
Exercise Sheet #1 Solutions, Computer Science, 308-251A
M. Hallett, K. Smith 2002

Question 1.1: Prove (n + a)b = Θ(nb).

Binomial Expansion:

(n + a)b =
b∑

k=0

(
b

k

)
aknb−k = nb +

b∑
k=1

(
b

k

)
aknb−k

Show O(nb):
b∑

k=0

(
b

k

)
aknb−k ≤ c1n

b

b∑
k=0

(
b

k

)
aknb−k ≤

b∑
k=0

(
b

k

)
aknb

nb
b∑

k=0

(
b

k

)
kak ≤ c1n

b

For any c1 >
∑b

k=0

(
b
k

)
ak, n0 > 1 and a, b > 0 this holds. So, (n + a)b

= O(nb).

Show Ω(nb):

nb +
b∑

k=1

(
b

k

)
aknb−k ≥ c2n

b

∑b
k=1

(
b
k

)
aknb−k is positive (assume a ≥ 0 even though it wasn’t stated

in question).

For any c2 ≥ 1, n0 > 1 the above statement holds. So, (n+ a)b = Ω(nb).

Kaleigh.

Question 1.2: Prove or Disprove 2n+1 = O(2n).

2n+1 = 2 · 2n+1 ≤ c · 2n

For any c ≥ 2 this holds. So, 2n+1 = O(2n).

1

Question 1.3: Prove or Disprove 22n = O(2n).

22n = 2n · 2n ≤ c · 2n

2n ≤ c

There is no such constant c. Therefore, 2n+1 6= O(2n).

Kaleigh.

Question 1.4: Prove or disprove 2logb n 6= Θ(2loga n).

Let’s prove that 2logb n 6= O(2loga n) (thereby disproving it).
(Page 34 of CLR ed. 1 for logarithm properties. Appendix in CLRS ed.

2)
Suppose 2logb n ≤ c2loga n for positive constant c. Then nloga 2 ≤ c ·

nlogb 2. Take the log2(= lg) of both sides and rearrange. We get

loga 2 ≤ lg c

lg n
+ logb 2

or, more succintly,
(loga 2− logb 2) · lg n ≤ lgc.

If a < b, then loga 2− logb 2 > 0 and no such constant c exists.
Now for the case when a > b (when a = b, it’s clearly true), we repeat

the above algebra but this time we show that nloga 2 ≥ c · nlogb 2. We are
left with

(loga 2− logb 2) · lg n ≥ lgc.

Now loga 2− logb 2 is negative, so there can exist no postive constant c for
which this inequality holds.

Mike.

Question 1.5: Is dlgne! polynomially bounded?

The answer is no. We want to show that Using “splitting of products”,
we can underestimate (lg n)!:

Π(lg n)/2
i=1 1 ·Πlg n

i=lg (n/2)+1(lg n)/2.

This is equal to
((lg n)/2)(lg n)/2.

2

Now taking the lg of both sides, we receive

lg n

2
· lg(

lg n

2
) ≤ lg c · d · lg n.

Now
lg n · lg lg n

2
· lg n

2
− d · lg n ≤ lg c.

Finally,
1
2
· lg n · (lg lg n− (1 + 2d)) ≤ lg c.

But clearly lg lg n−(1+2d) tends to infinity since d is a constant. Therefore,
no c exists.

Kaleigh.

Question 1.6: Is dlglgne! polynomially bounded?

Let n = 22k
.

k! ≤ kk ≤ c · 22kd

klog(k) ≤ log(c) + 2kd

This inequality holds for d ≥ 1. So, dlglgne! is polynomially bounded.

Kaleigh.

Question 1.7: Prove that log(n!) = Θ(n log(n)).

Claim: log(n!) = O(n log(n)).
log(n!) ≤ c · n · log(n). Note that

log(n!) = log(n) + log(n− 1) + . . . + log(2) + log(1)

≤ log(n) + log(n) + . . . + log(n) + log(n) = n · log(n)

Therefore, for c = 1, this holds.

Claim: log(n!) = Ω(n log(n)).
log(n!) ≥ c · n · log(n). Via Stirling’s approximation, we get log(n!) ≥
log((n/e)n) = n · log(n) − n · log(e). Now, we must show the following is
true for a fixed positive constant c:

n · log(n)− n · log(e) ≥ c · n · log(n).

