbot's law, whi
h gives the mixing 
olor in theregion of the epis
otister rotating over the ba
kground, Metelli derived the t and �as following, � = p� qa� b (5.1)t = aq � bpa + q � b� p (5.2)Eq. (5.1) and (5.2) are 
alled Metelli's equations, sin
e their signi�
ant in
uen
e onthe per
eptual transparen
y study.Given the 
onstraint that � 2 [0; 1℄, and from Eq. (5.1), Metelli observed the geo-metri
 
ondition of s
ission, i.e. the magnitude 
onstraint and the polarity 
onstraint.The former requires jp � qj � ja � bj and the latter says that (p � q) has the samesign as (a� b). Besides, Metelli also observed two kinds of photometri
 
onstraints,i.e. the 
ontour 
ontinuity of the underlying surfa
e and the boundary 
ontinuity ofthe per
eived transparent layer.Albeit these insightful 
onstraints Metelli made from Eq. (5.1), he 
laimed thatEq. (5.2) is too 
ompli
ated to make a simple predi
tion. Indeed, there is a dis
rep-an
y between the predi
tion of the Metelli's model and the per
eived transparen
y.Metelli's model predi
ts that when (p � q) and (a � b) meet both the magnitude
onstraint and the polarity 
onstraint, a 
onsistent transmittan
e value � is supposedto be derived from Eq. (5.1). However, even Metelli himself puzzled [19℄ that when\all other 
onditions being equal, the darker the transparent layer, the greater itsper
eived transparen
y". This dis
repan
y later on was solved by Singh and Ander-son [32℄. They showed that it is the variable - the Mi
helson 
ontrast, whi
h 
anbe interpreted from Eq. (5.2), a
ted as a more adequate 
onstraint to predi
t the
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y Theory Review 39transmittan
e value �.5.2 Mi
helson Contrast

Figure 5.2: Singh and Anderson's transmittan
e mat
hing experiments.As showing in Figure 5.2, Singh and Anderson did the transmittan
e mat
hingexperiments to study how to s
ission. In their experiments, they pla
e a smaller diskinside a large disk. The target 
entral disk has the same mean luminan
e value asits sinusoidal ba
kground, and is assigned a �xed luminan
e range. The mat
hing
entral disk is assigned a mean luminan
e value only, whi
h is probably di�erentfrom the target's. By adjusting the luminan
e range of the mat
hing 
entral disk, itstransmittan
e value will 
hange a

ordingly. During the experiments, the observer isinstru
ted to �nd the transmittan
e value whi
h mat
hes the target's. Moreover, all
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y Theory Review 40these 
entral disks are pla
ed on the 2D sinusoidal ba
kground, whi
h is more gen-eral than the bipartite ba
kground as used in the Metelli's model. By examining theobtained data of mat
hing 
entral disk and the target disk, Singh and Anderson �ndthat both the luminan
e range and the mean luminan
e a�e
t the per
eived trans-mittan
e value. More pre
isely, it is the Mi
helson 
ontrast, whi
h is the luminan
erange divided by twi
e of the mean luminan
e, a�e
ts the per
eived transmittan
e.If let M represents the Mi
helson 
ontrast, let Lrange represents the luminan
erange and let Lmean represents the mean luminan
e, then the Mi
helson 
ontrast isde�ned as: M = Lrange2 � Lmean (5.3)Therefore, instead of deriving the per
eived transmittan
e value � by usingMetelli'sequations { Eq. (5.1), whi
h only 
onsidered the luminan
e range, Singh and Ander-son re-de�ned the per
eived transmittan
e as:� = M
enterMsurround (5.4)Indeed, Eq. (5.4) 
an be derived from Eq. (5.2) ([32℄ : 504), whi
h Metelli 
laimed astoo 
ompli
ated to make a simple predi
tion. Consequently, by applying Eq. (5.4),Metelli's puzzle { that a bla
k epis
otister looks more transparent than a white one {has an answer: the darker epis
otister has higher Mi
helson 
ontrast, so, it has highertransmittan
e value.Besides addressing the Mi
helson 
ontrast as the answer of how to s
ission, Singhand Anderson also applied it to the study of when to s
ission. As the magnitude
onstraint of the Metelli's model requires the 
entral luminan
e range to be less than
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y Theory Review 41the surround to initiate the per
eptual transparen
y, Singh and Anderson give a
ounter-example as showing in Figure 5.3. In Figure 5.3, as the 
entral luminan
e

