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Rendering falling snow using an inverse Fourier transformAbstratThis thesis presents an image based falling snow rendering method whih is basedon spetral synthesis tehnique. By inorporating the natural falling snow motionproperty, that is, the image speed and size of the snowakes are related to the depth,we develop a tent-like surfae in frequeny domain. We synthesize the power spetrumalong the tent-like surfae and use IFFT to bring the data funtion bak to spae-time domain, thus attain a motion parallax image sequene. Treating the motionparallax as an opaity funtion, we an omposite it with an existing video sequeneand turn it into a snowing sene. Treating the motion parallax as a stimulus for thepsyhophysial study, it ould serve as a omplex yet natural sene-like stimulus, andtherefore being expeted to give a new perspetive to the psyhophysial study.



Direteur de th�ese AuteurMihael S. Langer Linqiao Zhang
Rendu de hute de neige �a l'aide d'une transform�ee deFourier inverseR�esum�eCe m�emoire pr�esente une m�ethode de rendu de hute de neige �a partir d'imagesbas�ee sur une tehnique de synth�ese spetrale. En inorporant la propri�et�e du mou-vement de hute de neige naturelle { la vitesse des images et la taille des oonsd�ependent de la profondeur { nous d�eveloppons une surfae en forme de tente dansle domaine de fr�equene. Nous synth�etisons le spetre de puissane le long de la sur-fae et nous utilisons une transform�ee de Fourier inverse pour transf�erer la fontionde donn�ees au domaine espae-temps, ave laquelle nous atteignons une s�equened'images en mouvement parallaxe. En traitant le mouvement parallaxe omme unefontion d'opait�e, nous pouvons le omposer ave une s�equene vid�eo existante etobtenir une s�ene de hute de neige. Le mouvement parallaxe, trait�e omme un stimu-lus d'une �etude psyhophysiologique, peut être utilis�e omme un stimulus omplexemais naturel d'une s�ene. Nous nous attendons alors �a e que ei donne une nouvelleperspetive �a l'�etude psyhophysiologique.
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Chapter 1
Introdution

This is an information tehnology age, where omputer siene tehniques giveus the power to imagine as wild as we like and to reate as ative as we an. Usingomputer siene to take over the world is ertainly the dream of a omputer sientist.Here, our ation is a drop in the oean, we tried to simulate the natural phenomenon{ falling snow.As one of the most ommon natural phenomena, falling snow simulation is inten-sively used in ight simulation, �lm making, video game animation and meteorologystudy. This demands us to render snowfall omputationally eÆiently and visuallyappealingly. Researh to this problem has been arrying on sine 1980's, and themajor approah is to use partile systems [26, 31, 17℄.partile systems rendering onsiders eah snowake as a partile with attributessuh as initial position, olor, veloity, size and transpareny, and also the partile'sshape and lifetime. During rendering, by applying fores { gravity, frition, resilieneet. { to the partile, its attributes will be updated aordingly. The update depends1



Chapter 1: Introdution 2on the prede�ned funtions, for example, Newton's �rst law, and a short time inter-val. As we an see, this rendering method has an adequate ontrol to the motion ofeah partile. It therefore has wide use. Not only an it render falling snow, but also�reworks, waterfalls, explosions, falling rain et. However, sine eah partile has tobe omputed, when the number of partiles beomes big, the demanded omputa-tion inreases aordingly, thus the system rendering oneivably beomes slow, andtherefore prohibits its further utilization.If the rendering purpose is to reate a visual e�et of the rendering objet, thenwe question whether it is neessary to simulate every single partile. In this thesis,we have developed an alternative falling snow rendering method. The inspirationomes from the motion plane model [38℄, that is, a pure translational image motionin spae-time domain produes a plane of energy in frequeny domain. We intuitivelyinorporate the natural motion properties of the falling snow { the snowakes ingreater depth appear smaller and move slower { with the motion plane model, thisresults in a tent like surfae in frequeny domain. We then synthesisd the powerspeturm along the tent like surfae. The �nal rendering result is transformed tospae-time domain by using a global inverse Fourier transform, this will give us theentire falling snow image sequene.Sine our method renders the entire falling snow motion one for all, instead ofapproahing by rendering eah single snowake, it is therefore a omputationally el-egant and simple rendering method. Also, this global rendering method produes anatmospheri snowfall e�et, whih is the part missed out by partile systems. More-over, our rendering method is an image-based one, the rendered image sequene an



Chapter 1: Introdution 3be diretly omposited with 2D image instead of performing 3D to 2D transformationwhih is the proedure has to be taken by the sene-based rendering methods.As we mentioned before, our rendering method integrates the depth vs. speedvs. size relationship of the falling snow, it thus provides the rendering results strong3D depth e�ets. Indeed, it simulates exatly the motion e�ets of motion parallax.During our rendering experiments, we frequently ask questions as: "how and why dowe pereive these ontinuous layers in depth?"; "what ues ause us pereiving therendered motion parallax as falling snow?"; "why the white image spots are pereivedloser?". Driven by our puzzles, we tried to apply pereptual transpareny theoriesof visual psyhology and the image motion theories to our rendered motion parallax.Besides the plausible explanation we ould give to our puzzles, we also �nd that ourrendered motion parallax ould be an interesting stimulus to be used in the imagemotion study.Two major topis { the falling snow rendering and the psyhophysial study { areaddressed in this thesis. We naturally organize this thesis into two parts. In Chapter2, 3 and 4, we address the falling snow rendering problem. We present a literaturebakground of our rendering method in hapter two. In Chapter 3, we introdue ourrendering method in detail. Chapter 4 generalizes the falling snow rendering methodto the ase that when falling snow is seen by a panning amera. Chapter 5 and 6are related to the topi of the psyhophysial study. We give a literature review ofpereptual transpareny theory in Chapter 5, and present our attempted experimentsand disussions in Chapter 6.



Chapter 2
Bakground of the RenderingMethod

In this hapter, we wish to build up the literature bakground of our falling snowrendering method. Four topis are addressed to serve this purpose, they are:� Spetral synthesis { an overview of the spetral synthesis method in renderingimages.� Fourier domain and its properties { the fundamental theory used to render thefalling snow.� Image motion properties { the basis of our tent like surfae.� Image ompositing { the theory used to omposite our snow sequene withbakground images.Eah topi is relatively independent, yet putting them together at the end willfund up a suÆient bakground to help reading through this thesis.4



Chapter 2: Bakground of the Rendering Method 52.1 Spetral SynthesisSpetral synthesis method has long been used in omputer graphis to renderimages suh as terrain [22℄, oean waves [18℄, uids [33℄, �re [6℄, smoke [6℄, loud[6℄ et. The ommon property of these natural senes is that they do not have awell-de�ned surfae or shape. This makes the usually used geometry based renderingmethods hard to approah, and the existing algorithms are often su�ering from theomputational expensiveness. On the other hand, behind the randomness, some ofthe physis and natural features of these natural senes an be easily synthesized byspetral synthesis method.The fundamental idea of spetral synthesis is to sum up large number of sinusoidalwaves and map the pixel intensity and olor to the image aording to the amplitudeof the sinusoidal waves. Given the huge range of variation of the sinusoidal waves,the key of the spetral synthesis method is to hoose a proper model to sum up thesinusoidal waves in a proper way.The spetral synthesis method an be arried on either in spae-time domain[14, 15, 23, 24, 22℄ or in frequeny domain [33, 27, 29, 18℄. To the former ase,the sinusoidal wave olor(x) = sin(x), whih is de�ned in spae-time domain, is theprimitive for synthesizing images. Further proedures suh as varying its frequenies,amplitudes, biasing and weighting the obtained olor funtion, extending its dimen-sionality, ombining with shape funtion et. would apply on this primitive to vary it.Sometimes the variation ould be radial suh that the primitive might be altered tobe a step funtion or a non-periodial signal. Putting the sinusoidal waves togetheris usually alled onstruting the noise funtion. Methods of doing so are stohas-



