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Montréal, Qc, Canada
jpineau@cs.mcgill.ca

Abstract

Bayesian Reinforcement Learning has generated substantial interest recently, as it
provides an elegant solution to the exploration-exploitation trade-off in reinforce-
ment learning. However most investigations of Bayesian reinforcement learning
to date focus on the standard Markov Decision Processes (MDPs). Our goal is
to extend these ideas to the more general Partially Observable MDP (POMDP)
framework, where the state is a hidden variable. To address this problem, we in-
troduce a new mathematical model, the Bayes-Adaptive POMDP. This new model
allows us to (1) improve knowledge of the POMDP domain through interaction
with the environment, and (2) plan optimal sequences of actions which can trade-
off between improving the model, identifying the state, andgathering reward. We
show how the model can be finitely approximated while preserving the value func-
tion. We describe approximations for belief tracking and planning in this model.
Empirical results on two domains show that the model estimate and agent’s return
improve over time, as the agent learns better model estimates.

1 Introduction

In many real world systems, uncertainty can arise in both theprediction of the system’s behavior, and
the observability of the system’s state. Partially Observable Markov Decision Processes (POMDPs)
take both kinds of uncertainty into account and provide a powerful model for sequential decision
making under these conditions. However most solving methods for POMDPs assume that the model
is known a priori, which is rarely the case in practice. For instance in robotics, the POMDP must
reflect exactly the uncertainty on the robot’s sensors and actuators. These parameters are rarely
known exactly and therefore must often be approximated by a human designer, such that even if
this approximate POMDP could be solved exactly, the resulting policy may not be optimal. Thus we
seek a decision-theoretic planner which can take into account the uncertainty over model parameters
during the planning process, as well as being able to learn from experience the values of these
unknown parameters.

Bayesian Reinforcement Learning has investigated this problem in the context of fully observable
MDPs [1, 2, 3]. An extension to POMDP has recently been proposed [4], yet this method relies on
heuristics to select actions that will improve the model, thus forgoing any theoretical guarantee on
the quality of the approximation, and on an oracle that can bequeried to provide the current state.

In this paper, we draw inspiration from the Bayes-Adaptive MDP framework [2], which is formu-
lated to provide an optimal solution to the exploration-exploitation trade-off. To extend these ideas
to POMDPs, we face two challenges: (1) how to update Dirichlet parameters when the state is a
hidden variable? (2) how to approximate the infinite dimensional belief space to perform belief
monitoring and compute the optimal policy. This paper tackles both problem jointly. The first prob-
lem is solved by including the Dirichlet parameters in the state space and maintaining belief states
over these parameters. We address the second by bounding thespace of Dirichlet parameters to a
finite subspace necessary forǫ-optimal solutions.

1



We provide theoretical results for bounding the state spacewhile preserving the value function and
we use these results to derive approximate solving and belief monitoring algorithms. We compare
several belief approximations in two problem domains. Empirical results show that the agent is able
to learn good POMDP models and improve its return as it learnsbetter model estimate.

2 POMDP

A POMDP is defined by finite sets of statesS, actionsA and observationsZ. It has transition
probabilities{T sas

′

}s,s′∈S,a∈A whereT sas
′

= Pr(st+1 = s′|st = s, at = a) and observation
probabilities{Osaz}s∈S,a∈A,z∈Z whereOsaz = Pr(zt = z|st = s, at−1 = a). The reward function
R : S × A → R specifies the immediate reward obtained by the agent. In a POMDP, the state is
never observed. Instead the agent perceives an observationz ∈ Z at each time step, which (along
with the action sequence) allows it to maintain a belief state b ∈ ∆S. The belief state specifies
the probability of being in each state given the history of action and observation experienced so far,
starting from an initial beliefb0. It can be updated at each time step using Baye’s rule:bt+1(s

′) =
O
s′atzt+1

P

s∈S T
sats

′
bt(s)

P

s′′∈s O
s′′atzt+1

P

s∈S T
sats

′′
bt(s)

.