Figure 5.3: Example that the 
entral luminan
e range is larger than the surround.The surround region is per
eived to be transparent, and the 
entral region is per
eivedas a ba
kground being seen through a hole of the transparent layer.range is larger than the surround, the surround region is per
eived to be transparent,and the 
entral region is per
eived as a ba
kground being seen through a hole of thetransparent layer. Moreover, when keeping the luminan
e range of both the 
entraland the surround regions un
hanged but varying the mean luminan
e, the per
eivedtransparen
y will 
hange from per
eivable to obs
ure. Indeed, from the experimentaldata results, Singh and Anderson show that it is the Mi
helson 
ontrast a
ted asthe 
riti
al variable to initiate the s
ission, not the luminan
e range. Furthermore,by pla
ing the low 
ontrast regions over the textured ba
kground, as show in Figure5.4, Singh and Anderson extend the photometri
 
ondition of the Metelli's model.They �nd that, over the 
ontrast varying regions, the 
ontinuity of the textures, forexample, the left part of Figure 5.4, is the suÆ
ient 
ondition to initiate the s
ission.From these new geometri
 and photometri
 observations, Singh and Anderson suggestthat \visual system uses 
hanges in Mi
helson 
ontrast over aligned 
ontours and



Chapter 5: Per
eptual Transparen
y Theory Review 42groupable textures as a 
riti
al image property to initiate per
epts of transparen
y"([32℄:515).

Figure 5.4: Texture ba
kground with two low 
ontrast regions. The left low 
ontrastregion has the 
onsistent texture with the ba
kground. The right one does not. Theper
eptual transparen
y 
an be per
eived from the left low 
ontrast region, but notthe right one. Note that in the printed hard 
opy, this �gure is not per
eived as goodas the one in the soft 
opy, be
ause of the PS/PDF dithering problem. However we
an at least per
eive that the texture in the right low 
ontrast region has orientationand density in
onsistan
y, whi
h prevents initiating the per
epts of transparen
y.
5.3 Coherent vs. Non-
oherent MotionBeyond the adequate per
eptual transparen
y study of the stati
 images, otherresear
h groups broaden this study to the moving images [34, 35, 36, 37, 11, 2, 21℄.Stoner and Albright is one among them. They extended the stimuli of line gratingswhi
h are used by Movshon et. al [21℄ to the square-wave gratings and addressedthe multipli
ative luminan
e 
ondition under whi
h the motion of ea
h single movingobje
t 
an be per
eived when there are multiple moving obje
ts in an image. As inFigure 5.5, the model of their experiment is two square wave gratings, ea
h with thesame size, the same transmittan
e value, and the same ba
kground, but move up-left
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ordingly. These two gratings are then superimposed one on top ofanother. If Tsw represents the transmittan
e value of the square wave, and let To
(a) (b)Figure 5.5: Stoner and Albright's square wave gratings. (a) and (b) are with samesize, same transmittan
e value and the same ba
kground, but move up-left and up-right a

ordingly.represents the transmittan
e value of the overlap region. By adjusting To, Stoner andAlbright �nd that when Tsw � Tsw � To � Tsw, the image motion is per
eived as thetwo square waves moving in their own motion dire
tions, i.e. non-
oherent motion.Otherwise, the image motion is per
eived as the two square waves moving togetherin a 
ommon dire
tion, i.e. the 
oherent motion. Stoner and Albright therefore namethe 
ondition Tsw �Tsw � To � Tsw as the multipli
ation 
ondition and 
on
lude thatin order to per
eive non-
oherent motion, the image luminan
e 
ondition has to obeythe multipli
ation rule.Following along with the previous three Se
tions, we had an overview to theper
eptual transparen
y theory. In the next Chapter, we will see how these theories
ould apply on our motion parallax image sequen
es, and how our motion parallaximage sequen
e 
ould extend these theories.
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eptual Transparen
y StudyUsing Motion parallax