Chapter 2: Bakground of the Rendering Method 6ti subdivision [14, 15℄, frational Brownian simulation [6, 22℄, interpolating randomvalue on the disrete lattie [6℄ et. Eah of these methods has fairly deep and wideresearh spae to dive in and to play around, espeially when implementing thesemethods to the real sene simulation. Here, however, we only have a quik glane tothem beause our rendering method is a frequeny domain based one.The major advantage of spetral synthesis images in frequeny domain is beausethis method is global. The fous of this method is not how to sum up all the sinusoidalwaves but how to de�ne a physis model for our desired rendering image in frequenydomain. One we set up a right model, the proedure of the inverse Fourier transformwill produe the onstruted noise funtion. We say it is global beause the entireimage or the entire image sequene will be synthesized one for all after the IFFT.Further, along with the globality of this method, it is also fast and eÆient. However,things never an be perfet. Beause of the globality, one we take the IFFT, we annot really modify eah single sinusoidal wave in spae-time domain. This propertymakes the rendering proess highly rely on the physis model whih we built infrequeny domain. Meanwhile, this overly essential physis model is usually diÆultto render, beause frequeny domain is not as intuitively understandable as spae-time domain. But, many researhers have hallenged this diÆulty and rendered thesene images suh as oean waves [18℄, uids [33℄, turbulent gaseous phenomena [27℄,motion under wind [29℄ ... and also, our falling snow quite well by using this method.Construting the physis model requires understanding of the power spetrum dis-tribution of the sene we meant to render. Through analyzing the motion properties,the image strutures of the sene and referring its properties in the Fourier domain,



Chapter 2: Bakground of the Rendering Method 7we ould approah a spatial and temporal frequeny distribution model whih bestapproximates and summarizes the physis properties of the natural sene in frequenydomain. On top of this physis model, the re�ning steps suh as 1/f noise �ltering,phase shifting, olor mapping, ray traing et. would be applied on to generate themore desirable image.In spite of the proedural ommonality of the frequeny domain based spetralsynthesis methods, the onstruted physis models are sharply di�erent from eahother. This is expetable beause one an hardly onnet the physis motion of theoean waves with the gaseous turbulent, neither with the falling snow. Therefore,studying the power spetrum distribution of eah sene images beomes fundamentaland primary. This requires a good knowledge of the Fourier domain. Here, the nextSetion will follow up to failitate the bakground of the Fourier domain.2.2 Fourier Domain and Its PropertiesBy applying Fourier transform [5℄, image data an be transformed from spae-time domain to the frequeny domain, and then by applying the inverse Fouriertransform, the image data an be transformed bak to spae-time domain. Theimage will be unhanged after the Fourier and its inverse transforms. Therefore,Fourier transform o�ers another way to work on the same image data in anotherdomain. The purpose of transforming data to frequeny domain is to utilize theproperties of Fourier transform, and therefore, to proess image data more eÆiently,or even ahieve some work whih is prohibitive in spae-time domain. This setionwill give a brief introdution of the Fourier transform and a few of its properties used



Chapter 2: Bakground of the Rendering Method 8in the falling snow rendering.2.2.1 Fourier TransformGiven an one variable ontinuous funtion f(t), the Fourier Transform F(!t) isde�ned as F(!t) = Z 1�1 f(t)e�j2�t!tdt (2.1)and the inverse transform asf(t) = Z 1�1F(!t)ej2�t!td!t (2.2)where j is the imaginary unit and ej� = os(�) + jsin(�).In the ase of disrete funtion, the Fourier transform is de�ned in the similarway, exept that it sums over the disrete series instead of integrating. If we let I(x)denote the disrete funtion with N samples, or more spei�ally, taking one rowfrom an image, whih is with N pixels, and let I(x) represent the image intensity ofthis row, then the Fourier transform of I(x) is de�ned asI(!x) = 1N N�1Xx=0 I(x)e�j2�!xx=N (2.3)and the inverse Fourier transform is de�ned asI(x) = N�1X!x=0I(!x)ej2x�!x=N (2.4)I(!x) is a omplex number, i.e. Ii = Ireal + jIimage , it an also be expressed interms of its magnitude A(!x) and phase �(!x).A(!x) = k I(!x) k = qIreal � Ireal + Iimag � Iimag�(!x) = tan�1(IimagIreal ):



Chapter 2: Bakground of the Rendering Method 9I(!x) will beome: I(!x) = A(!x) ej�(!x) :The magnitude represents the energy of the signal at spatial frequeny k, whereasthe phase represents how many spatial frequeny steps of the signal are shifted [16℄.The above disussion is only about the one-variable Fourier transform. In fat,Fourier transform an be easily extended to multi-variable funtions. As an example,three-variable disrete Fourier transform is disussed below. It is also the one usedin falling snow rendering.Given a disrete funtion f(x; y; t) with samples (M;N; T ), whih denotes animage sequene with T frame and eah frame withM �N pixels. Its Fourier transformF(!x; !y; !t) is de�ned as:F(!x; !y; !t) = 1MNT M�1Xx=0 N�1Xy=0 T�1Xt=0 f(x; y; t)e�j2�(!xx=M+!yy=N+!tt=T ) (2.5)and its inverse transform is de�ned as:f(x; y; t) = M�1X!x=0 N�1X!y=0 T�1X!t=0F(!x; !y; !t)ej2�(x!x=M+y!y=N+t!t=T ) (2.6)Here F(!x; !y; !t) is a omplex number in the (!x; !y; !t) spae.2.2.2 Fourier DomainWithin the (!x; !y; !t) spae, i.e. the Fourier domain, the spatial frequeny(!x; !y) relates to the number of yles of the sine wave per image frame, whereasthe temporal frequeny !t relates to the number of yles of the sine wave per imagesequene. Low spatial frequeny orresponds to small number of yles per image



Chapter 2: Bakground of the Rendering Method 10frame. In spae-time domain, it orresponds to larger size of the image objets. Lowtemporal frequeny orresponds to small number of yles per image sequene. Inspae-time domain, it orresponds to slower image motion.2.2.3 Periodiity PropertyThe Fourier sine waves are periodi signals. Using this periodiity, we an repeatthe signal to obtain more samples whih are beyond the original sample range. Aswe will see later, given an image sequene with samples (M;N; T ), whih is obtainedfrom the inverse Fourier transform, one an tile eah image frame side by side toobtain a larger image, or repeat the image sequene to make the motion longer.2.2.4 Conjugay PropertyGiven a real image, i.e. the I(x; y; t) is a real number, its Fourier transform obeysthe onjugay property I(!x; !y; !t) = I(�!x;�!y;�!t) (2.7)Thus, if one synthesizes a signal in frequeny domain, and wishes to get a real signalin spae-time domain, then the signal should obey the onjugay property.After we had a quik refresh at the Fourier domain, let's look at the image motionproperties in this domain.



Chapter 2: Bakground of the Rendering Method 112.3 Image Motion PropertiesThere has been a long and rih history about image motion analysis in Fourierdomain. Moving sine wave gratings have been used as stimuli in thousands of ex-perimental studies of visual motion pereption. Suh stimuli have also played a keyrole in omputational models of visual motion proessing [38, 1, 30, 8℄. The modelwe used to render falling snow extends from two partiular frequeny domain models:the motion plane model introdued by Watson and Ahumada [38℄ and the optialsnow model introdued by Langer and Mann [13, 12℄.2.3.1 Motion Plane ModelWatson and Ahumada observed that an arbitrary stati image that undergoes aonstant translational motion in the image plane over a sequene of frames yields aplane of energy in the 3D frequeny domain. That is, if one takes the 3D Fouriertransform of a translating image sequene, then all the energy lies on a plane in the3D frequeny domain. Formally, suppose an image is translating with veloity (vx; vy)pixels per frame, that is,I(x; y; t) = I(x� vxt; y � vyt; 0)Let (!x; !y) be the spatial frequenies in the x and y diretions, and let !t be thetemporal frequeny. If one takes the Fourier transform of I(x; y; t), then all the energyin the 3D frequeny domain lies on the plane:!t = �vx!x � vy!y (2.8)



