The NP-completeness of Subset Sum

Pilu Crescenzi and Viggo Kann

University of Florence and KTH

October 2011
Basic definitions

- **Class NP**
 - Set of decision problems that admit “short” and efficiently verifiable solutions
 - Formally, \(L \in \text{NP} \) if and only if there exist
 - polynomial \(p \)
 - polynomial-time machine \(V \)
 - such that, for any \(x \),
 \[
 x \in L \iff \exists y (|y| \leq p(|x|) \land V(x, y) = 1)
 \]

- **Polynomial-time reducibility**
 - \(L_1 \leq L_2 \) if there exists polynomial-time computable function \(f \) such that, for any \(x \),
 \[
 x \in L_1 \iff f(x) \in L_2
 \]

- **NP-complete problem**
 - \(L \in \text{NP} \) is NP-complete if any language in NP is polynomial-time reducible to \(L \)
 - Hardest problem in NP
Basic results

- Cook-Levin theorem
 - Sat problem
 - Given a boolean formula in conjunctive normal form (disjunction of conjunctions), is the formula satisfiable?
 - Sat is NP-complete

- 3-Sat
 - Each clause contains exactly three literals
 - 3-Sat is NP-complete

- Simple proof by local substitution
 - \(l_1 \Rightarrow (l_1 \lor y \lor z) \land (l_1 \lor y \lor \overline{z}) \land (l_1 \lor \overline{y} \lor z) \land (l_1 \lor \overline{y} \lor \overline{z}) \)
 - \(l_1 \lor l_2 \Rightarrow (l_1 \lor l_2 \lor y) \land (l_1 \lor l_2 \lor \overline{y}) \)
 - \(l_1 \lor l_2 \lor l_3 \Rightarrow l_1 \lor l_2 \lor l_3 \)
 - \(l_1 \lor l_2 \lor \cdots \lor l_k \Rightarrow \)

 \[(l_1 \lor l_2 \lor y_1) \land (\overline{y_1} \lor l_3 \lor y_2) \land (\overline{y_2} \lor l_4 \lor y_3) \land \cdots \land (\overline{y_{k-3}} \lor l_{k-1} \lor l_k)\]
Problem definition: Subset Sum

Given a (multi)set A of integer numbers and an integer number s, does there exist a subset of A such that the sum of its elements is equal to s?

- No polynomial-time algorithm is known
- Is in NP (short and verifiable certificates):
 - If a set is “good”, there exists subset $B \subseteq A$ such that the sum of the elements in B is equal to s
 - Length of B encoding is polynomial in length of A encoding
 - There exists a polynomial-time algorithm that verifies whether B is a set of numbers whose sum is s:
 - Verify that $\sum_{a \in B} a = s$
Reduction of 3-Sat to Subset Sum:

- **n variables** x_i and **m clauses** c_j
- For each variable x_i, construct numbers t_i and f_i of $n + m$ digits:
 - The i-th digit of t_i and f_i is equal to 1
 - For $n + 1 \leq j \leq n + m$, the j-th digit of t_i is equal to 1 if x_i is in clause c_{j-n}
 - For $n + 1 \leq j \leq n + m$, the j-th digit of f_i is equal to 1 if $\overline{x_i}$ is in clause c_{j-n}
 - All other digits of t_i and f_i are 0

Example:

$$(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
For each clause \(c_j \), construct numbers \(x_j \) and \(y_j \) of \(n + m \) digits:
- The \((n + j)\)-th digit of \(x_j \) and \(y_j \) is equal to 1
- All other digits of \(x_i \) and \(y_j \) are 0

Example:

\[
(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)
\]

<table>
<thead>
<tr>
<th>Number</th>
<th>(i)</th>
<th>(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>(x_1)</td>
<td>0 0 0</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>(y_1)</td>
<td>0 0 0</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0 0 0</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>(y_2)</td>
<td>0 0 0</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0 0 0</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>(y_3)</td>
<td>0 0 0</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>(x_4)</td>
<td>0 0 0</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>(y_4)</td>
<td>0 0 0</td>
<td>0 0 0 1</td>
</tr>
</tbody>
</table>

Finally, construct a sum number \(s \) of \(n + m \) digits:
- For \(1 \leq j \leq n \), the \(j \)-th digit of \(s \) is equal to 1
- For \(n + 1 \leq j \leq n + m \), the \(j \)-th digit of \(s \) is equal to 3
Proof of correctness

- Show that Formula satisfiable \implies Subset exists:
 - Take t_i if x_i is true
 - Take f_i if x_i is false
 - Take x_j if number of true literals in c_j is at most 2
 - Take y_j if number of true literals in c_j is 1

Example

- $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$
- All variables true

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th></th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>t_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Show that Subset exists ⇒ Formula satisfiable:

- Assign value true to x_i if t_i is in subset
- Assign value false to x_i if f_i is in subset
- Exactly one number per variable must be in the subset
 - Otherwise one of first n digits of the sum is greater than 1
- Assignment is consistent
- At least one variable number corresponding to a literal in a clause must be in the subset
 - Otherwise one of next m digits of the sum is smaller than 3
- Each clause is satisfied