In Chapter 3, we rendered falling snow motion by using the tent model. The for-mulation was based on the motion parallax of the falling snow
akes, i.e. the size andthe motion speed of the snow
akes 
orrelate to the depth, and we refer the depth asin�nitely many layers. The rendered results appear remarkably similar to the fallingsnow and with 
ontinuously many layers. We would like to take advantage of therendered motion parallax and apply it to the per
eptual transparen
y study. We 
ar-ried on several informal experiments and had a preliminary study of the 
onditionsof initiating the per
epts of transparen
y when using the motion parallax as stimu-lus. These experiments are not 
arefully designed pro
edural work, but they 
an be
onsidered as the initial explorations for the future psy
hophysi
s study. Also, we
ompared the per
eived results with those per
eived from the stati
 images. We alsoask how appli
able are the previous transparen
y theories to our rendered motion44
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ission: Conditions for Motion Par-allaxIn the review of the transparen
y study in Chapter 5, we learned of Metelli'smodel, as well Metelli's puzzle. We saw that this puzzle later on was well solvedby Singh and Anderson, who dis
overed that the Mi
helson 
ontrast is the a
tualvariable used by the visual system to initiate s
ission. Besides, they also extendedboth of the geometri
 and the photometri
 
onditions in Metelli's model, and madethe 
onditions of when to s
ission more general as the following:I: There is 
hange in Mi
helson 
ontrast over the aligned 
ontours.II: The texture display over the regions where Mi
helson 
ontrast 
hangesshould be groupable.However, the stimuli Singh and Anderson used are only stati
 images. It is quite oftenthat the visual system 
onfront moving images and perform image de
omposition onthem. We therefore question when the visual system initiates per
eptual transparen
ywith the moving images. We investigate this problem by 
ompositing the motionparallax whi
h is rendered in Chapter 3 over the ba
kground images whi
h are withgeometri
 patterns.
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(a) (b) (
)Figure 6.1: The ba
kground images used to 
omposite with the motion parallax toinvestigate the s
ission 
onditions of the moving images. (a) 
he
kboard (b) moon(
) dis
. The original image size is 512 � 512.6.1.1 Compositing MethodWe render the motion parallax by using the tent model and synthesize the datain the same way as we synthesize the falling snow. After taking the inverse Fouriertransform, we s
ale the data fun
tion within gray level intensity [0; 255℄. The ob-tained image sequen
e is the motion parallax, whi
h we used to study the per
eptualtransparen
y. We treat the motion parallax as the foreground image Ifg(x; y; t) and
omposite it with the ba
kground image Ibg(x; y). Sin
e the purpose of this experi-ment is to study the 
onditions of initiating per
eptual transparen
y when the mediais the motion parallax, we design the ba
kground images as shown in Figure (6.1).We wish the Mi
helson 
ontrast of the 
omposited image sequen
es 
hanging overthe geometri
 patterns. To a
hieve this purpose, we lower the Mi
helson 
ontrastof the motion parallax in the white ba
kground regions and leave those in the bla
kba
kground regions un
hanged. The 
ompositing method is:I(x; y; t) = 8>><>>: 255 � :7 + 0:3Ifg(x; y; t); Ibg(x; y) = 1Ifg(x; y; t) Ibg(x; y) = 0 (6.1)Based on this 
ompositing method, we 
an 
ompute the Mi
helson 
ontrast of
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k and white ba
kground regions. The motion parallax is obtained fromthe inverse Fourier transform. It is the sum of the sine waves, therefore, its mean valueis 0. After we res
ale the data fun
tion, the luminan
e range is s
aled as [0; 255℄, andthe mean is s
aled as 128. Let's re
all Eq. (5.3), Mi
helson 
ontrast is the luminan
erange divided by twi
e of the mean luminan
e. Sin
e the 
ompositing method leavesmotion parallax in the bla
k ba
kground regions un
hanged, the Mi
helson 
ontrastof these regions will be the Mi
helson 
ontrast of the motion parallax itself, it is 1.From Eq. (6.1), and given that the image luminan
e di�eren
e is 255 � 0:3 and theimage mean luminan
e is (255 + 255 � 0:7)=2, the Mi
helson 
ontrast of the whiteba
kground regions 
an be easily 
omputed as 0:176.6.1.2 Result and Dis
ussionAfter 
ompositing, the motion parallax 
hanges the Mi
helson 
ontrast along thegeometri
 �gural 
ontour. The 
ompositing results are shown in videos 
he
kboard,moon and dis
. The motion parallax itself is shown in the video parallax. One frameof ea
h video is shown in Figure 6.2.The stati
 images in Figure 6.2 (b), (
) and (d) all meet the s
ission 
onditions
on
luded by Singh and Anderson. Therefore, it is not surprising that a transparentlayer 
an be per
eived from all of them. Indeed, the per
eption we got is that thegeometri
 ba
kground images are split into two layers along the �gural 
ontours. Thewhite regions are per
eived overlaying the motion parallax patterns as a light trans-parent layer, and the bla
k regions are per
eived laying behind the motion parallaxpatterns as a bla
k ba
kground layer. The motion parallax pattern itself is per
eived
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(a) (b)