Chapter 2: Bakground of the Rendering Method 12This plane passes through the origin. We refer to it as the motion plane for veloity(vx; vy).A few details on the geometry of the motion plane helped us to develop our tentmodel and will help the reader's intuition as well. If one takes the intersetion of themotion plane with the plane !t = 0, one getsvx!x + vy!y = 0 (2.9)This is a line in the spatial frequeny plane (!x; !y), namely, the line along whihthe motion plane of Eq. (2.8) intersets the plane !t = 0. The vetor (vx; vy) isperpendiular to this line, and the magnitude qv2x + v2y is the slope of the motionplane in the diretion (vx; vy). These properties of the motion plane are well-known[38℄.To simplify the notation, we rotate the spatial frequeny oordinates (!x; !y) tonew oordinates (!v; !l) suh that !v is in the diretion of the motion (vx; vy) and !lis in the diretion of the line of Eq. 2.9. If we let � be the angle between !x and thediretion of the line !l, then we an relate the two oordinate systems by:266666664 !v!l
377777775 = 266666664 sin � � os �os � sin �

377777775 266666664 !x!y
377777775 (2.10)In partiular, Eq. (2.8) an be re-expressed asv = �!t!v (2.11)Eq. (2.11) will be used in Chapter 3 in our tent model from whih we synthesizefalling snow.



Chapter 2: Bakground of the Rendering Method 132.3.2 Optial SnowA more reent frequeny domain model of image motion is the optial snow modelintrodued by Langer and Mann [13℄. These authors observed that falling snowprodues motion in whih a range of speeds is present and the diretion of motionis roughly onstant aross the image. In the frequeny domain, falling snow thusprodues a family of motion planes:!t = �s vx!x � s vy!y (2.12)in whih a range of speeds s is present. The family of motion planes all interset atthe line of Eq. (2.9) and eah with the motion plane properties as we desribed inmotion plane model.In addition, Eq. (2.12) an also be expressed in a simple way by rotating the(!x; !y) oordinates to the (!l; !v) oordinates as in Eq. (2.10). The set of veloitieswill beome sv and Eq. (2.12) an be re-expressed asv = � !ts !v (2.13)A more generalized version of the optial snow model assumes that the imageveloity of the falling snow is with a range of speed and also diretions [12℄. Forexample, in the ase that falling snow is seen by a moving amera, the set of imageveloity is of form (ux + s vx; uy + s vy), where (ux; uy) is a onstant veloity vetor.The family of motion planes will beome:!t = �(ux + s vx)!x � (uy + s vy)!y (2.14)Eq. (2.14) de�nes a set of planes whih all pass through the origin (!x; !y; !t) =(0; 0; 0) but do not interset with plane !t = 0 at a ommon line. In ontrast with



Chapter 2: Bakground of the Rendering Method 14Eq. (2.12), we name the optial snow model represented by Eq. (2.12) as paralleloptial snow model, and the model represented by Eq. (2.14) as nonparallel optialsnow model.Eq. (2.14) ould be rewritten as:!t = �s vx!x � s vy!y � ux!x � uy!y (2.15)Analogous to Eq. (2.10) and Eq. (2.13), we an express Eq. (2.15) using the (!l; !v)oordinates as well. If let (sv; sl) represents the rotated veloity vetor (ux; uy), i.e.266666664 svsl
377777775 = 266666664 sin � � os �os � sin �

377777775 266666664 uxuy
377777775then Eq. (2.15) will beome!t = �s v !v � sv!v � sl!lGiven v is a onstant veloity, we an simplify this equation as:!t = �s !v � sv!v � sl!l (2.16)Eq. (2.16) will be referred in Chapter 4 to derive our sheared tent model, whih weused to render the falling snow seen by a moving amera.The optial snow motion model aptures the range of veloities presented in fallingsnow. However, it does not expliitly aount for depth e�ets, nor is the modelused for rendering image sequenes. Solving these two problems is the main originalresearh ontribution presented in this thesis. The details will be given in Chapter 3.



Chapter 2: Bakground of the Rendering Method 15The above two models, the motion plane model and the optial snow model areall disussed in the frequeny domain. Now, let's hange our mind a bit and omebak to the spae-time domain. We will introdue the ompositing method in thefollowing setion. This method plays an important role when we apply our renderingresults to the sene images.2.4 Image CompositingImage ompositing has been rihly studied in omputer graphis [25, 9, 4, 20℄ andwidely used in visual arts and �lm industry. Behind those fasinating speial imagee�ets reated by ompositing, the basi idea of it is quite simple.We treat multiple images as overlapping layers and ombine them together toobtain the omposited image. For eah image whih will overlay on the other image,we give an extra � hannel to it. The � hannel ontains the value of opaity �of eah pixel in the overlaying image. The � value is within range [0; 1℄, 0 is fullytransparent, 1 is fully opaque, and the intermediate values are partially transparent.Mathematially, to omposite the foreground image I2 over the bakground image I1aording to the opaity �, we doI(x; y) = (1� �(x; y))I1(x; y) + �(x; y)I2(x; y) (2.17)to obtain the omposited image I. Color images assoiate with three hannels { RGB.If this is the ase, we apply Eq. (2.17) to eah hannel.Eq. (2.17) illustrates the general rule of ompositing. When it is spei�allyapplied to our appliation, both to the falling snow rendering and to building our



Chapter 2: Bakground of the Rendering Method 16transpareny study stimuli, we made slight variations to this ompositing method.However, the fundamental onepts all still the same. You will see our appliation inSe. 3.3 and Se. 6.1.1.



Chapter 3
Rendering Falling Snow

We present the falling snow rendering method in this hapter. We approahthis rendering problem from the frequeny domain, that is, using an inverse Fouriertransform. This method yields an image sequene whih is designed to have similarappearane as falling snow. In this sense it produes a visual e�et that is similar tofalling snow. The overall idea of the method is to:1. De�ne a spei� surfae in the 3D frequeny domain, that is, in the 3D spaede�ned by the Fourier transform of spae-time (XYT). This surfae is derivedmathematially from a motion parallax property of falling snow, namely froma relationship between the image speed and the image size of a given snowakeand the distane of that snowake from the viewer (see Se. 3.1).2. Take the inverse Fourier transform of to get a funtion I(x; y; t).3. Treat I(x; y; t) as an opaity funtion and use it to omposite white snow overa bakground image (or video). 17



Chapter 3: Rendering Falling Snow 18As an example, Figure 3.1 (b) shows one frame of the falling snow image sequene,after ompositing over a bakground image house [10℄, shown in Figure 3.1 (a). Theentire image sequene is available from the video example house.

(a) (b)Figure 3.1: (a) An image of a house on a winter day. (Painting Jimmy's plae.Courtesy of artist Gary Johnson) (b) One frame of a rendered image sequene inwhih falling snow is omposited over the still image in (a).
3.1 Tent Model of Falling SnowAs we reviewed in Se. 2.3.1, the standard model for motion in the frequenydomain assumes pure image translation. Falling snow di�ers from pure image trans-lation in that falling snow has multiple depth layers, indeed a ontinuum of depthlayers. There are two impliations of the ontinuum of depth layers. First, the depthlayers give rise to motion parallax. The image speed of the snowakes in a givendepth layer depends on the depth of that layer. In terms of the motion plane model,falling snow should produe energy in a range of motion planes, orresponding to



Chapter 3: Rendering Falling Snow 19di�erent depth layers (see Se. 2.3.2). The seond impliation of the depth layersonerns the size of the snowakes, namely that the image size of snowakes in agiven layer depends on the depth of the layer. Let us now restate these two e�etsusing mathematial formulas, and then ombine them.Let the distane variable be d. Then the motion of falling snowakes has twoorrelations assoiated with it:I: The loser the snowake, the faster the snowake. For simpliity, assumeall snowakes are falling with roughly the same 3D speed. Then snowakesloser to the amera will appear to move faster beause of perspetive, thatis, d is inversely proportional to image speed, and so from Eq. (2.11),d / 1!t=!v (3.1)II: The loser the snowake, the bigger the snowake. Bigger objets havemore energy onentrated in lower spatial frequenies, i.e. smaller radiusq!2v + !2l . This means that the distane d to a snowake is proportionalto the radius of the spatial frequenies to whih the snowake ontributes:d / q!2v + !2l (3.2)Combining Eqns. (3.1) and (3.2), we get:!t=!v / 1q!2v + !2lFor any �xed proportionality onstant C to, we get the surfae:!t = C !vq!2v + !2l (3.3)



Chapter 3: Rendering Falling Snow 20This is our falling snow rendering surfae. Figure 3.2 shows an example of a surfaeof Eq. (3.3). These surfaes have a tent-like form, and so we refer to Eq. (3.3) as thetent model.

