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Bringing robots into unstructured environments
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Dealing with state uncertainty

Objective:

To optimize plans which are robust

to incomplete, ambiguous, outdated,

incorrect sensor information.
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The technical challenge

Tracking state uncertainty is hard:

Kalman filter, particle filter.

Conventional planning is hard:

Path planning, MDP.

Planning with state uncertainty is harder!

POMDP framework is well-established [Sondik, 1970].

Tractability is the major obstacle.
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Thesis statement

Planning under uncertainty can be

made tractable for complex problems

by exploiting structure in the problem domain.

Geometric structure: PBVI

Hierarchical control structure: PolCA+
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Talk outline

• Uncertainty in plan-based robotics

• Partially Observable Markov Decision Processes (POMDPs)

• Exploiting geometric structure

» Point-based value iteration (PBVI)

• Exploiting hierarchical control structure

» Policy-contingent abstraction (PolCA+)
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POMDP model

POMDP is n-tuple { S, A, Z, T, O, R }:

What goes on: st-1 st

at-1 at
What we see: zt-1 zt

rt-1 rt

T: Pr(s’|s,a) = state-to-state transition probabilitiesS = state set
A = action set
Z = observation set

O: Pr(z|s,a) = observation generation probabilities
R(s,a) = reward function

What we infer: bt-1 bt
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Examples of robot beliefs

robot particles

Uniform belief Bi-modal belief

Pictures courtesy of Nicholas Roy.
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POMDP solving

Objective:  Find the sequence of actions that maximizes
the expected sum of rewards.
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Optimal POMDP solving

• Simple problem: 2 states, 3 actions, 3 observations

P(break-in)

V1(b)

b

Plan length        # vectors
     1                    3

   

Call-911
Investigate

Sleep
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Optimal POMDP solving

• Simple problem: 2 states, 3 actions, 3 observations

V2(b)

b

Plan length        # vectors
     1                    3
     2  27

     

P(break-in)

Call-911

Investigate

Sleep
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Optimal POMDP solving

• Simple problem: 2 states, 3 actions, 3 observations

V3(b)

b

Plan length        # vectors
     1                    3
     2  27
     3                      2187

     

P(break-in)

Call-911

Investigate

Sleep
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Optimal POMDP solving

• Simple problem: 2 states, 3 actions, 3 observations

Plan length        # vectors
     1                    3
     2  27
     3                      2187
     4    14,348,907

V4(b)

b

P(break-in)

Call-911

Investigate

Sleep
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How many vectors for this problem?

104 (navigation) x 103 (dialogue) states
1000+ observations
100+ actions

Pictures courtesy of Sebastian Thrun.
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The curse of history

)A( Z
1−Γ=Γ nn O

Policy size grows exponentially with the planning horizon:

Where n = planning horizon
A = # actions
Z = # observations
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Exact solving assumes all beliefs are equally likely

robot particles

Uniform belief Bi-modal belief N-modal belief

INSIGHT: INSIGHT: No sequence of actions and observations can
produce this N-modal belief.

Pictures courtesy of Nicholas Roy.
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Talk outline

• Uncertainty in plan-based robotics

• Partially Observable Markov Decision Processes (POMDPs)

• Exploiting geometric structure

» Point-based value iteration (PBVI)

• Exploiting hierarchical control structure

» Policy-contingent abstraction (PolCA+)
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A new algorithm: Point-based value iteration

P(s1)

V(b)

b1 b0 b2

Approach:
Select a small set of belief points

Plan for those belief points only ⇒ Learn value and its gradient

a,z a,z

⇒ Use well-separated, reachable beliefs

( )bbV ⋅=
Γ∈
α

α
max)(Pick action that maximizes value ⇒
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The curse of history - revisited

Policy size: Update time:

)A( Z
1−ΓnO )AS( Z

1−ΓnO

)B(O )BZAS(
1−

Γ
n

O

Policy size: Update time:
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The anytime PBVI algorithm

