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Abstract

This paper describesan implementedrobot system,
which reliesheavily on probabilisticAI techniquesfor
actingunderuncertainty. TherobotPearl andits prede-
cessorFlo have beendevelopedby a multi-disciplinary
teamof researchersover the pastthreeyears. The goal
of this researchis to investigatethe feasibility of assist-
ing elderly peoplewith cognitive and physical activity
limitations throughinteractive robotic devices, thereby
improving their quality of life. The robot’s task in-
volvesescortingpeoplein an assistedliving facility—a
time-consumingtaskcurrentlycarriedout by nurses.Its
softwarearchitectureemploysprobabilistictechniquesat
virtually all levels of perceptionand decisionmaking.
During the courseof experimentsconductedin an as-
sistedliving facility, therobotsuccessfullydemonstrated
that it couldautonomouslyprovide guidancefor elderly
residents.While previousexperimentswith fieldedrobot
systemshave provided evidencethat probabilistictech-
niqueswork well in thecontext of navigation,we found
the sameto be true of humanrobot interactionwith el-
derlypeople.

Intr oduction
TheUS populationis agingat analarmingrate. At present,
12.5%of the US populationis of age65 or older. The Ad-
ministrationof Aging predictsa 100%increaseof this ratio
by the year 2050 [26]. By 2040, the numberof peopleof
ageof 65 or olderper100working-agepeoplewill have in-
creasedfrom 19 to 39. At thesametime, thenationfacesa
significantshortageof nursingprofessionals.TheFederation
of NursesandHealthCareProfessionalshasprojectedaneed
for 450,000additionalnursesby theyear2008. It is widely
recognizedthatthesituationwill worsenasthebaby-boomer
generationmovesinto retirementage,with no clearsolution
in sight. Thesedevelopmentsprovide significantopportuni-
tiesfor researchersin AI, to developassistivetechnologythat
canimprovethequalityof life of ouragingpopulation,while
helpingnursesto becomemoreeffectivein theireverydayac-
tivities.

To respondto thesechallenges,the NursebotProject was
conceived in 1998 by a multi-disciplinary teamof investi-
gatorsfrom four universities,consistingof four health-care
faculty, oneHCI/psychologyexpert,andfour AI researchers.
The goal of this project is to develop mobile robotic assis-
tantsfor nursesandelderlypeoplein varioussettings.Over
thecourseof 36 months,the teamhasdevelopedtwo proto-
typeautonomousmobilerobots,shown in Figure1.

From the many services such a robot could provide
(see[11, 16]), thework reportedherehasfocusedonthetask

Copyright c
�

2002,AmericanAssociationfor Artificial Intelligence
(www.aaai.org). All rightsreserved.

of remindingpeopleof events(e.g.,appointments)andguid-
ing them through their environments. At present,nursing
staff in assistedliving facilities spendssignificantamounts
of time escortingelderly peoplewalking from one location
to another. The numberof activities requiringnavigation is
large, ranging from regular daily events (e.g., meals),ap-
pointments(e.g., doctor appointments,physiotherapy, hair
cuts),socialevents(e.g.,visiting friends,cinema),to simply
walking for thepurposeof exercising. Many elderlypeople
move at extremelyslow speeds(e.g.,5 cm/sec),makingthe
taskof helpingpeoplearoundoneof themostlabor-intensive
in assistedliving facilities. Furthermore,the help provided
is often not of a physical nature,as elderly peopleusually
selectwalking aidsover physical assistanceby nurses,thus
preservingsomeindependence.Instead,nursesoftenprovide
importantcognitive help,in theform of reminders,guidance
andmotivation,in additionto valuablesocialinteraction.

In two day-longexperiments,our robothasdemonstrated
theability to guideelderlypeople,without theassistanceof
a nurse. This involvesmoving to a person’s room, alerting
them,informing themof anupcomingeventor appointment,
andinquiring abouttheir willingnessto be assisted.It then
involves a lengthy phasewherethe robot guidesa person,
carefullymonitoringtheperson’s progressandadjustingthe
robot’s velocity andpathaccordingly. Finally, therobotalso
servesthesecondarypurposeof providing informationto the
personupon request,suchas information aboutupcoming
communityevents,weatherreports,TV schedules,etc.