Figure 3.2: The plot of Eq. (3.3) with onstant (C = 1)If omparing our tent model with the motion plane model, i.e. !t = �v!v,and with the parallel optial snow model, i.e. !t = �sv!v, we an �nd some loserelationship among these three. In motion plane model, !t relates to !v aordingto onstant speed v. In parallel optial snow model, !t relates to !v aording to arange of speeds sv. In partiular, s is a free variable. In our tent model, !t relates to!v aording to C=q!2v + !2l , whih is a set of speeds varying aording to the spatialfrequeny q!2v + !2l . This set of speeds aptures the properties that objets at greaterdepth appear smaller and move slower in the image, whih is the fundamental motionproperty of falling snowakes. In onlusion, our tent model handles a larger rangeof image motion speeds than the motion plane model, and aounts more spei�ally



Chapter 3: Rendering Falling Snow 21the falling snow motion property than the parallel optial snow model.3.2 Synthesizing a Tent SurfaeWe synthesize falling snow sequenes with T frames and N �N pixels per frame.Typial values are N=512 and T = 64. The basi idea is to synthesize a tent surfaein the frequeny domain and then take the inverse Fourier transform.The (!x; !y; !t) spae in whih we synthesize the tent surfae has N�N�T ells.Eah ell is assigned a omplex value, with both its real and imaginary parts de�nedas type double. The ells are initialized to the value zero. We then loop through thethree dimensions of the frequeny domain. If any ell (!x; !y; !t) overlaps the surfaede�ned by Eq. (3.3), we assign it a omplex value with an amplitude varying between0 to 1 and a random phase varying between 0 to 2�.To ensure that the values after the inverse Fourier transform will be real, we enforethat the value in the ell (!x; !y; !t) is the omplex onjugate of the value in the ell(�!x;�!y;�!t). This is the standard onjugay property of Fourier transforms ofreal images (see Se. 2.2.4), namelyI(!x; !y; !t) = I(�!x;�!y;�!t) (3.4)where I(x; y; t) is the image sequene and I(!x; !y; !t) is its 3D Fourier transform. Toahieve this onjugay property, we only assign values to the ells within the negative!t halfspae. All the ells in the positive halfspae are then assigned values aordingto their onjugate ells.



Chapter 3: Rendering Falling Snow 223.2.1 Thikened tent surfaeThe tent in Fig. 3.2 is an in�nitely thin surfae. For this surfae, eah spatialfrequeny q!2x + !2y has a single speed assoiated with it. This is not quite whatwe want, however. Snowakes at a given depth (and hene at a given image speed)ontribute to a range of spatial frequenies. This fat suggests that we should usea thikened tent surfae. We implement the thikened tent surfae by using a smallrange of !t values around the tent surfae. This gives slightly better renderings thanif only a single layer is used.3.2.2 Limiting the range of spatial frequeniesThe sizes of the snowakes have to be taken into aount. If we allow all possiblespatial frequenies to ontribute to the tent surfae, then the size of the snowakeswould vary from very big (the image width) to very small (the distane betweenpixels). This is not quite what we want to render falling snow, sine snowakesshould be relatively small.To limit the size of the snowakes { that is, to limit the size of the movingimage struture that we are synthesizing { we limit the energy in the tent surfae tothree otaves of relatively high spatial frequenies. This ats as utting an annulusin the (!x; !y) plane and assigning values only to the ells whose spatial frequenyomponents lie in the annulus. Beause speed is related to size, limiting the range ofspatial frequenies also limits the range of speeds.Here are the spei�s. We are synthesizing image frames of size 512� 512, and sowe limit the non-zero values of energy of the tent surfaes to the three otave range



Chapter 3: Rendering Falling Snow 23from 16 to 128 yles per image frame. Spatial frequenies lower than 16 yles perimage frame are not used in order to enfore an upper bound on size of moving imagestruture { that is, snowakes are small. Spatial frequenies above 128 yles perimage frame are not used in order to stay far from the Nyquist limit, whih is 256yles per frame.3.2.3 1/f amplitude spetraThe �nal issue is to make the amplitudes of the Fourier oeÆients as a funtionof spatial frequeny. It is known that the amplitude spetra of natural images obeysa power law [7, 28℄. Spei�ally, the amplitudes of the Fourier oeÆients fall o� as1=q!2x + !2y on average. In the image siene literature, this is known as 1/f saling.Suh an amplitudes distribution will put onstant amount of energy in eah onstantotave, thus make eah band equally visible [7℄.Our falling snow images are natural images as well, we therefore apply this 1=fspetral distribution on synthesizing our tent surfae. As we mentioned at the be-ginning of this setion that the amplitudes are set to a random value between [0; 1℄,then now we need to divide eah amplitude by the spatial frequeny:j I(!x; !y; !t) j / rand([0; 1℄)q!2x + !2y (3.5)A little reminder is about the phases. We set them as random values between[0; 2�℄ at the beginning of this setion and we will keep this randomness throughoutour image rendering without any modi�ation, sine phase hanging relates to theimage objet shifting, whih is out of our onern in this thesis.



Chapter 3: Rendering Falling Snow 243.3 Compositing MethodTo obtain a falling snow sequene, we ompute the inverse Fourier transform ofour tent surfae. This yields a real valued funtion whih we denote �(x; y; t). Wewish to treat �(x; y; t) as an opaity funtion, namely the density of snowakes at apixel (x; y) in frame t. The reason for treating �(x; y; t) as an opaity funtion is thatwe an then apply standard ompositing (see Se. 2.4).To treat �(x; y; t) as an opaity funtion, we need to map it to the interval [0,1℄.We also wish to take aount of the fat that the human visual system is sensitiveto logarithmi di�erenes in intensity, rather than linear di�erenes in intensity. Forthis reason, after mapping to [0,1℄, we apply a non-linear transformation�(x; y; t)! �(x; y; t)�where we use � = 1:5. This ompresses the values of �(x; y; t) to the lower part of theinterval [0,1℄ and makes the variations in opaity more visible. In partiular, � is not�xed. We let � � 1 and vary aording to the rendering purpose and the bakgroundimages. Higher � value assoiates with lighter falling snow appearane, beause thenonlinear transformation �(x; y; t)� will result low opaity value, and therefore, willweaken the foreground snow and strength and bakground image.To omposite the snow with a bakground image, we set the intensity of the snowto be a onstant, namely the intensity Iamb of the ambient light in the sene. Thereason for setting the intensity of snow to a onstant is that snow is white (reetanenear one). The value of Iamb is not known. So we take it to be a high grey level value,say 250. The reason for hoosing suh a value is that we would like it to be less than



Chapter 3: Rendering Falling Snow 25the intensity of light soure (whih saturate the pixels at grey level 255). But wewould also like the snow to appear white, so we take it to be high value.To omposite with a bakground image, we use the formula:I(x; y; t) = Iamb �(x; y; t) + (1� �(x; y; t)) Ibg(x; y) (3.6)This is a variation of standard ompositing where the foreground intensity is onstantand the opaity varies with time. The bakground image ould itself be a video, butin our example, we only use the still image.A speial feature of this ompositing method is that the snow motion will beomevery weak or even vanish when the bakground image region has high intensity, orsay has white olor. Beause in this ase, we an assume that Ibg(x; y) = Iamb, thenthis results that I(x; y; t) has the same value within the white image regions over allthe image frames, i.e.I(x; y; t) = I(x + vxdt; y + vydt; t+ dt)thus no falling snow motion being deteted.A fat from nature is that the snow overed surfae is white. Another fat fromthe natural motion is that falling snowakes would stop falling when they hit thesnow overed surfae. These two natural fats demand the similar visual e�et fromour rendered falling snow motion. And here, by fooling eyes through the intensitytrik, our ompositing method o�ers this side bene�t with easy.