A policy π : ∆S → A indicates how the agent should select actions as a func-
tion of the current belief. Solving a POMDP involves finding the optimal policy π∗

that maximizes the expected discounted return over the infinite horizon. The return ob-
tained by following π∗ from a belief b is defined by Bellman’s equation:V ∗(b) =
maxa∈A

[
∑

s∈S b(s)R(s, a) + γ
∑

z∈Z Pr(z|b, a)V ∗(τ(b, a, z))
]

, whereτ(b, a, z) is the new be-
lief after performing actiona and observationz andγ ∈ [0, 1) is the discount factor.

Exact solving algorithms [5] are usually intractable, except on small domains with only a few states,
actions and observations. Various approximate algorithms, both offline [6, 7, 8] and online [9],
have been proposed to tackle increasingly large domains. However, all these methods requires full
knowledge of the POMDP model, which is a strong assumption inpractice. Some approaches do
not require knowledge of the model, as in [10], but these approaches generally require a lot of data
and do not address the exploration-exploitation tradeoff.

3 Bayes-Adaptive POMDP

In this section, we introduce the Bayes-Adaptive POMDP (BAPOMDP) model, an optimal decision-
theoretic algorithm for learning and planning in POMDPs under parameter uncertainty. Throughout
we assume that the state, action, and observation spaces arefinite and known, but that the transition
and observation probabilities are unknown or partially known. We also assume that the reward
function is known as it is generally specified by the user for the specific task he wants to accomplish,
but the model can easily be generalised to learn the reward function as well.

To model the uncertainty on the transitionT sas
′

and observationOsaz parameters, we useDirichlet
distributions, which are probability distributions over the parameters of multinomial distributions.
Givenφi, the number of times eventei has occurred overn trials, the probabilitiespi of each event
follow a Dirichlet distribution, i.e.(p1, . . . , pk) ∼ Dir(φ1, . . . , φk). This distribution represents
the probability that a discrete random variable behaves according to some probability distribution
(p1, . . . , pk), given that the counts(φ1, . . . , φk) have been observed overn trials (n =

∑k
i=1 φi). Its

probability density function is defined by:f(p, φ) = 1
B(φ)

∏k
i=1 p

φi−1
i , whereB is the multinomial

beta function. The expected value ofpi is E(pi) = φi
P

k
j=1

φj
.

3.1 The BAPOMDP Model

The BAPOMDP is constructed from the model of the POMDP with unknown parameters. Let
(S,A,Z, T,O,R, γ) be that model. The uncertainty on the distributionsT sa· andOs

′a· can be
represented by experience counts:φass′∀s

′ represents the number of times the transition(s, a, s′) oc-
curred, similarlyψas′z∀z is the number of times observationz was made in states′ after doing action
a. Let φ be the vector of all transition counts andψ be the vector of all observation counts. Given
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the count vectorsφ andψ, the expected transition probability forT sas
′

is: T sas
′

φ =
φa
ss′

P

s′′∈S φ
a
ss′′

, and

similarly forOs
′az: Os

′az
ψ =

ψa
s′z

P

z′∈Z ψ
a
s′z′

.

The objective of the BAPOMDP is to learn an optimal policy, such that actions are chosen to
maximize reward taking into account both state and parameter uncertainty. To model this, we
follow the Bayes-Adaptive MDP framework, and include theφ and ψ vectors in the state of
the BAPOMDP. Thus, the state spaceS′ of the BAPOMDP is defined asS′ = S × T × O,
whereT = {φ ∈ N

|S|2|A||∀(s, a),
∑

s′∈S φ
a
ss′ > 0} represents the space in whichφ lies and

O = {ψ ∈ N
|S||A||Z||∀(s, a),

∑

z∈Z ψ
a
sz > 0} represents the space in whichψ lies. The action and

observation sets of the BAPOMDP are the same as in the original POMDP. Transition and obser-
vation functions of the BAPOMDP must capture how the state and count vectorsφ, ψ evolve after
every time step. Consider an agent in a given states with count vectorsφ andψ, which performs
actiona, causing it to move to states′ and observez. Then the vectorφ′ after the transition is defined
asφ′ = φ + δass′ , whereδass′ is a vector full of zeroes, with a1 for the countφass′ , and the vector
ψ′ after the observation is defined asψ′ = ψ + δas′z , whereδas′z is a vector full of zeroes, with a1
for the countψas′z. Note that the probabilities of such transitions and observations occurring must
be defined by considering all models and their probabilitiesas specified by the current Dirichlet
distributions, which turn out to be their expectations. Hence, we defineT ′ andO′ to be:

T ′((s, φ, ψ), a, (s′, φ′, ψ′)) =

{

T sas
′

φ Os
′az
ψ , if φ′ = φ+ δass′ andψ′ = ψ + δas′z

0, otherwise.
(1)

O′((s, φ, ψ), a, (s′, φ′, ψ′), z) =

{

1, if φ′ = φ+ δass′ andψ′ = ψ + δas′z
0, otherwise. (2)

Note here that the observation probabilities are folded into the transition function, and that the ob-
servation function becomes deterministic. This happens because a state transition in the BAPOMDP
automatically specifies which observation is acquired after transition, via the way the counts are
incremented. Since the counts do not affect the reward, the reward function of the BAPOMDP is de-
fined asR′((s, φ, ψ), a) = R(s, a); the discount factor of the BAPOMDP remains the same. Using
these definitions, the BAPOMDP has a known model specified by the tuple(S′, A, Z, T ′, O′, R′, γ).

The belief state of the BAPOMDP represents a distribution over both states and count values. The
model is learned by simply maintaining this belief state, asthe distribution will concentrate over
most likely models, given the prior and experience so far. Ifb0 is the initial belief state of the
unknown POMDP, and the count vectorsφ0 ∈ T andψ0 ∈ O represent the prior knowledge on this
POMDP, then the initial belief of the BAPOMDP is:b′0(s, φ0, ψ0) = {b0(s), if (φ, ψ) = (φ0, ψ0);
0, otherwise}. After actions are taken, the uncertainty on the POMDP modelis represented by
mixtures of Dirichlet distributions (i.e. mixtures of count vectors).

Note that the BAPOMDP is in fact a POMDP with a countably infinite state space. Hence the belief
update function and optimal value function are still definedas in Section 2. However these functions
now require summations overS′ = S × T × O. Maintaining the belief state is practical only if the
number of states with non-zero probabilities is finite. We prove this in the following theorem:

Theorem 3.1. Let (S′, A, Z, T ′, O′, R′, γ) be a BAPOMDP constructed from the POMDP
(S,A,Z, T,O,R, γ). If S is finite, then at any timet, the setS′

b′t
= {σ ∈ S′|b′t(σ) > 0} has

size|S′
b′t
| ≤ |S|t+1.

Proof. Proof available in [11]. Proceeds by induction fromb′0.

The proof of this theorem suggests that it is sufficient to iterate overS andS′
b′
t−1

in order to compute

the belief stateb′t when an action and observation are taken in the environment.Hence, Algorithm
3.1 can be used to update the belief state.

3.2 Exact Solution for BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be represented by a finite setΓ of func-
tionsα : S′ → R, as in standard POMDP. For example, an exact solution can be computed using

3



function τ (b, a, z)
Initialize b′ as a 0 vector.
for all (s, φ, ψ, s′) ∈ S′

b × S do
b′(s′, φ+ δass′ , ψ + δas′z)← b′(s′, φ+ δass′ , ψ + δas′z) + b(s, φ, ψ)T sas

′

φ Os
′az
ψ

end for
return normalizedb′

Algorithm 3.1: Exact Belief Update in BAPOMDP.

dynamic programming (see [5] for more details):

Γa1 = {αa|αa(s, φ, ψ) = R(s, a)},
Γa,zt = {αa,zi |αa,zi (s, φ, ψ) = γ

∑

s′∈S T
sas′

φ Os
′az
ψ α′

i(s
′, φ+ δass′ , ψ + δas′z), α

′
i ∈ Γt−1},

Γat = Γa1 ⊕ Γa,z1t ⊕ Γa,z2t ⊕ · · · ⊕ Γ
a,z|Z|

t , (where⊕ is the cross sum operator),
Γt =

⋃

a∈A Γat .
(3)