From an AI point of view, several factorsmake this task
a challengingone. In addition to the well-developedtopic
of robotnavigation[15], thetaskinvolvessignificantinterac-
tion with people. Our presentrobot Pearlinteractsthrough
speechandvisualdisplays.Whenit comesto speech,many
elderlyhave difficulty understandingevensimplesentences,
and more importantly, articulatingan appropriateresponse
in a computer-understandableway. Thosedifficulties arise
from perceptualandcognitive deficiencies,ofteninvolving a
multitudeof factorssuchasarticulation,comprehension,and
mentalagility. In addition, people’s walking abilities vary
drasticallyfrom personto person.Peoplewith walking aids
areusuallyan orderof magnitudeslower thanpeoplewith-
out, andpeopleoften stopto chator catchbreathalongthe
way. It is thereforeimperative that the robot adaptsto indi-
vidual people—anaspectof peopleinteractionthathasbeen
poorly exploredin AI androbotics.Finally, safetyconcerns
aremuchhigherwhendealingwith the elderly population,
especiallyin crowdedsituations(e.g.,diningareas).

Thesoftwaresystempresentedhereseeksto addressthese
challenges.All softwarecomponentsuseprobabilistictech-
niquesto accommodatevarious sorts of uncertainty. The
robot’s navigation systemis mostly adoptedfrom [5], and
thereforewill not be describedin this paper. On top of



Figure 1: NursebotsFlo (left) andPearl(centerandright) interact-
ing with elderlypeopleduringoneof ourfield trips.

this,oursoftwarepossessesacollectionof probabilisticmod-
ules concernedwith peoplesensing,interaction,and con-
trol. In particular, Pearl usesefficient particle filter tech-
niquesto detectandtrackpeople.A POMDPalgorithmper-
forms high-level control, arbitrating information gathering
andperformance-relatedactions.And finally, safetyconsid-
erationsare incorporatedeven into simpleperceptualmod-
ulesthrougha risk-sensitive robot localizationalgorithm. In
systematicexperiments,we found the combinationof tech-
niquesto be highly effective in dealingwith the elderly test
subjects.

Hardware,Software,And Envir onment
Figure1 shows imagesof therobotsFlo (first prototype,now
retired)andPearl(thepresentrobot).Bothrobotspossessdif-
ferentialdrivesystems.They areequippedwith two on-board
PentiumPCs,wirelessEthernet,SICK laser rangefinders,
sonarsensors,microphonesfor speechrecognition,speak-
ers for speechsynthesis,touch-sensitive graphicaldisplays,
actuatedheadunits, and stereocamerasystems.Pearldif-
fers from its predecessorFlo in many respects,including its
visual appearance,two sturdyhandle-barsaddedto provide
supportfor elderly people,a more compactdesignthat al-
lows for cargo spaceanda removabletray, doubledbattery
capacity, asecondlaserrangefinder, andasignificantlymore
sophisticatedheadunit. Many of thosechangeswerethere-
sult of feedbackfrom nursesandmedicalexpertsfollowing
deploymentof thefirst robot,Flo. Pearlwaslargelydesigned
andbuilt by theStandardRobotCompany in Pittsburgh,PA.

On thesoftwareside,bothrobotsfeatureoff-the-shelfau-
tonomousmobile robot navigation system[5, 24], speech
recognitionsoftware[20], speechsynthesissoftware[3], fast
image captureand compressionsoftware for online video
streaming,facedetectiontrackingsoftware[21], andvarious
new softwaremodulesdescribedin this paper. A final soft-
warecomponentis a prototypeof a flexible remindersystem
usingadvancedplanningandschedulingtechniques[18].

The robot’s environmentis a retirementresortlocatedin
Oakmont,PA. Likemostretirementhomesin thenation,this
facility suffers from immensestaffing shortages.All exper-
imentsso far primarily involved peoplewith relatively mild
cognitive, perceptual,or physical inabilities, thoughin need
of professionalassistance.In addition,groupsof elderly in
similarconditionswerebroughtinto researchlaboratoriesfor
testinginteractionpatterns.