Chapter 3: Rendering Falling Snow 263.4 Tiling XYTThe opaity funtions �(x; y; t) that we ompute are periodi (see Se.2.2.3) in allthree variables XYT. The reason for the periodiity is that eah of the frequeny om-ponents is hosen independently. A traveling sine wave of any frequeny (!x; !y; !t)is periodi in XYT, so is the sum of suh waves.The periodiity property is onvenient beause it means we an tile XYT withthe funtion �(x; y; t) to obtain videos that are larger (in spae) and longer (in time).For example, our omputed �(x; y; t) funtions are only T = 64 frames long. But ifyou loop the video, then the videos an be extended to in�nite length. Notie thatlooping the video does not reate a jumpping disontinuity.We an also tile in spae. The snow in video sydney (see Se. 3.5) uses sixteen(4 � 4) falling snow tiles, eah one of size N = 128 and T = 64. The sydney imageitself is 512 � 512, whih is shown in Figure (3.3). The tiles are not apparent at thissize. One frame of the tiled snowing video sydney is shown in Figure (3.4). The tilinge�et does not appear on the stati image either.When very small tiles are used (say N = 64), the tiles do beome visible and theperiodiity beomes visible as well. We present the video example sydneysmalltilingto show this e�et. One frame of the image example is in Figure 3.5. As we an seethe snow appears more like a periodi pattern than natural falling snow.



Chapter 3: Rendering Falling Snow 27

Figure 3.3: The sydney bakground image. Size is 512 � 512.3.5 ResultsWe submit three groups of MPEG videos to demonstrate the falling snow renderingresults. Eah group is the rendered snowing sene along with its opaity funtion.These videos use lossless ompression (MPEG quality = 90%).I: The video snow shows the opaity funtion �(x; y; t) itself. The videohouse uses a bakground image [10℄ of a sene in whih there is snow on



Chapter 3: Rendering Falling Snow 28the ground but no snow falling (see Fig. 3.1). The video shows fallingsnow omposited over this sene.II: The video sydney shows a itysape of Sydney on a sunny day. We haveomposited snow over this sene to show what the ity might look like ona snowy day. For sydney, we used the falling snow tiling method (see Se.3.4). The video tile128 shows the opaity funtion with size 128 � 128.III: The video sydneytilesmall shows a failure example of the tiling methodwhen the tile size is too small, as 64�64. The video tile64 shows the smalltile of the opaity funtion with size 64 � 64.Notie that the snowfall diretion of house is di�erent from the snowfall diretion ofsydney. Indeed, the motion diretion of the falling snow is a free variable (see Se.2.3.1 ), and these two examples are used to demonstrate this property.
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(a)

(b)Figure 3.4: One frame of the video example sydney to demonstrate the seamless tilingmethod. (a) One frame of the rendered falling snow, whih is with size 128 � 128. (b)The omposited snowing sene sydney, in whih the foreground snow sene uses therendered snow in (a) and tiled sixteen (4 � 4) times.
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(a)

(b)Figure 3.5: The failure example of applying tiling method. When the size of the tileis too small to render natural sene, it appears as periodi patterns on the ompositedsene images. (a) One frame of a rendered snowfall tile, with size 64 � 64. (b) Theomposited snowfall sene, in whih the foreground snow uses 8 � 8 tiles.



Chapter 4
Falling Snow Seen by a PanningCamera

The method we presented in Chapter 3 renders parallel falling snow. Althoughthe motion diretion of the falling snow is a free variable, one it is hosen, the imagemotion will be along the hosen diretion only. When the falling snow is seen bya rotating amera, its motion diretion will beome the sum of the snowfall motionand the panning amera motion. Sine we render the falling snow image veloityaording to its depth, and the amera motion assoiates with only one image motionveloity, the sum of these two will produe a range of veloities, in whih both theimage motion speed and diretion vary aording to its depth.
31



Chapter 4: Falling Snow Seen by a Panning Camera 324.1 The Sheared TentLet's reall Eq: (2.16), whih expresses the image motion as the sum of a set ofparallel image motion (s; 0) and a panning amera rotation (sv; sl). This set of motionplanes is re-expressed as: !t + sv!v + sl!l = �s !v (4.1)In Chapter 3, we developed our tent model, in whih Eq. (3.3) de�nes a set ofparallel image veloities whih takes into aount the falling snow motion properties.More spei�ally, it speify the set of veloities sv of the parallel optial snow asC=q!2l + !2v . If we substitute C=q!2l + !2v for s in Eq. (4.1), we obtain the equationwhih expresses the falling snow motion seen by a panning amera with veloity(sl; sv). !t + sv !v + sl !l = C !vq!2v + !2l (4.2)We wish to simplify the amera panning motion and only onsider the ase thatthe amera is panning in perpendiular to the snow falling. Therefore, the amerapanning veloity beomes (sl; 0), and Eq. (4.2) beomes:!t = C !vq!2v + !2l � sl !l (4.3)Geometrially, Eq. (4.3) expresses a tent-like surfae added to a plane. A plotof Eq. (4.3) with onstant C = 1 and sl = 0:3 is shown in Figure 4.1. Given thatthe shape of the plotted surfae looks like the tent surfae is sheared up, we namethis rendering model as sheared tent model. Synthesizing the sheared tent surfae and
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Figure 4.1: The plot of Eq. (4.3), with onstant C = 1 and s!t = 0:3ompositing with the snowing sene follow exatly the same as in Se. 3.2 and Se.3.3.There are two oeÆients in Eq. (4.3). The onstant C relates to the fallingsnow motion speed, and sl relates to the amera panning speed. Theoretially, theamera an pan with in�nitely high speed. However, given that the onstant C islimited to [0; �℄ and (!l; !v) are limited to [��; �℄, the high amera panning speedwill result in sl � C, thus result in sl !l � C !v=q(!2v + !2l ). If we refer bakto Eq. (4.3), we an see that this will lead to !t � sl � !l. This is equivalent insaying that the snowfall motion will be diminished and the image motion will appearto be translational only. To avoid this e�et, we need to keep these two oeÆientsompatible. Sine !v=q!2v + !2l � 1 and !l � �, we wish sl=� � C to ensure theompatibility of these two oeÆients. One side e�et of the onstraint sl=� � C isthat it limits the amera panning speed. This might be onsidered as the limitationof the shearing tent method.



Chapter 4: Falling Snow Seen by a Panning Camera 344.2 ResultsWe present three video examples to demonstrate the rendering results of oursheared tent model. All the videos use lossless ompression (MPEG quality = 90 %).The video panningsnow is the falling snow opaity funtion whih is rendered fromthe sheared tent model. It demonstrates the snowfall motion when it is seen by thepanning amera. The video panningsnowsene is the panningsnow omposited withthe snowing sene house [10℄. The panning motion of the sene house [10℄ is made byone pixel per frame. However, from the video panningsnowsene we an pereive thatthe panning motion of the bakground sene is faster than the panningsnow's. This isbeause the panningsnowmotion speed is less than one pixel per frame, for the reasonof ompatibility. A better result an be ahieved by ompositing the falling snow witha video whose shooting amera has roughly equal veloity as the panningsnow's.We also present the video panningbgstill, whih omposites the video panningsnowwith the still bakground image house [10℄. The panning motion of the falling snowis more pereivable in this video, we therefore present it as a omparative example.To this end, we presented our falling snow rendering tehnique, whih inludesintroduing the literature bakground, in Chapter 2, mathematially formulating andpratially implementing the rendering tehnique, in Chapter 3, and extending thefalling snow rendering as it is seen by a panning amera, in Chapter 4. Moreover, dur-ing the development of our rendering tehnique, we looked up and inspired by somepsyhophysial theories. After we developed our falling snow rendering method, we�nd that our rendered motion parallax ould be used as a stimulus to help psyhophys-ial study. In the following two hapters, we will present the literature bakground of



Chapter 4: Falling Snow Seen by a Panning Camera 35the psyhophysial theories and show that how our rendered motion parallax ouldbe used for psyhophysial study.



