Inverse Kinodynamics: Editing and Constraining Kinematic Approximations of Dynamic Motion


Cyrus Rahgoshay
McGill University
Amir H. Rabbani
McGill University
Karan Singh
University of Toronto
Paul G. Kry
McGill University
Abstract

We present inverse kinodynamics (IKD), an animator friendly kinematic workflow that both encapsulates short-lived dynamics and allows precise space-time constraints. Kinodynamics (KD), defines the system state at any given time as the result of a kinematic state in the recent past, physically simulated over a short temporal window to the present. KD is a well suited kinematic approximation to animated characters and other dynamic systems with dominant kinematic motion and short-lived dynamics. Given a dynamic system, we first choose an appropriate kinodynamic window size based on accelerations in the kinematic trajectory and the physical properties of the system. We then present an inverse kinodynamics (IKD) algorithm, where a kinodynamic system can precisely attain a set of animator constraints at specified times. Our approach solves the IKD problem iteratively, and is able to handle full pose or end effector constraints at both position and velocity level, as well as multiple constraints in close temporal proximity. Our approach can also be used to solve position and velocity constraints on passive systems attached to kinematically driven bodies. We show IKD to be a compelling approach to the direct kinematic control of character, with secondary dynamics via examples of skeletal dynamics and facial animation.

Graphics Interface 2012.
Best Paper, Graphics.
Paper [PDF, 1.5 MB]
Movie download [WMV, 100 MB]
ACM SIGGRAPH Symposium on Interactive 3D graphics and Games 2012, Poster session.
Best Poster Honourable Mention.
Poster Abstract [PDF, 340 KB]
Poster [PDF, 2.5 MB]