Navigating with People
Pearl’s navigation systembuilds on the onedescribedin [5,
24]. In thissection,wedescribethreemajornew modules,all

concernedwith peopleinteractionandcontrol. Thesemod-
ulesovercomeanimportantdeficiency of thework described
by [5, 24], which hada rudimentaryability to interactwith
people.

Locating People
Theproblemof locatingpeopleis theproblemof determining
their � -� -locationrelative to therobot. Previousapproaches
to peopletrackingin roboticswerefeature-based:they ana-
lyzesensormeasurements(images,rangescans)for thepres-
enceof features[13, 22] as the basisof tracking. In our
case,the diversity of the environmentmandateda different
approach.Pearldetectspeopleusingmapdifferencing: the
robot learnsa map, and peopleare detectedby significant
deviationsfrom the map. Figure3a shows an examplemap
acquiredusingpreexisting software[24].

Mathematically, theproblemof peopletrackingis a com-
binedposteriorestimationproblemandmodelselectionprob-
lem. Let � be the numberof peoplenearthe robot. The
posteriorover thepeople’s positionsis givenby
��� �
	�� ���������������� ����  ���  ����� (1)

where ��� �  with !#"%$&"'� is the locationof a personat
time ( , �  thesequenceof all sensormeasurements,�  these-
quenceof all robotcontrols,and � is theenvironmentmap.
However, to usemapdifferencing,therobothasto know its
own location. The locationandtotal numberof nearbypeo-
ple detectedby therobot is clearlydependenton therobot’s
estimateof its own locationandheadingdirection. Hence,
Pearlestimatesaposteriorof thetype:
��� �
	�� ���������������� ����  ���  ���  ����� (2)

where�  denotesthesequenceof robotposes(thepath)upto
time ( . If � wasknown, estimatingthisposteriorwouldbea
high-dimensionalestimationproblem,with complexity cubic
in � for Kalmanfilters [2], or exponentialin � with particle
filters [9]. Neitherof theseapproachesis, thus,applicable:
Kalmanfilterscannotglobally localizetherobot,andparticle
filterswouldbecomputationallyprohibitive.

Luckily, undermild conditions(discussedbelow) thepos-
terior (2) canbe factoredinto �*)+! conditionallyindepen-
dentestimates:
��� �  �,�  ���  �-�.� �

�/� ��� � ����  �-�  ����� (3)

This factorizationopensthe door for a particle filter that
scaleslinearly in � . Our approachis similar (but not identi-
cal) to theRao-Blackwellizedparticlefilter describedin [10].
First, therobotpath �  is estimatedusinga particlefilter, as
in theMonteCarlolocalization(MCL) algorithm[7] for mo-
bile robotlocalization.However, eachparticlein this filter is
associatedwith a setof � particlefilters, eachrepresenting
oneof thepeoplepositionestimates��� ��� � ����  ���  ����� . These
conditionalparticlefiltersrepresentpeoplepositionestimates
conditionedonrobotpathestimates—hencecapturingthein-
herentdependenceof peopleand robot location estimates.
The dataassociationbetweenmeasurementsand peopleis
doneusingmaximumlikelihood,asin [2]. Underthe(false)
assumptionthatthismaximumlikelihoodestimatoris always
correct,ourapproachcanbeshown to convergeto thecorrect
posterior, andit doessowith updatetimelinearin � . In prac-
tice, we found that thedataassociationis correctin thevast
majority of situations.Thenestedparticlefilter formulation
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Figure 2: (a)-(d)Evolution of theconditionalparticlefilter from globaluncertaintyto successfullocalizationandtracking. (d) Thetracker
continuesto trackapersonevenasthatpersonis occludedrepeatedlyby asecondindividual.

hasa secondaryadvantagethat thenumberof people0 can
be madedependenton individual robot pathparticles. Our
approachfor estimating 0 usesthe classicalAIC criterion
for modelselection,with a prior that imposesa complexity
penaltyexponentialin 0 .