3

Simplifying,
c ≤ 1− log(e)/log(n).

This is undefined for n = 1 (division by zero) and n = 2 (L.H.S. is nega-
tive). If we work with base e logarithms (the base of e is arbitrary), then we
can find a positive constant c < 1 − log(e)/log(3) for which this inequality
is always true for n ≥ n0 = 3. Mike.

Question 1.8: Show
∑n

i=1
1
i = Θ(logn).

Hn =
∑n

i=1
1
i , where Hn is the harmonic series. We know Hn = ln(n) +

O(1). So, ln(n) < Hn < ln(n) + 1.
Show that

∑n
i=1

1
i = O(log(n)).

Hn < ln(n) + 1 ≤ c1 · log(n)

loge(n) + 1 =
log(n)
log(e)

+ 1 ≤ c1 · log(n)

For c1 ≥ log(n)
log(e) , and n0 ≥ e this holds. So

∑n
i=1

1
i isO(log(n)).

Show that
∑n

i=1
1
i = Ω(log(n)).

Hn > ln(n) =
log(n)
log(e)

≥ c2 · log(n)

For c2 ≤ 1
log(e) this holds. So

∑n
i=1

1
i = Ω(log(n)).

Kaleigh.

Question 2: Prove that the ith Fibonacci number satisfies the equality
Fi = (φi − φ̂i)/

√
5.

Basis:

F0 =
1√
5
· ((1 +

√
5

2
)0 − (

1−
√

5
2

)0)

=
1− 1√

5
= 0.

F1 =
1√
5
· ((1 +

√
5

2
)1 − (

1−
√

5
2

)1)

4

=
2
√

5
2
√

5
= 1.

Inductive Hypothesis: Assume Fi = (φi − φ̂i)/
√

5 and Fi−1 = (φi−1 −
φ̂i−1)/

√
5

Inductive Step:

Fi+1 = Fi + Fi−1

=
φi − φ̂i

√
5

+
φi−1 − φ̂i−1

√
5

=
φi + φi−1 − (φ̂i−1 + φ̂i−1)√

5

=
φi−1(φ + 1)− φ̂i−1(φ̂− 1)√

5

Now we are required to prove that φ + 1 = φ2 and that φ̂ + 1 = φ̂2. We
show the first equality only (same idea for second equality).

φ2 =
1 + 2

√
5 + 5

4

=
3 +
√

5
2

=
2 + 1 +

√
5

2

= 1 +
1 +
√

5
2

= 1 + φ

So now we can conclude that

φi−1(φ + 1)− φ̂i−1(φ̂− 1)√
5

=
φi+1 − φ̂i+1

√
5

Mike.

Question 3 (a):

Show that Σn
k=1k

r ≤ c · nr+1.
So

Σn
k=1k

r ≤ Σn
k=1n

r = n · nr = nr+1.

Therefore, for c ≥ 1,
nr+1 ≤ c · nr+1.

5

We can also show that Σn
k=1k

r ≥ c · nr+1. Now, we use “splitting of
sums”.

Σn
k=1k

r ≥ Σn/2
k=10 + Σn

k=n/2+1(n/2)r

This is then equal to

(n/2) · (n/2)r = (n/2)r+1.

Finally,

(n/2)r+1 ≥ c · nr+1

c ≤ 1
2r+1

Question 3 (b):

First we show that Σn
k=1lg

s k ≤ c · n · lgs n, by bounding each term in
the sum by logs n.

n · lgs n ≤ c · n · lgs n

so O(n · logs n).
Next we show that Σn

k=1lg
s k ≥ c · n · lgs n, by “splitting the sum”.

Σ1
k=1lg

s k + Σn/2
k=2lg

s k + Σn
k=n/2+1lg

s k ≥ c · n · lgs n

Set the first term to 0, all n/2−1 “lower terms” to 1 and all n/2 “higher
terms” to lgs n/2. We get

Σ1
k=1lg

s k+Σn/2
k=2lg

s k+Σn
k=n/2+1lg

s k ≥ n/2−1+(n/2)·lgs n/2 ≥ c·n·lgs n.

= (n/2)− 1 + (n/2) · (lgs n− lgs 2) = (n/2) · (lgs n)− 1

Now for c ≤ 1/4 and n0 = 3, it is the case that

1/2 · n · lgs n− 1 ≥ c · n · lgs n.