(
) (d)Figure 6.2: (a) One frame of the rendered motion parallax. (b), (
) and (d) Oneframe of the motion parallax 
omposited with the ba
kground image 
he
kboard,moon and dis
 respe
tively. In (b), (
) and (d), the low 
ontrast regions are per
eivedas transparent layers overlaying on the motion parallax patterns.
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y Study Using Motion parallax 49with 
ontinuous 3D depth (see Figure 6.2 (a)). This fa
t 
ould in
rease the per
eiveddistan
e between the per
eived transparent layer and the ba
kground layer and might
ause the e�e
t of s
ission stronger.The last statement 
an be per
eived more 
learly by observing the moving images.In the moving images, not only the stru
ture, but also the moving speed of the motionparallax gives depth 
ue. Sin
e the 
ontinuous depth is evidently per
eivable, whenper
eiving the transparent layers overlaying on the motion parallax, these transparentlayers will inherit the depth 
ues of the motion parallax, thus are per
eived as mu
h
loser than the bla
k ba
kground layer.Stone and Thompson investigated the e�e
ts of image 
ontrast on image speedper
eption [34℄. Using grating stimuli, they observed that the low-
ontrast gratingsare per
eived moving slower than the high-
ontrast ones. This per
eption e�e
t isalso shown on the motion parallax stimulus. From the video 
he
kboard, moon anddis
, we 
ould per
eive that the image motion speed in the low 
ontrast regions isslower than those in the high 
ontrast regions. However, this image speed di�eren
edoes not show signi�
ant impa
t on per
eiving transparen
y for our examples. There
ould be two issues to this fa
t. One is that the di�eren
e is too small to a�e
t theoverall image motion 
onsisten
y. Another one is that the motion speed 
onsisten
yis not the dominant e�e
t to a�e
t the per
eptual transparen
y.To 
larify our doubts, we did a motion-in
onsisten
y experiment. This experi-ment is quite similar to the experiment moon, ex
ept that the motion dire
tion ofthe motion parallax in the 
entral dis
 part has 90 deg angular di�eren
e from themotion dire
tion in the surround part. The experimental result is shown in the video
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onsistent, and one frame of the video is shown in Figure 6.3.In Figure 6.3, a transparent layer 
an be per
eived overlaying 
entral low 
ontrastregion. This is plausible be
ause the pattern stru
tures of these two motion parallaxesare very similar, and the motion dire
tion di�eren
e does not show on the still imageof 
ourse. However, from the video motion in
onsistent, the 
entral transparent layer
ould be per
eived as well, even though the motion parallaxes in the 
entral andsurround regions move in two very di�erent dire
tions. This e�e
t might suggest thatthe motion velo
ity 
onsisten
y over the Mi
helson 
ontrast 
hanging regions is nota 
riti
al 
ondition of per
eiving transparen
y.This is quite di�erent from the photometri
 