Note here that the definition ofαa,zi (s, φ, ψ) is obtained from the fact that
T ′((s, φ, ψ), a, (s′, φ′, ψ′))O′((s, φ, ψ), a, (s′, φ′, ψ′), z) = 0 except whenφ′ = φ + δass′ and
ψ′ = ψ + δas′z . The optimal policy is extracted as usual:πΓ(b) = argmaxα∈Γ

∑

σ∈S′
b
α(σ)b(σ). In

practice, it will be impossible to computeαa,zi (s, φ, ψ) for all (s, φ, ψ) ∈ S′. In order to compute
these more efficiently, we show in the next section that the infinite state space can be reduced to a
finite state space, while still preserving the value function to arbitrary precision for any horizont.

4 Approximating the BAPOMDP: Theory and Algorithms

Solving a BAPOMDP exactly for all belief states is impossible in practice due to the dimensionnality
of the state space (in particular to the fact that the count vectors can grow unbounded). We now show
how we can reduce this infinite state space to a finite state space. This allows us to compute anǫ-
optimal value function over the resulting finite-dimensionnal belief space using standard POMDP
techniques. Various methods for belief tracking in the infinite model are also presented.

4.1 Approximate Finite Model

We first present an upper bound on the value difference between two states that differ only by
their model estimateφ andψ. This bound uses the following definitions: givenφ, φ′ ∈ T , and

ψ, ψ′ ∈ O, defineDsa
S (φ, φ′) =

∑

s′∈S

∣

∣

∣
T sas

′

φ − T sas
′

φ′

∣

∣

∣
andDsa

Z (ψ, ψ′) =
∑

z∈Z

∣

∣

∣
Osazψ −Osazψ′

∣

∣

∣
,

andN sa
φ =

∑

s′∈S φ
a
ss′ andN sa

ψ =
∑

z∈Z ψ
a
sz.

Theorem 4.1. Given anyφ, φ′ ∈ T , ψ, ψ′ ∈ O, andγ ∈ (0, 1), then for allt:

sup
αt∈Γt,s∈S

|αt(s, φ, ψ) − αt(s, φ
′, ψ′)| ≤ 2γ||R||∞

(1−γ)2 sup
s,s′∈S,a∈A

[

Dsa
S (φ, φ′) +Ds′a

Z (ψ, ψ′)

+ 4
ln(γ−e)

(

P

s′′∈S|φ
a
ss′′

−φ′a
ss′′ |

(N sa
φ

+1)(N sa
φ′

+1) +
P

z∈Z|ψ
a
s′z

−ψ′a
s′z|

(N s′a
ψ

+1)(N s′a
ψ′ +1)

)]

Proof. Proof available in [11] finds a bound on a 1-step backup and solves the recurrence.

We now use this bound on theα-vector values to approximate the space of Dirichlet parameters

within a finite subspace. We use the following definitions: given anyǫ > 0, defineǫ′ = ǫ(1−γ)2

8γ||R||∞
,

ǫ′′ = ǫ(1−γ)2 ln(γ−e)
32γ||R||∞

,N ǫ
S = max

(

|S|(1+ǫ′)
ǫ′

, 1
ǫ′′

− 1
)

andN ǫ
Z = max

(

|Z|(1+ǫ′)
ǫ′

, 1
ǫ′′

− 1
)

.

Theorem 4.2. Given anyǫ > 0 and (s, φ, ψ) ∈ S′ such that∃a ∈ A, s′ ∈ S, N s′a
φ > N ǫ

S or

N s′a
ψ > N ǫ

Z , then∃(s, φ′, ψ′) ∈ S′ such that∀a ∈ A, s′ ∈ S, N s′a
φ′ ≤ N ǫ

S andN s′a
ψ′ ≤ N ǫ

Z where
|αt(s, φ, ψ) − αt(s, φ

′, ψ′)| < ǫ holds for allt andαt ∈ Γt.