Consider c = 1/2− 1/4,

6

c · n · lgs n = 1/2 · n · lgs n− 1/4 · n · lgs n

When n ≥ 3, 1/4 · n · lgs n ≥ 1.

This establishes that it is Ω(n · lgs n).
Therefore this sum is Θ(n · lgs n).

Kaleigh.

Question 3 (c):

We begin by showing that

Σn
k=1lg

s k · kr = O(lgs n · nr+1)

We bound each term in the sum by the maximum:

Σn
k=1lg

s k · kr ≤ n · (lgs n · nr)

= nr+1 · lgs n ≤ c · lgs n · nr+1

and this is true for c ≥ 1.
Now we show the Ω bound via “splitting of sums”.

Σn
k=1lg

s k · kr ≥ c · lgs n · nr+1

Σn/2
k=10 + Σn

k=n/2+1lg
s k · kr ≥ c · lgs n · nr+1

0 + (n/2) · lgs(n/2) · (n/2)r ≥ c · lgs n · nr+1

nr+1

2r+1
· lgs(n/2) =

1
2r+1

· nr+1 · lgs (n/2) ≥ c · lgs n · nr+1

1
2r+1

· lgs(n/2) ≥ c · lgs n

lgs (n/2) ≥ 2r+1 · c · lgs n

lgs n− 1 ≥ 2r+1 · c · lgs n

lgs n ≥ 2r+1 · c · lgs n + 1

For what value of k is it true that x ≥ kx + 1 where x = lgs n and
k = 2r+1 · c. The answer is k ≤ 1− 1/x.

7

So let t = 2r+1 · c.

lgs n ≥ t · lgs n + 1
lgs n− 1

lgs n
≥ t

1− 1
lgs n

≥ t

For s > 0, n > 2, let t = 1−1/lgs 3. Therefore, c = (1−1/lgs 3)·(1/2r+1).
Now we have to check the special case of s = 0. (Is anybody still read-

ing?)

Σn
k=1lg

s k · kr ≥ c · lgs n · nr+1

Σn
k=1k

r ≥ c · nr+1

(see proof in part (a))
Now we have to do the “base cases” of n = 1, n = 2.
For n = 1,

lgs 1 · 1r ≥ c · lgs 1 · 1r+1,

0 ≥ c · 0.

For n = 2,

lgs 1 · 1r + lgs 2 · 2r ≥ c · lgs 2 · 2r+1

0 + 1 · 2r ≥ c · 1 · 2r+1

2r ≥ c · 2r+1

2r ≥ 1
2r+1

(1− 1
lgs 3

) · 2r+1

2r ≥ 1− 1/lgs 3

Ok . . . finally, it’s Ω(lgs n · nr+1) and we can all sleep a little better
knowing it.

Mike.

Question 4: Let α be a constant, 0 < α < 1. Solve the following recurrence:

T (n) = T (α · n) + T ((1− α) · n) + n

8

Could use the recursion tree method to visualize what is happening in
the recurrence. Let β = α− 1. The following describes the recurrence tree:

T (n) = T (α · n) + T ((β) · n) + n

= T (α2 · n) + T (α · β · n) + T (β2n) + 2n

. . .

Each level in the recursion tree contains n elements. The tree goes either
to depth log 1

α
n or log 1

β
n, whichever is larger. When α < β log 1

α
n < log 1

β
n.

At each level of the tree, the problem size is n. When α < β, tree has
height log 1

β
n, the problem size is bound by n · log 1

β
n. Otherwise, tree has

height log 1
α
n and the problem size is bound by n · log 1

α
n. It follows that

T (n) = O(nlogn).

Kaleigh.

Question 5: (4-7 from CLR)
Part (a): The first observation is that any decision about whether a chip

is good or bad must be based on what the good chips say. Consider a chip
x that we do not know is good or bad. We ask all chips in the set whether
x is good or bad. If there is a majority (> n/2) good chips in the set and x
is bad, then a majority of the chips will say that x is bad. We may safely
conclude that x is in fact bad. If there is a majority (> n/2) good chips in
the set and x is good, then a majority of the chips will say that x is good.
We may safely conclude that x is in fact good. (There is one special case
here. Suppose that the number of good chips is exactly n/2 + 1 and x is
good. Then n/2 bad chips will say x is bad and n/2 good chips will say x
is good. It is easy to verify that, in case of such a tie, we may safely declare
x to be good.)