ondition of the stati
 images. Instati
 images, the groupable texture over the Mi
helson 
ontrast 
hanging regions isa 
riti
al s
ission 
ondition, re
all Figure 5.4. However, in moving images, we areable to perform image s
ission from the ungroupable motion.To this end, we hypothesize that the s
ission 
onditions { the 
hange of the Mi
hel-son 
ontrast is over aligned 
ontours and over groupable texture { are appli
able tothe motion parallax stimulus as well. However, the groupable velo
ities of the mo-tion parallaxes over the aligned 
ontours where the Mi
helson 
ontrast 
hanges mightnot be ne
essary. In addition, the s
ission layers 
ould inherit the depth 
ues of themotion parallax, thus might promote the s
ission per
eption.Nevertheless, our hypotheses are only based on the limited experiments. Furtherdetailed and extensive studies are 
ertainly ne
essary in order to have a general and
omprehensive suggestion to this topi
.
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Figure 6.3: One frame of the video motion in
onsistent. The motion parallax in the
entral low 
ontrast region moves down-left, whereas the one in the surround high
ontrast region moves down-right. Sin
e the pattern stru
tures of these two parallaxesare very similar, the motion dire
tion di�eren
e does not show on this stati
 image.Therefore, we are still able to per
eive a transparent layer overlaying 
entral low
ontrast region.
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y Study Using Motion parallax 526.2 Image Motion Analysis: Using Motion Paral-lax as StimulusAs we reviewed in Se
. 5.3, Stoner and Albright used gratings as stimuli andobserved that the visual system 
omputes the multipli
ative transparen
y to de
idethe 
oheren
y of the motion. However the stimuli they used are quite stri
t, whi
hare two superimposed gratings with the same transmittan
e value and moving alongthe �xed dire
tions. These stimuli were generalized later on by other resear
hers interms of varying the motion dire
tion and the 
ontrast of the gratings. Along withthe generalization, the resear
h results also be
ame more broad and a

urate [37, 35,36, 11, 2, 21℄. For example, Kim and Wilson [11℄ varied the relative motion dire
tionsof the two gratings and suggested that it is the motion dire
tions of the gratingsthat mainly a�e
ts the 
oheren
y of the observed motion. Stoner and Albright [36℄themselves later on varied the relative 
ontrast of the gratings and observed thatthe luminan
e 
ontrast di�eren
e of the two superimposed gratings 
ould a�e
t themotion 
oheren
y by a
ting as a depth-from-o

lusion 
ue. More spe
i�
ally, whentwo superimposed gratings are put on the same bla
k ba
kground, the higher 
ontrastgrating tends to be per
eived in front of the low 
ontrast grating and a
ts as ano

luding grating, whereas the luminan
e value of the overlap regions of these twogratings is not 
riti
al anymore.From the previous examples, we 
ould noti
e that the stimuli used in those re-sear
h are mainly limited on gratings. When the real natural s
enes are mu
h more
ompli
ated than two superimposed gratings and there exists more than one 
ue,
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eptual Transparen
y Study Using Motion parallax 53we question whether the grating stimuli are good enough for image motion study.Intuitively, we would like the stimuli to be more similar to nature.In this sense, the motion parallax we rendered 
ould suggest a new perspe
tive forthe image motion study. Sin
e we render the motion parallax in the Fourier domain,it is the sum of sine waves, it therefore appears mu
h more 
ompli
ated than thegratings. Moreover, the primary goal of rendering this stimulus is to simulate thefalling snow and the formulation of this stimulus is based on falling snow motion, wetherefore naturally a
quire a stimulus whi
h is very similar to the nature.Staring at the motion parallax, we 
ould observe that the image obje
ts are passingthrough ea
h other and the motion in
oheren
y is obviously existing. What 
ues area
ting here? We 
ould suggest the luminan
e 
ontrast di�eren
e as one 
ue. Fromthe motion parallax, we 
ould observe that the image patterns with higher luminan
e
ontrast are in front of those with lower luminan
e 
ontrast. We 
ould interpret ourobservation as higher 
ontrast image patterns a
ting as the o

luding obje
ts andtherefore being observed as in front, whereas the lower 
ontrast image patterns area
ting as the o

