Tractable Planning Under Uncertainty:

Exploiting Structure

Bringing robots into unstructured environments

Tractable Planning Under Uncertainty

Dealing with state uncertainty

Objective:

To optimize plans which are robust to incomplete, ambiguous, outdated, incorrect sensor information.

The technical challenge

Tracking state uncertainty is hard:

≻ Kalman filter, particle filter.

Conventional planning is hard:➢ Path planning, MDP.

Planning with state uncertainty is harder!
➢ POMDP framework is well-established [Sondik, 1970].
➢ Tractability is the major obstacle.

Thesis statement

Planning under uncertainty can be made tractable for complex problems by exploiting structure in the problem domain. Geometric structure: PBVI

Hierarchical control structure: PolCA+

Talk outline

- Uncertainty in plan-based robotics
- Partially Observable Markov Decision Processes (POMDPs)
- Exploiting geometric structure
 » Point-based value iteration (PBVI)
- Exploiting hierarchical control structure
 » Policy-contingent abstraction (PolCA+)

POMDP model

POMDP is n-tuple { *S*, *A*, *Z*, *T*, *O*, *R* }:

- S = state set
- A = action set
- Z = observation set

T: Pr(s'|s,a) = state-to-state transition probabilities *O*: Pr(z|s,a) = observation generation probabilities R(s,a) = reward function

Tractable Planning Under Uncertainty

Joelle Pineau

Examples of robot beliefs

Uniform belief

Bi-modal belief

Pictures courtesy of Nicholas Roy.

Tractable Planning Under Uncertainty

Joelle Pineau

POMDP solving

Objective: Find the sequence of actions that maximizes the expected sum of rewards.

How many vectors for this problem?

10⁴ (navigation) x 10³ (dialogue) states 1000+ observations 100+ actions

The curse of history

Policy size grows exponentially with the **planning horizon**:

$$\Gamma_n = O(A \Gamma_{n-1}^Z)$$

Where n = planning horizon A = # actions Z = # observations

Exact solving assumes all beliefs are equally likely

Uniform belief Bi-modal belief N-modal belief

INSIGHT: No sequence of actions and observations can produce this N-modal belief.

Pictures courtesy of Nicholas Roy.

Talk outline

- Uncertainty in plan-based robotics
- Partially Observable Markov Decision Processes (POMDPs)
- Exploiting geometric structure
 » Point-based value iteration (PBVI)
- Exploiting hierarchical control structure
 » Policy-contingent abstraction (PolCA+)

A new algorithm: *Point-based value iteration*

Approach:

Select a small set of belief points \Rightarrow *Use well-separated, reachable beliefs* Plan for those belief points only \Rightarrow *Learn value and its gradient* Pick action that maximizes value $\Rightarrow V(b) = \max_{\alpha \in \Gamma} (\alpha \cdot b)$

Policy size: $O(A \Gamma_{n-1}^{Z})$ **Update time**:

 $O(S \land \Gamma_{n-1}^{Z})$

Policy size: O(B) **Update time**:

 $O(S \land Z \Gamma_{n-1} B)$

Tractable Planning Under Uncertainty

Joelle Pineau

The anytime PBVI algorithm

- Alternate between:
 - 1. Growing the set of belief point
 - 2. Planning for those belief points

• Terminate when you <u>run out of time</u> or <u>have a good policy</u>.

Belief selection in PBVI

1. Focus on reachable beliefs.

Belief selection in PBVI

1. Focus on reachable beliefs.

2. Focus on high probability reachable beliefs.

Belief selection in PBVI

1. Focus on reachable beliefs.

2. Focus on high probability reachable beliefs.

3. Select well-separated high probability reachable beliefs.

Theoretical properties of PBVI

<u>Theorem:</u> For any set of belief points B and planning horizon n, the error of the PBVI algorithm is bounded by:

Empirical results on well-known POMDPs

Maze1: *36 states*

Maze2: 92 states

Maze3: 60 states

Classes of value function approximations

1. No belief

[Littman&al., 1995]

2. Grid over belief [Lovejoy, 1991; Brafman 1997; Hauskrecht, 2000; Zhou&Hansen, 2001]

3. Compressed belief

[Poupart&Boutilier, 2002; Roy&Gordon, 2002] 4. Sample belief points [Poon, 2001; Pineau&al, 2003]

Tractable Planning Under Uncertainty

Joelle Pineau

Performance on well-known POMDPs

	REWARD			TIME (sec)			# Belief points		
Method	Maze1	Maze2	Maze3	Maze1	Maze2	Maze3	Maze1	Maze2	Maze3
No belief [Littman&al., 1995]	0.20	0.11	0.26	0.19	1.44	0.51	-	-	-
Grid [Brafman., 1997]	0.94	-	-	-	-	-	174	337	-
Compressed [Poupart&al., 2003]	0.00	0.07	0.11	>24hrs	>24hrs	>24hrs	-	-	-
Sample [Poon, 2001]	2.30	0.35	0.53	12166	27898	450	660	1840	300
PBVI [Pineau&al., 2003]	2.25	0.34	0.53	3448	360	288	470	95	86

Additional results not shown [Smith&Simmons, 2004; Spaan&Vlassis, 2004].