Chapter 5
Pereptual Transpareny TheoryReview

During studying the rendering experiments of the falling snow motion parallax,we frequently observe snowakes passing through eah other with pereivable depth.In order to make more ompelling rendering e�ets, we wish the motion parallax withontinuously many depth and wish the pereived motion as vivid as the real fallingsnowakes. These rendering objetives motivate us to have a deep investigation ofthe transpareny theory in human visual pereption. Along with arrying on thoseinteresting experiments, a nie side-e�et we had is that the rendered motion parallaxould be a new moving stimulus to study pereptual transpareny. We will review thepereptual transpareny literature in this hapter. In Chapter 6, we will introdueour preliminary transpareny study experiments and disuss the results.
36



Chapter 5: Pereptual Transpareny Theory Review 375.1 Metelli's TheorySine Helmholtz(1866) spoke of seeing one olor through another, Ko�ka(1935)related this problem to pereptual transpareny, and later on many other researherstried to answer when to sission 1, i.e. when the visual system initiates the pereptsof transpareny, and how to sission, i.e. how the visual system assign transmittaneand reetane values to the pereived layers, pereptual transpareny theory hasbeen rihly studied. Among them, the most historial one is Metelli's \episotistermodel" [19℄.
(a) (b)Figure 5.1: Metelli's episotister model. (a) a dis with reetane t, and an opensetor of relative area �, is rotated rapidly in front of a bipartite bakground. (b)when the dis is rotated fast enough, a transparent layer is pereived overlying thebipartite bakground.Metelli built up the \episotister model" (see Figure 5.1) and derived the Metelli'sequations to answer how to sission. Also, he addressed the geometri and photometrionditions to approah when to sission. As showing in Figure 5.1, when a dis withreetane t and an open setor of relative area �, is rotated fast enough in front ofa bipartite bakground image, it will lead to pereive a transparent surfae overlying1Here we refer sission as visual system pereiving multiple transpareny layers from single imageintensity.



Chapter 5: Pereptual Transpareny Theory Review 38the bipartite bakground. From Talbot's law, whih gives the mixing olor in theregion of the episotister rotating over the bakground, Metelli derived the t and �as following, � = p� qa� b (5.1)t = aq � bpa + q � b� p (5.2)Eq. (5.1) and (5.2) are alled Metelli's equations, sine their signi�ant inuene onthe pereptual transpareny study.Given the onstraint that � 2 [0; 1℄, and from Eq. (5.1), Metelli observed the geo-metri ondition of sission, i.e. the magnitude onstraint and the polarity onstraint.The former requires jp � qj � ja � bj and the latter says that (p � q) has the samesign as (a� b). Besides, Metelli also observed two kinds of photometri onstraints,i.e. the ontour ontinuity of the underlying surfae and the boundary ontinuity ofthe pereived transparent layer.Albeit these insightful onstraints Metelli made from Eq. (5.1), he laimed thatEq. (5.2) is too ompliated to make a simple predition. Indeed, there is a disrep-any between the predition of the Metelli's model and the pereived transpareny.Metelli's model predits that when (p � q) and (a � b) meet both the magnitudeonstraint and the polarity onstraint, a onsistent transmittane value � is supposedto be derived from Eq. (5.1). However, even Metelli himself puzzled [19℄ that when\all other onditions being equal, the darker the transparent layer, the greater itspereived transpareny". This disrepany later on was solved by Singh and Ander-son [32℄. They showed that it is the variable - the Mihelson ontrast, whih anbe interpreted from Eq. (5.2), ated as a more adequate onstraint to predit the



Chapter 5: Pereptual Transpareny Theory Review 39transmittane value �.5.2 Mihelson Contrast

Figure 5.2: Singh and Anderson's transmittane mathing experiments.As showing in Figure 5.2, Singh and Anderson did the transmittane mathingexperiments to study how to sission. In their experiments, they plae a smaller diskinside a large disk. The target entral disk has the same mean luminane value asits sinusoidal bakground, and is assigned a �xed luminane range. The mathingentral disk is assigned a mean luminane value only, whih is probably di�erentfrom the target's. By adjusting the luminane range of the mathing entral disk, itstransmittane value will hange aordingly. During the experiments, the observer isinstruted to �nd the transmittane value whih mathes the target's. Moreover, all



Chapter 5: Pereptual Transpareny Theory Review 40these entral disks are plaed on the 2D sinusoidal bakground, whih is more gen-eral than the bipartite bakground as used in the Metelli's model. By examining theobtained data of mathing entral disk and the target disk, Singh and Anderson �ndthat both the luminane range and the mean luminane a�et the pereived trans-mittane value. More preisely, it is the Mihelson ontrast, whih is the luminanerange divided by twie of the mean luminane, a�ets the pereived transmittane.If let M represents the Mihelson ontrast, let Lrange represents the luminanerange and let Lmean represents the mean luminane, then the Mihelson ontrast isde�ned as: M = Lrange2 � Lmean (5.3)Therefore, instead of deriving the pereived transmittane value � by usingMetelli'sequations { Eq. (5.1), whih only onsidered the luminane range, Singh and Ander-son re-de�ned the pereived transmittane as:� = MenterMsurround (5.4)Indeed, Eq. (5.4) an be derived from Eq. (5.2) ([32℄ : 504), whih Metelli laimed astoo ompliated to make a simple predition. Consequently, by applying Eq. (5.4),Metelli's puzzle { that a blak episotister looks more transparent than a white one {has an answer: the darker episotister has higher Mihelson ontrast, so, it has highertransmittane value.Besides addressing the Mihelson ontrast as the answer of how to sission, Singhand Anderson also applied it to the study of when to sission. As the magnitudeonstraint of the Metelli's model requires the entral luminane range to be less than



Chapter 5: Pereptual Transpareny Theory Review 41the surround to initiate the pereptual transpareny, Singh and Anderson give aounter-example as showing in Figure 5.3. In Figure 5.3, as the entral luminane

Figure 5.3: Example that the entral luminane range is larger than the surround.The surround region is pereived to be transparent, and the entral region is pereivedas a bakground being seen through a hole of the transparent layer.range is larger than the surround, the surround region is pereived to be transparent,and the entral region is pereived as a bakground being seen through a hole of thetransparent layer. Moreover, when keeping the luminane range of both the entraland the surround regions unhanged but varying the mean luminane, the pereivedtranspareny will hange from pereivable to obsure. Indeed, from the experimentaldata results, Singh and Anderson show that it is the Mihelson ontrast ated asthe ritial variable to initiate the sission, not the luminane range. Furthermore,by plaing the low ontrast regions over the textured bakground, as show in Figure5.4, Singh and Anderson extend the photometri ondition of the Metelli's model.They �nd that, over the ontrast varying regions, the ontinuity of the textures, forexample, the left part of Figure 5.4, is the suÆient ondition to initiate the sission.From these new geometri and photometri observations, Singh and Anderson suggestthat \visual system uses hanges in Mihelson ontrast over aligned ontours and



Chapter 5: Pereptual Transpareny Theory Review 42groupable textures as a ritial image property to initiate perepts of transpareny"([32℄:515).