luded obje
ts and therefore being observed as behind. We mightalso try to apply the luminan
e multipli
ative 
ondition [37℄. However, a diÆ
ultyhere is that how do we exa
tly lo
ate the overlapping regions among the obje
ts ofthe motion parallax and address the luminan
e value?This dis
ussion leads us to a number of open questions. When the previous re-sear
h results are based on exa
tly two gratings and are with exa
tly two layers, weask if we still 
an use those theories to give an adequate image motion analysis to ourrendered motion parallax? For example, when multiple layers exist in the motion par-
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an we apply the multipli
ative rule to the luminan
e values of the overlappingregions of the multiple layers? When the luminan
e 
ontrast di�eren
es exist amongmore than two obje
ts of the motion parallax, do we interpret the depth order of theobje
ts a

ording to the luminan
e 
ontrast monotoni
ally? When the transparen
yand the depth-from-o

luding 
ues are both existing in the motion parallax and evensomewhat 
on
i
ting with ea
h other, how does our visual system interpret them?From these questions and un
ertainties, we 
an see the motivation and ne
essity ofusing motion parallax as stimulus to study image motion. Although 
arefully designedexperiments have not been 
arried out in this thesis, be
ause the enormous work loadand 
hallenging questionnaire 
ould be another resear
h topi
. However, we 
ouldpredi
t that motion parallax 
ould be a promising stimulus for future resear
h.



Chapter 7
Summary

This thesis presents an image based falling snow rendering method. It is based onthe spe
tral synthesis te
hnique, and is 
arried on in frequen
y domain. Synthesizingthe power spe
trum is based on the tent model, whi
h is developed in this thesis, andis also the major 
ontribution of this thesis. The inspiration of developing the tentmodel 
omes from the motion plane model. It is saying that a pure translational imagemotion in the spa
e-time domain produ
es a plane of energy in frequen
y domain.This motion plane 
omprises two important properties, they are, the 
ommon lineof the motion plane (see Eq. (2.9)) relating to the motion dire
tion and the slopeof the motion plane relating to the motion speed. Asso
iating these two propertieswith the natural falling snow motion property, i.e. the size and the speed of fallingsnow
akes relate to the depth, we develop a tent like surfa
e, and name it as tentmodel. The power spe
trum we synthesized in frequen
y domain is exa
tly along thistent model. We also apply 1=f s
aling law and limiting the range of spatial frequen
yto the synthesized power spe
trum to make the snow
akes equally visible at all the55



Chapter 7: Summary 56depth and give them reasonable size. Afterwords, we bring the data fun
tion of thepower spe
trum to spa
e-time domain by 
omputing IFFT. We then treat the datafun
tion as the opa
ity fun
tion and 
omposite a white unitary snow image, whi
h iswith intensity 250, with a ba
kground s
ene image or video to 
reate the falling snows
ene.We also extend our falling snow rendering to the 
ase when the motion is seenby a panning 
amera. Using the property of the sheared 
ommon line in the opti
alsnow model, we shear up the tent surfa
e to in
orporate the panning 
amera motion.A spe
ial feature of this method is that it allows us to render the 
amera motion withnon-integer pixels per frame without aliasing, sin
e the rendering work is 
arried onin frequen
y domain. However, given the limitation of the shape of the tent surfa
e,the in
orporated 
amera panning speed is indeed always limited as less than onepixel per frame. This 
auses an in
onsisten
y between the 
amera motion and theba
kground image motion, be
ause in spa
e-time domain, the image motion is alwaysinteger pixels per frame. As a result, this spe
ial feature turns our sheared tent modelto be not very useful.The rendered falling snow motion sequen
e 
omprises the depth vs. the speedvs. the size relationships of the falling snow
akes. If treating the rendered motionparallax itself as a motion stimulus, it would in
lude more motion 
ues than the
onventional grating stimulus. Also, sin
e we 
onsidered the natural image amplitudespe
tra distribution property and the sizes of the image obje
ts, the rendered motionparallax per se is more similar to the natural s
ene than the moving gratings. Wetherefore suggest that our rendered falling snow motion parallax 
ould be a novel



Chapter 7: Summary 57stimulus for the per
eptual transparen
y study and image motion analysis.
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