PBVI in the Nursebot domain

<u>Objective</u>: Find the patient.

State space = RobotPosition × PatientPosition
Observation space = RobotPosition + PatientFound
Action space = {North, South, East, West, Declare}

PBVI performance on *find-the-patient* domain

Additional results not shown [Poupart&Boutilier, 2004; Smith&Simmons, 2004; Spaan&Vlassis, 2004].

Policy assuming full observability

PBVI policy with 3141 belief points

PBVI policy with 643 belief points

Contributions of the PBVI algorithm

• Algorithmic:

- New belief sampling algorithm.
- Efficient heuristic for belief point selection.
- Anytime performance.
- Experimental:
 - Outperforms previous value approximation algorithms on known problems.
 - Solves new larger problem (1 order of magnitude increase in problem size).
- Theoretical:
 - Bounded approximation error.

Back to the big picture

How can we go from 10³ states

to real-world problems?

Joelle Pineau

Structured POMDPs

⇒ Many real-world decision-making problems exhibit structure inherent to the problem domain.

Structured POMDP approaches

Factored models

[Boutilier & Poole, 1996; Hansen & Feng, 2000; Guestrin et al., 2001]

Idea: Represent state space with multi-valued state features.

Hierarchical POMDPs

[Wiering & Schmidhuber, 1997; Theocharous et al., 2000; Hernandez-Gardiol & Mahadevan, 2000]

Idea: Exploit domain knowledge to divide one POMDP into many smaller ones.

Talk outline

- Uncertainty in plan-based robotics
- Partially Observable Markov Decision Processes (POMDPs)
- Exploiting geometric structure
 » Point-based value iteration (PBVI)
- Exploiting hierarchical control structure
 » Policy-contingent abstraction (PolCA+)

A hierarchy of POMDPs

Joelle Pineau

Step 1: Select the action set

ACTIONS North South East West ClarifyGoal VerifyFluids VerifyMeds

Tractable Planning Under Uncertainty

Joelle Pineau

PolCA+ in the Nursebot domain

• *Goal*: A robot is deployed in a nursing home, where it provides reminders to elderly users and accompanies them to appointments.

Performance measure

Contributions of the PolCA+ algorithm

• Algorithmic:

- New hierarchical approach for POMDP framework.
- Automatic state and observation abstraction for POMDPs.
- Novel POMDP applications:
 - High-level robot control architecture.
 - Robust dialogue management.
- Theoretical:
 - For special case (fully observable), guarantees recursive optimality.

Summary

• Exact planning under uncertainty is hard.

→ Structure can help.

- Geometric structure (PBVI):
 - Solve "large" POMDPs by exploiting spatial distribution of beliefs.
- Hierarchical control structure (PolCA+):
 - Solve large POMDPs by divide-and-conquer.

Acknowledgments

Advisors:

Geoff Gordon, Sebastian Thrun.

Thesis committee:

Craig Boutilier, Michael Littman, Matthew Mason, Andrew Moore.

Nursebot team:

Greg Armstrong, Jacqueline Dunbar-Jacob, Sara Kiesler, Judith Matthews, Michael Montemerlo, Nicholas Roy, Martha Pollack.

Administrative support:

Jean Harpley, Suzanne Lyons Muth, Sharon Woodside.

Friends and family.

A visit to the nursing home

Nursebot Pearl

Assisting Nursing Home Residents

Longwood, Oakdale, May 2001 CMU/Pitt/Mich Nursebot Project

Tractable Planning Under Uncertainty

Questions?

Future work

Belief-point planning:

- How can we handle domains with multi-valued state features?
- Can we leverage dimensionality reduction?
- Can we find better ways to pick belief points?

Hierarchical planning:

- Can we automatically learn hierarchies?
- How can we learn (or do without) pseudo-reward functions?

More generally:

- Incorporating parameter learning / user customization.
- More extensive field experiments.