Figure 5.4: Texture bakground with two low ontrast regions. The left low ontrastregion has the onsistent texture with the bakground. The right one does not. Thepereptual transpareny an be pereived from the left low ontrast region, but notthe right one. Note that in the printed hard opy, this �gure is not pereived as goodas the one in the soft opy, beause of the PS/PDF dithering problem. However wean at least pereive that the texture in the right low ontrast region has orientationand density inonsistany, whih prevents initiating the perepts of transpareny.
5.3 Coherent vs. Non-oherent MotionBeyond the adequate pereptual transpareny study of the stati images, otherresearh groups broaden this study to the moving images [34, 35, 36, 37, 11, 2, 21℄.Stoner and Albright is one among them. They extended the stimuli of line gratingswhih are used by Movshon et. al [21℄ to the square-wave gratings and addressedthe multipliative luminane ondition under whih the motion of eah single movingobjet an be pereived when there are multiple moving objets in an image. As inFigure 5.5, the model of their experiment is two square wave gratings, eah with thesame size, the same transmittane value, and the same bakground, but move up-left



Chapter 5: Pereptual Transpareny Theory Review 43and up-right aordingly. These two gratings are then superimposed one on top ofanother. If Tsw represents the transmittane value of the square wave, and let To
(a) (b)Figure 5.5: Stoner and Albright's square wave gratings. (a) and (b) are with samesize, same transmittane value and the same bakground, but move up-left and up-right aordingly.represents the transmittane value of the overlap region. By adjusting To, Stoner andAlbright �nd that when Tsw � Tsw � To � Tsw, the image motion is pereived as thetwo square waves moving in their own motion diretions, i.e. non-oherent motion.Otherwise, the image motion is pereived as the two square waves moving togetherin a ommon diretion, i.e. the oherent motion. Stoner and Albright therefore namethe ondition Tsw �Tsw � To � Tsw as the multipliation ondition and onlude thatin order to pereive non-oherent motion, the image luminane ondition has to obeythe multipliation rule.Following along with the previous three Setions, we had an overview to thepereptual transpareny theory. In the next Chapter, we will see how these theoriesould apply on our motion parallax image sequenes, and how our motion parallaximage sequene ould extend these theories.



Chapter 6
Pereptual Transpareny StudyUsing Motion parallax

In Chapter 3, we rendered falling snow motion by using the tent model. The for-mulation was based on the motion parallax of the falling snowakes, i.e. the size andthe motion speed of the snowakes orrelate to the depth, and we refer the depth asin�nitely many layers. The rendered results appear remarkably similar to the fallingsnow and with ontinuously many layers. We would like to take advantage of therendered motion parallax and apply it to the pereptual transpareny study. We ar-ried on several informal experiments and had a preliminary study of the onditionsof initiating the perepts of transpareny when using the motion parallax as stimu-lus. These experiments are not arefully designed proedural work, but they an beonsidered as the initial explorations for the future psyhophysis study. Also, weompared the pereived results with those pereived from the stati images. We alsoask how appliable are the previous transpareny theories to our rendered motion44



Chapter 6: Pereptual Transpareny Study Using Motion parallax 45parallax.6.1 When to Sission: Conditions for Motion Par-allaxIn the review of the transpareny study in Chapter 5, we learned of Metelli'smodel, as well Metelli's puzzle. We saw that this puzzle later on was well solvedby Singh and Anderson, who disovered that the Mihelson ontrast is the atualvariable used by the visual system to initiate sission. Besides, they also extendedboth of the geometri and the photometri onditions in Metelli's model, and madethe onditions of when to sission more general as the following:I: There is hange in Mihelson ontrast over the aligned ontours.II: The texture display over the regions where Mihelson ontrast hangesshould be groupable.However, the stimuli Singh and Anderson used are only stati images. It is quite oftenthat the visual system onfront moving images and perform image deomposition onthem. We therefore question when the visual system initiates pereptual transparenywith the moving images. We investigate this problem by ompositing the motionparallax whih is rendered in Chapter 3 over the bakground images whih are withgeometri patterns.
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(a) (b) ()Figure 6.1: The bakground images used to omposite with the motion parallax toinvestigate the sission onditions of the moving images. (a) hekboard (b) moon() dis. The original image size is 512 � 512.6.1.1 Compositing MethodWe render the motion parallax by using the tent model and synthesize the datain the same way as we synthesize the falling snow. After taking the inverse Fouriertransform, we sale the data funtion within gray level intensity [0; 255℄. The ob-tained image sequene is the motion parallax, whih we used to study the pereptualtranspareny. We treat the motion parallax as the foreground image Ifg(x; y; t) andomposite it with the bakground image Ibg(x; y). Sine the purpose of this experi-ment is to study the onditions of initiating pereptual transpareny when the mediais the motion parallax, we design the bakground images as shown in Figure (6.1).We wish the Mihelson ontrast of the omposited image sequenes hanging overthe geometri patterns. To ahieve this purpose, we lower the Mihelson ontrastof the motion parallax in the white bakground regions and leave those in the blakbakground regions unhanged. The ompositing method is:I(x; y; t) = 8>><>>: 255 � :7 + 0:3Ifg(x; y; t); Ibg(x; y) = 1Ifg(x; y; t) Ibg(x; y) = 0 (6.1)Based on this ompositing method, we an ompute the Mihelson ontrast of



Chapter 6: Pereptual Transpareny Study Using Motion parallax 47both the blak and white bakground regions. The motion parallax is obtained fromthe inverse Fourier transform. It is the sum of the sine waves, therefore, its mean valueis 0. After we resale the data funtion, the luminane range is saled as [0; 255℄, andthe mean is saled as 128. Let's reall Eq. (5.3), Mihelson ontrast is the luminanerange divided by twie of the mean luminane. Sine the ompositing method leavesmotion parallax in the blak bakground regions unhanged, the Mihelson ontrastof these regions will be the Mihelson ontrast of the motion parallax itself, it is 1.From Eq. (6.1), and given that the image luminane di�erene is 255 � 0:3 and theimage mean luminane is (255 + 255 � 0:7)=2, the Mihelson ontrast of the whitebakground regions an be easily omputed as 0:176.6.1.2 Result and DisussionAfter ompositing, the motion parallax hanges the Mihelson ontrast along thegeometri �gural ontour. The ompositing results are shown in videos hekboard,moon and dis. The motion parallax itself is shown in the video parallax. One frameof eah video is shown in Figure 6.2.The stati images in Figure 6.2 (b), () and (d) all meet the sission onditionsonluded by Singh and Anderson. Therefore, it is not surprising that a transparentlayer an be pereived from all of them. Indeed, the pereption we got is that thegeometri bakground images are split into two layers along the �gural ontours. Thewhite regions are pereived overlaying the motion parallax patterns as a light trans-parent layer, and the blak regions are pereived laying behind the motion parallaxpatterns as a blak bakground layer. The motion parallax pattern itself is pereived
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(a) (b)

() (d)Figure 6.2: (a) One frame of the rendered motion parallax. (b), () and (d) Oneframe of the motion parallax omposited with the bakground image hekboard,moon and dis respetively. In (b), () and (d), the low ontrast regions are pereivedas transparent layers overlaying on the motion parallax patterns.



Chapter 6: Pereptual Transpareny Study Using Motion parallax 49with ontinuous 3D depth (see Figure 6.2 (a)). This fat ould inrease the pereiveddistane between the pereived transparent layer and the bakground layer and mightause the e�et of sission stronger.The last statement an be pereived more learly by observing the moving images.In the moving images, not only the struture, but also the moving speed of the motionparallax gives depth ue. Sine the ontinuous depth is evidently pereivable, whenpereiving the transparent layers overlaying on the motion parallax, these transparentlayers will inherit the depth ues of the motion parallax, thus are pereived as muhloser than the blak bakground layer.Stone and Thompson investigated the e�ets of image ontrast on image speedpereption [34℄. Using grating stimuli, they observed that the low-ontrast gratingsare pereived moving slower than the high-ontrast ones. This pereption e�et isalso shown on the motion parallax stimulus. From the video hekboard, moon anddis, we ould pereive that the image motion speed in the low ontrast regions isslower than those in the high ontrast regions. However, this image speed di�erenedoes not show signi�ant impat on pereiving transpareny for our examples. Thereould be two issues to this fat. One is that the di�erene is too small to a�et theoverall image motion onsisteny. Another one is that the motion speed onsistenyis not the dominant e�et to a�et the pereptual transpareny.To larify our doubts, we did a motion-inonsisteny experiment. This experi-ment is quite similar to the experiment moon, exept that the motion diretion ofthe motion parallax in the entral dis part has 90 deg angular di�erene from themotion diretion in the surround part. The experimental result is shown in the video