• Alternate between:

1. Growing the set of belief point

2. Planning for those belief points

• Terminate when you run out of time or have a good policy.
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Belief selection in PBVI

1. Focus on reachable beliefs.

P(s1)

b ba1,z2ba2,z2ba2,z1ba1,z1

a2,z2 a1,z2

a2,z1

a1,z1
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Belief selection in PBVI

1. Focus on reachable beliefs.

2. Focus on high probability reachable beliefs.

P(s1)

b ba1,z2ba2,z1

a1,z2

a2,z1

ba2,z2ba1,z1
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Belief selection in PBVI

1. Focus on reachable beliefs.

2. Focus on high probability reachable beliefs.

3. Select well-separated high probability reachable beliefs.

P(s1)

b ba1,z2ba2,z1

a1,z2

a2,z1
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Theoretical properties of PBVI

Theorem: For any set of belief points B and planning horizon n,
     the error of the PBVI algorithm is bounded by:

P(s1)

V(b)

b1 b0 b2

Where Δ is the set of reachable beliefs
B is the set of all beliefs
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Empirical results on well-known POMDPs

Maze1:  36 states Maze2:  92 states

Maze3:  60 states

Pictures from Littman, Cassandra and Kaelbling, 1995.
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Classes of value function approximations

1. No belief
[Littman&al., 1995]

3. Compressed belief
[Poupart&Boutilier, 2002;

   Roy&Gordon, 2002]

x1

x0

x2

2. Grid over belief
[Lovejoy, 1991; Brafman 1997;

Hauskrecht, 2000; Zhou&Hansen, 2001]

4. Sample belief points
[Poon, 2001; Pineau&al, 2003]
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Performance on well-known POMDPs

Maze1

0.20

0.94

0.00

2.30

2.25

REWARD

Maze2

0.11

-

0.07

0.35

0.34

Maze3

0.26

-

0.11

0.53

0.53

Maze1

0.19

-

>24hrs 

12166

3448

TIME (sec)

Maze2

1.44

-

>24hrs 

27898

360

Maze3

0.51

-

>24hrs 

450

288

Maze1

-

174

-

660

470

# Belief points

Maze2

-

337

-

1840

95

Maze3

-

-

-

300

86

Method

No belief
[Littman&al., 1995]

Grid
[Brafman., 1997]

Compressed
[Poupart&al., 2003]

Sample
[Poon, 2001]

PBVI
[Pineau&al., 2003]

Additional results not shown [Smith&Simmons, 2004; Spaan&Vlassis, 2004].
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PBVI in the Nursebot domain

Objective: Find the patient.

State space = RobotPosition × PatientPosition

Observation space = RobotPosition + PatientFound

Action space = {North, South, East, West, Declare}
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PBVI performance on find-the-patient domain

Patient found 17% of trials
Patient found 90% of trials

No Belief
      PBVI

No Belief

PBVI

Additional results not shown [Poupart&Boutilier, 2004; Smith&Simmons, 2004; Spaan&Vlassis, 2004].
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Policy assuming full observability
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PBVI policy with 3141 belief points
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PBVI policy with 643 belief points
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Contributions of the PBVI algorithm

• Algorithmic:

– New belief sampling algorithm.

– Efficient heuristic for belief point selection.

– Anytime performance.

• Experimental:
– Outperforms previous value approximation algorithms on known problems.

– Solves new larger problem (1 order of magnitude increase in problem size).

• Theoretical:
– Bounded approximation error.
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Back to the big picture

How can we go from 103

states

 to real-world problems?

Pictures courtesy of Sebastian Thrun.
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Navigation

Structured POMDPs

⇒   Many real-world decision-making problems exhibit
structure inherent to the problem domain.

Cognitive support Social interaction

High-level controller

Move AskWhere

Left Right Forward Backward
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Structured POMDP approaches

Factored models
[Boutilier & Poole, 1996; Hansen & Feng, 2000; Guestrin et al., 2001]

Idea: Represent state space with multi-valued state features.