Suppose there are n/2 good chips and n/2 bad chips. The good chips do
not lie, so we may conclude that each good chip will say that the all other
n/2− 1 good chips are in fact good and they will say that all n/2 bad chips
are in fact bad. The bad chips on the otherhand conspire to fool Professor
Diogenes as follows: each bad chip says that all other bad chips are good
and all good chips are bad.

Since we have complete symmetry between good and bad and there is
no majority of good chips, Professor Diogenes can not identify any chip as
being either good or bad.

9

Foreword to Part (b): We may assume that a majority of the chips are
good. Consider the following scheme:

Pick a chip x at random from the set.
Ask all other chips whether x is good or bad.
If a majority of the chips say that x is good, then x is in fact

good.
Otherwise, x is in fact bad.

Claim 1 We can classify a single chip as being good or bad in Θ(n) time
by the above algorithm.

Proof. Since we have a majority of good chips, we can be believe the
majority answer we receive from all n− 1 chips.

Claim 2 If chip x is good, we can classify all chips as being good or bad in
Θ(n) time.

Proof. If x is good, we can believe it. Therefore we need only ask x what
it thinks of each of the remaining n− 1 chips. Finished.

If the arbitrarily choosen chip x is bad, we are stuck since we can not
believe x and we still have not located a good chip. This whole problem
really boils down to locating a single good chip.

Part (b): We may assume a majority of good chips. Consider a pair
of chips x and y. We say that this x, y pair is mutually agreeing if x says
that y is good, and y says that x is good. Otherwise, we say that they are
disagreeing. Consider the following algorithm:

1. Let S = {s1, . . . , sn} be our set of chips.
2. If |S| = 2, then return one of the two elements.
3. If |S| = 3, then do all three pairwise comparisons. Since there

must be at least one mutually good pair, choose arbitrarily
either of the elements of this pair.

4. Arbitrarily pair all of the |S| chips (so that we have |S|/2
pairs).

5. (If |S| is odd, arbitrarily choose three elements in S, remove
them from S, and treat this threesome in the same manner
as step 3 above.)

6. For each pair x, y, compare x and y.
7. If x, y are mutually good, then let S′ ← S′ ∪ {x}.
8. Let S ← S′.
9. Go to step 2.

10

The output from this algorithm is one chip, call it x. We claim that x is
good. If so, we can trust x’s opinon of the remaining n− 1 chips so we are
finished. We also claim that the algorithm runs in time Θ(n).

First, we show that x must be a good chip.
Consider our set S of n chips of which a majority are good. Consider

an arbitrary pairing of the chips and our set S′ as in steps 4 and 5 of the
algorithm. Let b be the number of chips in mutually agreeing pairs but where
both members of this pair x and y are bad chips (they lie and say that they
are both good). Let g be the number of of chips in mutually agreeing pairs
but where both members of this pair x and y are good chips (they tell the
truth and both say “good”). Let b′ be the number of bad chips that are in
disagreeing pairs (For a pair x, y, one says the other is “good” and the other
calls the second one “bad”.). Let g′ be the number of good chips that are
in disagreeing pairs (For a pair x, y, one says the other is “good” and the
other calls the second one “bad”.).

Claim 3 The number of mutually agreeing pairs of truly good chips g is
always strictly greater than the number of mutually agreeing pairs of lying
bad chips b/2.

Proof. I will show this by a method called contradiction. For simplicity,
let us assume that n is even (it is easy to show this when n is odd). We
know that

b + g + b′ + g′ = n (1)
g + g′ > n/2; b + b′ < n/2 (2)

b + b′ < g + g′ (3)
b′ ≥ g′. (4)

Statement 4 follows from the fact that no disagreeing pair is comprised
of two good chips. Therefore at least half must be bad chips.

Now suppose that g < b (the number of truly good chips in mutually
agreeing pairs g is strictly less than the number of bad chips in mutually
agreeing pairs b). Now since b′ is also ≥ g′, it must be the case that

b + b′ > g + g′.

This contradicts (3) above. Therefore we may conclude that g ≥ b.
This means that when we are finished lines 6, 7, 8 in the algorithm, our

set S′ has a majority of good chips in it and S has size n/2. We now return

11

to step 2 and repeat until the size of S is either 2 or 3. We have performed
bn/2c comparisons at each stage of the algorithm

Part (c): The recurrence that describes the running time is

T (n) = T (n/2) + n/2.