Proof. Proof available in [11].
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Theorem 4.2 suggests that if we want a precision ofǫ on the value function, we just need to restrict
the space of Dirichlet parameters to count vectorsφ ∈ T̃ǫ = {φ ∈ N

|S|2|A||∀a ∈ A, s ∈ S, 0 <

N sa
φ ≤ N ǫ

S} andψ ∈ Õǫ = {ψ ∈ N
|S||A||Z||∀a ∈ A, s ∈ S, 0 < N sa

ψ ≤ N ǫ
Z}. SinceT̃ǫ andÕǫ are

finite, we can define a finite approximate BAPOMDP as the tuple(S̃ǫ, A, Z, T̃ǫ, Õǫ, R̃ǫ, γ) where
S̃ǫ = S × T̃ǫ × Õǫ is the finite state space. To define the transition and observation functions over
that finite state space, we need to make sure that when the count vectors are incremented, they stay
within the finite space. To achieve, this we define a projection operatorPǫ : S′ → S̃ǫ that simply
projects every state inS′ to their closest state iñSǫ.

Definition 4.1. Letd : S′ × S′ → R be defined such that:

d(s, φ, ψ, s′, φ′, ψ′) =























2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Dsa
S (φ, φ′) +Ds′a

Z (ψ, ψ′)

+ 4
ln(γ−e)

(

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|

(Nas
φ

+1)(Nas
φ′

+1) +
P

z∈Z |ψa
s′z

−ψ′a
s′z

|

(Nas′

ψ
+1)(Nas′

ψ′ +1)

)]

,
if s = s′

8γ||R||∞
(1−γ)2

(

1 + 4
ln(γ−e)

)

+ 2||R||∞
(1−γ) , otherwise.

Definition 4.2. LetPǫ : S′ → S̃ǫ be defined asPǫ(s) = argmin
s′∈S̃ǫ

d(s, s′)

The functiond uses the bound defined in Theorem 4.1 as a distance between states that only differs
by their φ andψ vectors, and uses an upper bound on that value when the statesdiffer. Thus
Pǫ always maps states(s, φ, ψ) ∈ S′ to some state(s, φ′, ψ′) ∈ S̃ǫ. Note that ifσ ∈ S̃ǫ, then
Pǫ(σ) = σ. UsingPǫ, the transition and observation function are defined as follows:

T̃ǫ((s, φ, ψ), a, (s′, φ′, ψ′)) =

{

T sas
′

φ Os
′az
ψ , if (s′, φ′, ψ′) = Pǫ(s

′, φ+ δass′ , ψ + δas′z)
0, otherwise.

(4)

Õǫ((s, φ, ψ), a, (s′, φ′, ψ′), z) =

{

1, if (s′, φ′, ψ′) = Pǫ(s′, φ+ δass′ , ψ + δas′z)
0, otherwise. (5)

These definitions are the same as the one in the infinite BAPOMDP, except that now we add an extra
projection to make sure that the incremented count vectors stays inS̃ǫ. Finally, the reward function
R̃ǫ : S̃ǫ ×A→ R is defined as̃Rǫ((s, φ, ψ), a) = R(s, a).

Theorem 4.3 bounds the value difference betweenα-vectors computed with this finite model and
theα-vector computed with the original model.

Theorem 4.3. Given anyǫ > 0, (s, φ, ψ) ∈ S′ andαt ∈ Γt computed from the infinite BAPOMDP.
Let α̃t be theα-vector representing the same conditionnal plan asαt but computed with the finite
BAPOMDP(S̃ǫ, A, Z, T̃ǫ, Õǫ, R̃ǫ, γ), then|α̃t(Pǫ(s, φ, ψ)) − αt(s, φ, ψ)| < ǫ

1−γ .

Proof. Proof available in [11]. Solves a recurrence over the 1-stepapproximation in Thm. 4.2.

Because the state space is now finite, solution methods from the literature on finite POMDPs could
theoretically be applied. This includes en particular the equations forτ(b, a, z) andV ∗(b) that were
presented in Section 2. In practice however, even though thestate space is finite, it will generally
be very large for smallǫ, such that it may still be intractable, even for small domains. We therefore
favor a faster online solution approach, as described below.

4.2 Approximate Belief Monitoring

As shown in Theorem 3.1, the number of states with non-zero probability grows exponentially in
the planning horizon, thus exact belief monitoring can quickly become intractable. We now discuss
different particle-based approximations that allow polynomial-time belief tracking.