Chapter 6: Pereptual Transpareny Study Using Motion parallax 50motion inonsistent, and one frame of the video is shown in Figure 6.3.In Figure 6.3, a transparent layer an be pereived overlaying entral low ontrastregion. This is plausible beause the pattern strutures of these two motion parallaxesare very similar, and the motion diretion di�erene does not show on the still imageof ourse. However, from the video motion inonsistent, the entral transparent layerould be pereived as well, even though the motion parallaxes in the entral andsurround regions move in two very di�erent diretions. This e�et might suggest thatthe motion veloity onsisteny over the Mihelson ontrast hanging regions is nota ritial ondition of pereiving transpareny.This is quite di�erent from the photometri ondition of the stati images. Instati images, the groupable texture over the Mihelson ontrast hanging regions isa ritial sission ondition, reall Figure 5.4. However, in moving images, we areable to perform image sission from the ungroupable motion.To this end, we hypothesize that the sission onditions { the hange of the Mihel-son ontrast is over aligned ontours and over groupable texture { are appliable tothe motion parallax stimulus as well. However, the groupable veloities of the mo-tion parallaxes over the aligned ontours where the Mihelson ontrast hanges mightnot be neessary. In addition, the sission layers ould inherit the depth ues of themotion parallax, thus might promote the sission pereption.Nevertheless, our hypotheses are only based on the limited experiments. Furtherdetailed and extensive studies are ertainly neessary in order to have a general andomprehensive suggestion to this topi.



Chapter 6: Pereptual Transpareny Study Using Motion parallax 51

Figure 6.3: One frame of the video motion inonsistent. The motion parallax in theentral low ontrast region moves down-left, whereas the one in the surround highontrast region moves down-right. Sine the pattern strutures of these two parallaxesare very similar, the motion diretion di�erene does not show on this stati image.Therefore, we are still able to pereive a transparent layer overlaying entral lowontrast region.



Chapter 6: Pereptual Transpareny Study Using Motion parallax 526.2 Image Motion Analysis: Using Motion Paral-lax as StimulusAs we reviewed in Se. 5.3, Stoner and Albright used gratings as stimuli andobserved that the visual system omputes the multipliative transpareny to deidethe ohereny of the motion. However the stimuli they used are quite strit, whihare two superimposed gratings with the same transmittane value and moving alongthe �xed diretions. These stimuli were generalized later on by other researhers interms of varying the motion diretion and the ontrast of the gratings. Along withthe generalization, the researh results also beame more broad and aurate [37, 35,36, 11, 2, 21℄. For example, Kim and Wilson [11℄ varied the relative motion diretionsof the two gratings and suggested that it is the motion diretions of the gratingsthat mainly a�ets the ohereny of the observed motion. Stoner and Albright [36℄themselves later on varied the relative ontrast of the gratings and observed thatthe luminane ontrast di�erene of the two superimposed gratings ould a�et themotion ohereny by ating as a depth-from-olusion ue. More spei�ally, whentwo superimposed gratings are put on the same blak bakground, the higher ontrastgrating tends to be pereived in front of the low ontrast grating and ats as anoluding grating, whereas the luminane value of the overlap regions of these twogratings is not ritial anymore.From the previous examples, we ould notie that the stimuli used in those re-searh are mainly limited on gratings. When the real natural senes are muh moreompliated than two superimposed gratings and there exists more than one ue,



Chapter 6: Pereptual Transpareny Study Using Motion parallax 53we question whether the grating stimuli are good enough for image motion study.Intuitively, we would like the stimuli to be more similar to nature.In this sense, the motion parallax we rendered ould suggest a new perspetive forthe image motion study. Sine we render the motion parallax in the Fourier domain,it is the sum of sine waves, it therefore appears muh more ompliated than thegratings. Moreover, the primary goal of rendering this stimulus is to simulate thefalling snow and the formulation of this stimulus is based on falling snow motion, wetherefore naturally aquire a stimulus whih is very similar to the nature.Staring at the motion parallax, we ould observe that the image objets are passingthrough eah other and the motion inohereny is obviously existing. What ues areating here? We ould suggest the luminane ontrast di�erene as one ue. Fromthe motion parallax, we ould observe that the image patterns with higher luminaneontrast are in front of those with lower luminane ontrast. We ould interpret ourobservation as higher ontrast image patterns ating as the oluding objets andtherefore being observed as in front, whereas the lower ontrast image patterns areating as the oluded objets and therefore being observed as behind. We mightalso try to apply the luminane multipliative ondition [37℄. However, a diÆultyhere is that how do we exatly loate the overlapping regions among the objets ofthe motion parallax and address the luminane value?This disussion leads us to a number of open questions. When the previous re-searh results are based on exatly two gratings and are with exatly two layers, weask if we still an use those theories to give an adequate image motion analysis to ourrendered motion parallax? For example, when multiple layers exist in the motion par-



Chapter 6: Pereptual Transpareny Study Using Motion parallax 54allax, an we apply the multipliative rule to the luminane values of the overlappingregions of the multiple layers? When the luminane ontrast di�erenes exist amongmore than two objets of the motion parallax, do we interpret the depth order of theobjets aording to the luminane ontrast monotonially? When the transparenyand the depth-from-oluding ues are both existing in the motion parallax and evensomewhat oniting with eah other, how does our visual system interpret them?From these questions and unertainties, we an see the motivation and neessity ofusing motion parallax as stimulus to study image motion. Although arefully designedexperiments have not been arried out in this thesis, beause the enormous work loadand hallenging questionnaire ould be another researh topi. However, we ouldpredit that motion parallax ould be a promising stimulus for future researh.



Chapter 7
Summary

This thesis presents an image based falling snow rendering method. It is based onthe spetral synthesis tehnique, and is arried on in frequeny domain. Synthesizingthe power spetrum is based on the tent model, whih is developed in this thesis, andis also the major ontribution of this thesis. The inspiration of developing the tentmodel omes from the motion plane model. It is saying that a pure translational imagemotion in the spae-time domain produes a plane of energy in frequeny domain.This motion plane omprises two important properties, they are, the ommon lineof the motion plane (see Eq. (2.9)) relating to the motion diretion and the slopeof the motion plane relating to the motion speed. Assoiating these two propertieswith the natural falling snow motion property, i.e. the size and the speed of fallingsnowakes relate to the depth, we develop a tent like surfae, and name it as tentmodel. The power spetrum we synthesized in frequeny domain is exatly along thistent model. We also apply 1=f saling law and limiting the range of spatial frequenyto the synthesized power spetrum to make the snowakes equally visible at all the55



Chapter 7: Summary 56depth and give them reasonable size. Afterwords, we bring the data funtion of thepower spetrum to spae-time domain by omputing IFFT. We then treat the datafuntion as the opaity funtion and omposite a white unitary snow image, whih iswith intensity 250, with a bakground sene image or video to reate the falling snowsene.We also extend our falling snow rendering to the ase when the motion is seenby a panning amera. Using the property of the sheared ommon line in the optialsnow model, we shear up the tent surfae to inorporate the panning amera motion.A speial feature of this method is that it allows us to render the amera motion withnon-integer pixels per frame without aliasing, sine the rendering work is arried onin frequeny domain. However, given the limitation of the shape of the tent surfae,the inorporated amera panning speed is indeed always limited as less than onepixel per frame. This auses an inonsisteny between the amera motion and thebakground image motion, beause in spae-time domain, the image motion is alwaysinteger pixels per frame. As a result, this speial feature turns our sheared tent modelto be not very useful.The rendered falling snow motion sequene omprises the depth vs. the speedvs. the size relationships of the falling snowakes. If treating the rendered motionparallax itself as a motion stimulus, it would inlude more motion ues than theonventional grating stimulus. Also, sine we onsidered the natural image amplitudespetra distribution property and the sizes of the image objets, the rendered motionparallax per se is more similar to the natural sene than the moving gratings. Wetherefore suggest that our rendered falling snow motion parallax ould be a novel



Chapter 7: Summary 57stimulus for the pereptual transpareny study and image motion analysis.
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