We show by induction that this is O(n) (it is equally easy to show that
it is Ω(n)).
Basis: n = 2. T (2) = 1 ≤ c · 2
n = 3. T (3) = 3 ≤ c · 3 when c ≥ 1.

Inductive Hypothesis: T (i) ≤ c · i, for all i < n.
Inductive Step:

T (n) = c · (n/2) + n/2 = (n/2)(c + 1) ≤ c · n (5)

This is true when c ≥ 1. Mike.

Question 6:

for p, q where 1 ≤ p < q ≤ k do
x← min{X[p], X[q]}
y ← max{X[p], X[q]}
j ← n + 1; i← 0
while true do

repeat j ← j − 1
until A[j] = x or j < 1
repeat i← i + 1
until A[i] = y or i > n
if i < j then

exchange A[i]↔ A[j]
else break
end do

This requires time k2 · n.

(b): The lower bound for comparison sort is Ω(n log(n)). If k is a function
of n, then as long as k = O(

√
(log n)) our algorithm does not worse than

the lower bound.

(c): The lower bound for comparison does hold. Consider the case where
Xi ∩ Xj = ∅, for all 1 ≤ i, j ≤ n. In such a case, the fact that each ai is

12

restricted to a small set of k values Xi does not help in any way and the
search tree is at least as big as the search tree for standard comparison sort.
Mike.

Question 7: The following answer assumes (correctly) that we can merge√
(n) lists in time Θ(n2/3). We will come back to this question at a later

point in the course. The analysis can be modified accordingly if you assumed
you could do this in Θ(n) time.
Question 7 (a): T (n) = k · T (n/k) + Θ(n).

Question 7 (b): The depth of the tree is logk(n) and the work done at each
level is Θ(n). Therefore, the overall worst case upper bound is O(n · logn).

Question 7 (c): T (n) =
√

n · T (
√

n) + Θ(n2/3)

Question 7 (d):
Question 7 (e): First, we determine the height of the tree. We can write
this as a tower of 1

2 ’s as follows:

n1/21/2...i times ...1/2

= c

Let c be the base condition in the algorithm (the point where we stop
the recursion). In order to simplify the algebra let c = 2. (Regardless, it is
not necessary to stop at c = 1. We could stop at c = 2 or c = 3 and use a
simpler sorting method.)

Simplifying, we get

n1/2i
= c (6)

1/2i · log(n) = 1 when c = 2 and using log base 2 (7)
log(n) = 2i (8)

log log(n) = i (9)

Therefore, the height of the tree is O(log log(n)).
Now we answer how much work is done at each level of the tree. At

height i, 1 ≤ i ≤ c · log log(n), the exponent on n is described by the
following series (you should verify this; it isn’t difficult):

(Σi−1
j=0

2j

2i
) +

2
2i

13

= 1/2i · (Σi−1
j=02

j) +
2
2i

= 1/2i · 2i − 1 + 2/2i

= 2i + 1/2i

Now, the total number of steps is

Σlog log(n)
i=1 n

2i+1

2i

Bounding each term in the sum by its maximum (this was sufficient for
the purposes of this course), we receive n3/2 · log log(n). Mike.

Question 8:

Claim 4 o(g(n)) ∩ ω(g(n)) = ∅.

Proof. Suppose o(g(n)) ∩ ω(g(n)) 6= ∅. Let f(n) be an element of
o(g(n)) ∩ ω(g(n)). From the definition of o(g(n)), for any positive constant
c > 0, there exists n0 s.t. 0 ≤ f(n) < c · g(n) for all n ≥ n0. From the
definition of ω(g(n)), for any positive constant c′ > 0, there exists n′

0 > 0
s.t. 0 ≤ c′ · g(n) < f(n) for all n ≥ n′

0. Therefore, if c = c′,

f(n) < c · g(n) < f(n),

for all n ≥ max{n0, n
′
0}. Clearly, no such f(n) exists. Contradiction.

Mike.

Question 9: If the running time of Φ(n) is O(nd), where d is a constant,
then it is the case that the running time of Φ ≤ c · nd for constant c and all
n ≥ n0. If d is large (how useful is a n105=d algorithm?) or if c is too large
(c = 183, 234, 293, 192, 872, 102). Mike.