Monte Carlo sampling: Monte Carlo sampling algorithms have been widely used for sequential
state estimation [12]. Given a prior beliefb, followed by actiona and observationz, the new belief
b′ is obtained by first samplingK states from the distributionb, then for each sampleds a new state
s′ is sampled fromT (s, a, ·). Finally, the probabilityO(s′, a, z) is added tob′(s′) and the beliefb′

is re-normalized. This will capture at mostK states with non-zero probabilities. In the context of
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BAPOMDPs, we use a slight variation of this method, where(s, φ, ψ) are first sampled fromb, and
then a next states′ ∈ S is sampled from the normalized distributionT sa·φ O·az

ψ . The probability1/K
is added directly tob′(s′, φ+ δass′ , ψ + δas′z).

Most Probable: Alternately, we can do the exact belief update at a given time step, but then only
keep theK most probable states in the new beliefb′ and renormalizeb′.

Weighted Distance Minimization: The two previous methods only try to approximate the distribu-
tion τ(b, a, z). However, in practice, we only care most about the agent’s expected reward. Hence,
instead of keeping theK most likely states, we can keepK states which best approximate the be-
lief’s value. As in the Most Probable method, we do an exact belief update, however in this case
we fit the posterior distribution using a greedyK-means procedure, where distance is defined as in
Definition 4.1, weighted by the probability of the state to remove.

4.3 Online planning

While the finite model presented in Section 4.1 can be used to find provably near-optimal policies
offline, this will likely be intractable in practice due to the very large state space required to ensure
good precision. Instead, we turn to online lookahead searchalgorithms, which have been proposed
for solving standard POMDPs [9]. Our approach simply performs dynamic programming over all the
beliefs reachable within some fixed finite planning horizon from the current belief. The action with
highest return over that finite horizon is executed and then planning is conducted again on the next
belief. To further limit the complexity of the online planning algorithm, we used the approximate
belief monitoring methods detailed above. Its overall complexity is inO((|A||Z|)DCb) whereD is
the planning horizon andCb is the complexity of updating the belief.

5 Empirical Results

We begin by evaluating the different belief approximationsintroduced above. To do so, we use a
simple onlined-step lookahead search, and compare the overall expected return and model accuracy
in two different problems: the well-known Tiger [5] and a newdomain called Follow. GivenT sas

′

andOs
′az the exact probabilities of the (unknown) POMDP, the model accuracy is measured in

terms of the weighted sum of L1-distance, denotedWL1, between the exact model and the probable
models in a belief stateb:

WL1(b) =
∑

(s,φ,ψ)∈S′
b
b(s, φ, ψ)L1(φ, ψ)

L1(φ, ψ) =
∑

a∈A

∑

s′∈S

[

∑

s∈S |T
sas′

φ − T sas
′

| +
∑

z∈Z |Os
′az
ψ −Os

′az |
] (6)

5.1 Tiger

In the Tiger problem [5], we consider the case where the transition and reward parameters are known,
but the observation probabilities are not. Hence, there arefour unknown parameters:OLl, OLr,
ORl, ORr (OLr stands forPr(z = hear right|s = tiger Left, a = Listen)). We define the
observation count vectorψ = (ψLl, ψLr, ψRl, ψRr). We consider a prior ofψ0 = (5, 3, 3, 5), which
specifies an expected sensor accuracy of62.5% (instead of the correct85%) in both states. Each
simulation consists of 100 episodes. Episodes terminate when the agent opens a door, at which
point the POMDP state (i.e. tiger’s position) is reset, but the distribution over count vector is carried
over to the next episode.

Figures 1 and 2 show how the average return and model accuracyevolve over the 100 episodes
(results are averaged over 1000 simulations), using an online 3-step lookahead search with varying
belief approximations and parameters. Returns obtained byplanning directly with the prior and ex-
act model (without learning) are shown for comparison. Model accuracy is measured on the initial
belief of each episode. Figure 3 compares the average planning time per action taken by each ap-
proach. We observe from these figures that the results for theMost Probable and Weighted Distance
approximations are very similar and perform well even with few particles (lines are overlapping in
many places, making Weighted Distance results hard to see).On the other hand, the performance
of Monte Carlo is significantly affected by the number of particles and had to use much more par-
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ticles (64) to obtain an improvement over the prior. This maybe due to the sampling error that is
introduced when using fewer samples.