Hierarchical POMDPs
[Wiering & Schmidhuber, 1997; Theocharous et al., 2000; Hernandez-Gardiol &

Mahadevan, 2000]

Idea: Exploit domain knowledge to divide one POMDP into 

many smaller ones.
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Talk outline

• Uncertainty in plan-based robotics

• Partially Observable Markov Decision Processes (POMDPs)

• Exploiting geometric structure

» Point-based value iteration (PBVI)

• Exploiting hierarchical control structure

» Policy-contingent abstraction (PolCA+)
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A hierarchy of POMDPs

Act

ExamineHealth Navigate

Move
VerifyFluids

ClarifyGoal

North South East West

VerifyMeds

subtask

abstract action

primitive action
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PolCA+: Planning with a hierarchy of POMDPs

Navigate

Move ClarifyGoal

South East WestNorth

AMove = {N,S,E,W}

 

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

Step 1: Select the action set
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PolCA+: Planning with a hierarchy of POMDPs

Navigate

Move ClarifyGoal

South East WestNorth

AMove = {N,S,E,W}

 SMove = {s1,s2}

STATE FEATURES
X-position
Y-position
X-goal
Y-goal

HealthStatus

STATE FEATURES
X-position
Y-position
X-goal
Y-goal

HealthStatus

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

Step 1: Select the action set

Step 2: Minimize the state set
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PolCA+: Planning with a hierarchy of POMDPs

Navigate

Move ClarifyGoal

South East WestNorth

AMove = {N,S,E,W}

 SMove = {s1,s2}

STATE FEATURES
X-position
Y-position
X-goal
Y-goal

HealthStatus

STATE FEATURES
X-position
Y-position
X-goal
Y-goal

HealthStatus

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

PARAMETERS

{bh,Th,Oh,Rh}

PARAMETERS

{bh,Th,Oh,Rh}

Step 1: Select the action set

Step 2: Minimize the state set

Step 3: Choose parameters
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PolCA+: Planning with a hierarchy of POMDPs

Navigate

Move ClarifyGoal

South East WestNorth

STATE FEATURES
X-position
Y-position
X-goal
Y-goal

HealthStatus

STATE FEATURES
X-position
Y-position
X-goal
Y-goal

HealthStatus

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

ACTIONS
North
South
East
West

ClarifyGoal
VerifyFluids
VerifyMeds

PLAN

πh

PLAN

πh

PARAMETERS

{bh,Th,Oh,Rh}

PARAMETERS

{bh,Th,Oh,Rh}

Step 1: Select the action set

Step 2: Minimize the state set

Step 3: Choose parameters

Step 4: Plan task h

AMove = {N,S,E,W}

 SMove = {s1,s2}
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PolCA+ in the Nursebot domain

• Goal:  A robot is deployed in a nursing home, where it provides
reminders to elderly users and accompanies them to appointments.
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Performance measure
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Contributions of the PolCA+ algorithm

• Algorithmic:
– New hierarchical approach for POMDP framework.

– Automatic state and observation abstraction for POMDPs.

• Novel POMDP applications:
– High-level robot control architecture.

– Robust dialogue management.

• Theoretical:
– For special case (fully observable), guarantees recursive optimality.
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Summary

• Exact planning under uncertainty is hard.

• Geometric structure (PBVI):
– Solve “large” POMDPs by exploiting spatial distribution of beliefs.

• Hierarchical control structure (PolCA+):
– Solve large POMDPs by divide-and-conquer.

Structure can help.
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A visit to the nursing home
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Questions?
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Future work

Belief-point planning:

• How can we handle domains with multi-valued state features?

• Can we leverage dimensionality reduction?

• Can we find better ways to pick belief points?

Hierarchical planning:

• Can we automatically learn hierarchies?

• How can we learn (or do without) pseudo-reward functions?

More generally:

• Incorporating parameter learning / user customization.

• More extensive field experiments.