Question 10:

(a) Construct B4.

Construction Start:
Start with an array S of 16 integers. We are going to assign each of the
(0 . . . 15) integers to one position in the array. Start with

S = (0, 1, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, 1).

14

Binary view of S,
SB = 00001??????????1.

Note: you can easily get SB from S by setting SB[i] = first bit of binary S.

Construction Step:
Assume array indexed from 1 to 16. Grow S from both ends. Initialize left
and right indexes, l = 6 and r = 15.

Until all of the positions of S have been filled, do the following:

Let a candidate c = dec(SB[l − 3]SB[l − 2]SB[l − 1]0). If c has not
already been assigned a location in S, then set S[l] = c. Otherwise, set
S[l] = c + 1. Increment l.

Check to see if S[r] must be set. S[r] must be set when it has only
one possible value that hasn’t been assigned to S. S[r] can be either
c0 = 0S[r + 1]S[r + 2]S[r + 3] or c1 = 1S[r + 1]S[r + 2]S[r + 3]. When
r + i > 16, cycle around.

Example

S = 0 1 X X X X X X X X X X X X X 8
SB = 0 0 0 0 , 1 X X X , X X X X , X X X 1
S = 0 1 2 X X X X X X X X X X X X 8
SB = 0 0 0 0 , 1 0 X X , X X X X , X X X 1
S = 0 1 2 4 X X X X X X X X X X 12 8
SB = 0 0 0 0 , 1 0 0 X , X X X X , X X 1 1
S = 0 1 2 4 9 X X X X X X X X X 12 8
SB = 0 0 0 0 , 1 0 0 1 , X X X X , X X 1 1
S = 0 1 2 4 9 3 X X X X X X X X 12 8
SB = 0 0 0 0 , 1 0 0 1 , 1 X X X , X X 1 1
S = 0 1 2 4 9 3 6 X X X X X X 14 12 8
SB = 0 0 0 0 , 1 0 0 1 , 1 0 X X , X 1 1 1
S = 0 1 2 4 9 3 6 13 X X X X X 14 12 8
SB = 0 0 0 0 , 1 0 0 1 , 1 0 1 X , X 1 1 1
S = 0 1 2 4 9 3 6 13 10 X X X X 14 12 8
SB = 0 0 0 0 , 1 0 0 1 , 1 0 1 0 , X 1 1 1

15

S = 0 1 2 4 9 3 6 13 10 5 X X X 14 12 8
SB = 0 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 1 1 1
S = 0 1 2 4 9 3 6 13 10 5 11 7 15 14 12 8
SB = 0 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 1 1 1

So, SB = 0000 1001 1010 1111 and S = 0, 1, 2, 4, 9, 3, 6, 13, 10, 5, 11, 7, 15, 14, 12, 8.

(b) Algorithm is described above. The following is a pseudocode imple-
mentation.

integers k, r, l, c, l0, l1 size = 2k

integer array S[0..size− 1]
integer array SB[0..size− 1] = 0
S[0] = 0 S[1] = 1 S[size− 1] = 8
r = 2 l = size− 2
l0 = binShiftRight(S[l + 1])
l1 = l0 + 8
while (r < l)

c = binaryshiftleftofS[r − k]
found=false i=0
while (i < r) and (not found)

if (S[i] = c) found:=true
else i + + fi
end while

i = l + 1
while (i < size) and (not found)

if (S[i] = c) found:=true
else i + + fi
end while

if found then S[r] := c + 1
else S[r] := c + 1 fi
if S[r] = l0 then S[l] := l1

l −−
l0 = binshiftrightofS[l + 1]
l1 = l0 + 8

else if S[r] == l1 S[l] = l0
l −−
l0 = binaryshiftrightofS[l + 1]
l1 = l0 + 8

16

r + + fi
end while

This is less than 22k.

(c) Prove that this construction always leaves a candidate for a position
in S until all 2k positions are filled. Each k − 1 prefix of k-string occurs in
proper S at most twice. Using this approach, if a k − 1 prefix is completed
into one of its two possible k-strings and the second occurance of that k− 1
prefix already exists in S, the second occurance will be completed with the
remaining k-string. We won’t get the case of having a k − 1 prefix that
cannot be completed. Since all 2k−1 prefices can be completed in the length
2k S sequence, it follows that S contains all 2k possible completions.
Kaleigh.