5.2 Follow

We propose a new POMDP domain, called Follow, inspired by an interactive human-robot task. It
is often the case that such domains are particularly subjectto parameter uncertainty (due to the dif-
ficulty in modelling human behavior), thus this environmentmotivates the utility of Bayes-Adaptive
POMDP in a very practical way. The goal of the Follow task is for a robot to continuously follow one
of two individuals in a 2D open area. The two subjects have different motion behavior, requiring the
robot to use a different policy for each. At every episode, the target person is selected randomly with
Pr = 0.5 (and the other is not present). The person’s identity is not observable (except through their
motion). The state space has two features: a binary variableindicating which person is being fol-
lowed, and a position variable indicating the person’s position relative to the robot (5×5 square grid
with the robot always at the center). Initially, the robot and person are at the same position. Both the
robot and the person can perform five motion actions{NoAction,North,East, South,West}.
The person follows a fixed stochastic policy (stationary over space and time), but the parameters of
this behavior are unknown. The robot perceives observations indicating the person’s position rela-
tive to the robot:{Same,North,East, South,West, Unseen}. The robot perceives the correct
observationPr = 0.8 andUnseen with Pr = 0.2. The rewardR = +1 if the robot and person
are at the same position (central grid cell),R = 0 if the person is one cell away from the robot, and
R = −1 if the person is two cells away. The task terminates if the person reaches a distance of 3
cells away from the robot, also causing a reward of -20. We usea discount factor of 0.9.

When formulating the BAPOMDP, the robot’s motion model (deterministic), the observation
probabilities and the rewards are assumed to be known. We maintain a separate count vec-
tor for each person, representing the number of times they move in each direction, i.e.φ1 =
(φ1
NA, φ

1
N , φ

1
E , φ

1
S , φ

1
W ), φ2 = (φ2

NA, φ
2
N , φ

2
E , φ

2
S , φ

2
W ). We assume a priorφ1

0 = (2, 3, 1, 2, 2)
for person 1 andφ2

0 = (2, 1, 3, 2, 2) for person 2, while in reality person 1 moves with probabilities
Pr = (0.3, 0.4, 0.2, 0.05, 0.05) and person 2 withPr = (0.1, 0.05, 0.8, 0.03, 0.02). We run 200
simulations, each consisting of 100 episodes (of at most 10 time steps). The count vectors’ distri-
butions are reset after every simulation, and the target person is reset after every episode. We use a
2-step lookahead search for planning in the BAPOMDP.

Figures 4 and 5 show how the average return and model accuracyevolve over the 100 episodes (aver-
aged over the 200 simulations) with different belief approximations. Figure 6 compares the planning
time taken by each approach. We observe from these figures that the results for the Weighted Dis-
tance approximations are much better both in terms of returnand model accuracy, even with fewer
particles (16). Monte Carlo fails at providing any improvement over the prior model, which indi-
cates it would require much more particles. Running Weighted Distance with 16 particles require
less time than both Monte Carlo and Most Probable with 64 particles, showing that it can be more
time efficient for the performance it provides in complex environment.
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6 Conclusion

The objective of this paper was to propose a preliminary decision-theoretic framework for learning
and acting in POMDPs under parameter uncertainty. This raises a number of interesting challenges,
including (1) defining the appropriate model for POMDP parameter uncertainty, (2) approximating
this model while maintaining performance guarantees, (3) performing tractable belief updating, and
(4) planning action sequences which optimally trade-off exploration and exploitation.

We proposed a new model, the Bayes-Adaptive POMDP, and showed that it can be approximated
to ǫ-precision by a finite POMDP. We provided practical approaches for belief tracking and online
planning in this model, and validated these using two experimental domains. Results in the Follow
problem, showed that our approach is able to learn the motionpatterns of two (simulated) individu-
als. This suggests interesting applications in human-robot interaction, where it is often essential that
we be able to reason and plan under parameter uncertainty.
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