Question 11: Part (a): Any of the k cards are equally likely to be chosen.
Any of the k! possible orderings of e1, . . . , ek is equally likely. However only
one of these orderings will have the property e1 < e2 < . . . < ek. Therefore,
the probability is 1/(k!).

Part (b): Let’s do this for k = 3 to show you the idea. Try it for arbitrary
k later. There are a total of n3 ways to choose 3 elements from the list of n
items (with repetition).

Case 1: There are(
n

3

)
= n(n− 1)(n− 2) = n3 − 3n2 + 2n

ways to choose three distinct elements. Therefore the probability that I
choose three distinct elements is

n3 − 3n2 + 2n

n3

.
Now, calculate the number of ways to choose 2 distinct element.
Case 2: The first possibility is that I choose a first element, then choose

a second element distinct from the first, then choose a third element that is
equal to either the first or second item. There are 2n(n−1) ways to do this.
Therefore the probability that I choose one duplicate and this duplicate is
the third choice is

2n(n− 1)
n3

17

.
Case 3: The second possibility is that I choose a first element, then

choose a second element equal to the first, then choose a third distinct
element. There are n(n− 1) ways to do this and the probability is therefore
n(n− 1)/n3 = (n− 1)/n3.

Case 4: Finally, there are n ways to choose three equal elements. The
probability of choosing three equal elements is 1/n2.

(You can verify that these 4 probabilities sum to 1.) Now we calculate
the probability that the 3 choices are sorted.

Case 4 is the easiest. Since all elements are equal the probability is 1
that they are sorted. Therefore, in total, there is a

1
n2

chance that we choose 3 equal elements and they are sorted.
For Case 1, there are 3! orders and only one is correct. This gives a

probability of
n2 − 3n + 2

3! · n2
.

For Case 2, there are 2 possible orders for each of the 2n(n − 1) ways
of choosing a duplicate element on the 3rd choice. Of these 4 possibilities,
only 2 are sorted. This gives a probability of

n− 1
2n2

.

For Case 3, there are (n−1)/n2 possible orders of which half are correct.
This gives a probability of

n− 1
2n2

.

If we sum these 4 probabilities, we receive the probability of choosing 3
elements ordered. This sum is

n2 + 3n + 2
3! · n2

.

I will leave it to you to try it for arbitrary k. If you are having trouble,
then try it for k = 4 first. Mike.

Question 12:
We need to find the median, the fourth smallest element in the list of 7

elements. The best way to solve this is to set up a tournament of comparisons

18

between the elements. Consider building an upside down binary tree. There
are 7 leaves, li is labeled by element ai. Let consecutive pairs of elements
be paired, and the seventh element is unpaired in the tree.

w(ai, aj) is the winner of the comparison between ai and aj . In this case
the contest is to find the smallest element. So consider the winner to be the
minimum.

w(w(w(a1, a2), w(a3, a4)), w(w(a5, a6), a7)))
/ \

w(w(a1, a2), w(a3, a4)) w(w(a5, a6), a7))
/ \ / \

w(a1, a2) w(a3, a4) w(a5, a6) a7
/ \ / \ / \

a1 a2 a3 a4 a5 a6

At the top of the tree is the smallest element as. Remove as from the
tournament tree and remove the internal vertex containing the bottom-most
comparison with as. This means that we will have to redo the comparisons
where as was a winner of the comparison to determine the second smallest
element. Repeat this process to remove the second smallest element, redo
the necessary comparisons to sift the third smallest element to the root of
the tournament tree. For the last step, remove the third smallest element
and redo the necessary comparisons to sift the fourth smallest element to
the root. Done.

How many comparisons did this take? To find the smallest element, we
did a comparison at each internal node of the tournament tree. There are
6 internal nodes, so 6 comparisons. Now are each subsequent ¡em¿remove
smallest element and redo necessary comparisons¡/em¿ operations, we must
redo at most 2 comparisons. As we do three operations with at most 2
comparisons each, we do a total of 12 comparisons.

Things to think about. Consider how many comparisons it would
take to sort this list of 7 elements. Are we doing fewer comparisons by us-
ing a tournament scheme? What is the best case input for this tournament
algorithm?

Kaleigh.

Question 13: Solution to come. Not on the quiz.

19

Question 14: Solution to come. Not on the quiz.

20