Figure2 shows resultsof thefilter in action. In Figure2a,
the robot is globally uncertain,andthenumberandlocation
of thecorrespondingpeopleestimatesvariesdrastically. As
therobotreducesits uncertainty, thenumberof modesin the
robot poseposteriorquickly becomesfinite, andeachsuch
modehasa distinctsetof peopleestimates,asshown in Fig-
ure 2b. Finally, as the robot is localized,so is the person
(Figure2c). Figure2d illustratesthe robustnessof the filter
to interferingpeople.Hereanotherpersonstepsbetweenthe
robot andits target subject.The filter obtainsits robustness
to occlusionfrom a carefully craftedprobabilisticmodelof
people’s motion 1�243 � � 657	98 3 � � ;: . This enablestheconditional
particlefilters to maintaintight estimateswhile theocclusion
takesplace,asshown in Figure2d. In a systematicanaly-
sis involving 31 trackinginstanceswith up to five peopleat
a time, the error in determiningthe numberof peoplewas
9.6%. The error in the robot position was <>= ?A@B?>=4C cm,
and the peopleposition error was as low as DE= ?F@HG>= < cm,
whencomparedto measurementsobtainedwith a carefully
calibratedstaticsensorwith @ID cmerror.

When guiding people,the estimateof the personthat is
beingguidedis usedto determinethe velocity of the robot,
sothattherobotmaintainsroughlya constantdistanceto the
person. In our experimentsin the target facility, we found
theadaptivevelocitycontrolto beabsolutelyessentialfor the
robot’s ability to copewith thehugerangeof walking paces
foundin theelderlypopulation.Initial experimentswith fixed
velocity ledalmostalwaysto frustrationonthepeople’sside,
in thattherobotwaseithertooslow or too fast.

SaferNavigation
Whennavigating in thepresenceof elderlypeople,therisks
of harmingthemthroughunintendedphysicalcontactis enor-
mous.As notedin [5], the robot’s sensorsareinadequateto
detectpeoplereliably. In particular, the laserrangesystem
measuresobstacles18 cm above ground,but is unableto de-
tect any obstaclesbelow or above this level. In the assisted
living facilities,wefoundthatpeopleareeasyto detectwhen
standingorwalking,buthardwhenonchairs(e.g.,they might
bestretchingtheir legs).Thus,therisk of accidentallyhitting
aperson’s foot dueto poorlocalizationis particularlyhigh in
denselypopulatedregionssuchasthediningareas.

Following anideain [5], werestrictedtherobot’soperation
areato avoid denselypopulatedregions, using a manually
augmentedmapof theenvironment(blacklinesin Figure3a
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Figure 3: (a) Map of the dining areain the facility, with dining
areasmarked by arrows. (b) Samplesat the beginning of global
localization,weightedexpectedcumulative risk function.

– thewhite spacecorrespondsto unrestrictedfreespace).To
staywithin its operatingarea,therobotneedsaccuratelocal-
ization,especiallyat the boundariesof this area.While our
approachyieldssufficiently accurateresultson average,it is
importantto realizethat probabilistictechniquesnever pro-
vide hardguaranteesthattherobotobeys a safetyconstraint.
To addressthisconcern,weaugmentedtherobotlocalization
particlefilter by a samplingstrategy that is sensitive to the
increasedrisk in thediningareas(seealso[19, 25]). By gen-
eratingsamplesin high-risk regions,we minimize the like-
lihood of beingmislocalizedin suchregions,or worse,the
likelihood of enteringprohibitedregions undetected.Con-
ventionalparticlefiltersgeneratesamplesin proportionto the
posteriorlikelihood 1�24K  8�L �M�N/�M�O : . Our new particlefilter
generatesrobotposesamplesin proportionto
P 24K ;: 1/26K  8�L  M�N  M�O : � 1�243 � � �8�L  M-N  M�O : (4)

where
P

is a risk functionthatspecifieshow desirableit is to
samplerobotposeK  . Therisk functionis calculatedby con-
sideringan immediatecost function Q�24K M�N : , which assigns
coststo actionsR androbotstatesK (in our case:high costs
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for violatinganareaconstraints,low costselsewhere).To an-
alyzetheeffectof poorlocalizationon thiscostfunction,our
approachutilizes an augmentedmodelthat incorporatesthe
localizeritself asa statevariable.In particular, thestatecon-
sistsof therobotposeK  , andthestateof thelocalizer, S  . The
latter is definedasaccurate( S UT D ) or inaccurate( S UTWV ).
Thestatetransitionfunctionis composedof theconventional
robotmotionmodel1�24K ;8 N �XY	 M K -XZ	�: , andasimplisticmodel
that assumeswith probability [ , that the tracker remainsin
thesamestate(goodor bad).Putmathematically:

1�26K  M S  8 N �XY	 M K �XZ	 M S �XZ	 :\T
1�24K �8 N -XZ	 M K �XZ	�:�] [>^`_�a�bY_�adc�egfh2�D`iU[ : ^E_�a�jbY_�adc�e (5)

Our approach calculates an MDP-style value function,k 24K M S : , under the assumptionthat good tracking assumes
goodcontrolwhereaspoor trackingimpliesrandomcontrol.
This is achievedby thefollowing valueiterationapproach:k 24K M S :gl imon�prq Q�26K M�N : fts uwv _ v�1�24K
x M S�x 8 K M S M�N : k 24K
x M S-x :

if S T D (goodlocalization)

q Q�26K M-N : fys uwv _ v�1�24K
x M S-x 8 K M S M�N : k 24K
x M S-x :
if S T.V (poorlocalization)

(6)

wheres is thediscountfactor. Thisgivesawell-definedMDP
that canbe solved via value iteration. The risk function is
themsimply the differencebetweengoodandbadtracking:P 26K :zT k 24K M D : i k 26K M V : . Whenappliedto the Nursebot
navigationproblem,this approachleadsto a localizational-
gorithm that preferentiallygeneratessamplesin the vicinity
of thedining areas.A samplesetrepresentinga uniform un-
certaintyis shown in Figure3b—noticetheincreasedsample
densitynearthe dining area. Extensive testsinvolving real-
world datacollectedduring robot operationshow not only
thattherobotwaswell-localizedin high-riskregions,but that
our approachalso reducedcostsafter (artificially induced)
catastrophiclocalizationfailure by 40.1%,when compared
to theplainparticlefilter localizationalgorithm.

High Level Robot Control and Dialog Management
The mostcentralnew modulein Pearl’s softwareis a prob-
abilistic algorithmfor high-level controlanddialogmanage-
ment. High-level robot control hasbeena populartopic in
AI, anddecadesof researchhasled to a reputablecollection
of architectures(e.g.,[1, 4, 12]). However, existing architec-
turesrarelytakeuncertaintyinto accountduringplanning.

Pearl’s high-level control architectureis a hierarchical
variant of a partially observable Markov decisionprocess

Observation TrueState Action Reward
pearlhello requestbegun sayhello 100
pearlwhatis like startmeds ask repeat -100
pearlwhattime is it

for will the want time say time 100
pearlwasonabc want tv askwhich station -1
pearlwasonabc want abc sayabc 100
pearlwhatis onnbc want nbc confirm channel nbc -1
pearlyes want nbc saynbc 100
pearlgo to thethat

prettygoodwhat sendrobot ask robot where -1
pearlthatthathellobe sendrobot bedroomconfirm robot place -1
pearlthebedroomany i sendrobot bedroomgo to bedroom 100
pearlgo it eightahello sendrobot ask robot where -1
pearlthekitchenhello sendrobot kitchen go to kitchen 100

Table1: An exampledialogwith anelderlyperson.Actionsin bold
font areclarificationactions,generatedby thePOMDPbecauseof
highuncertaintyin thespeechsignal.

(POMDP)[14]. POMDPsaretechniquesfor calculatingop-
timal controlactionsunderuncertainty. Thecontroldecision
is basedon the full probabilitydistribution generatedby the
stateestimator, suchasin Equation(2). In Pearl’s case,this
distributionincludesamultitudeof multi-valuedprobabilistic
stateandgoalvariables:{ robotlocation(discreteapproximation){ person’s location(discreteapproximation){ person’s status(asinferredfrom speechrecognizer){ motiongoal(whereto move){ remindergoal(whatto inform theuserof){ userinitiatedgoal(e.g.,aninformationrequest)
Overall, there are 288 plausiblestates. The input to the
POMDP is a factoredprobability distribution over these
states,with uncertaintyarising predominantlyfrom the lo-
calizationmodulesand the speechrecognitionsystem. We
conjecturethat theconsiderationof uncertaintyis important
in thisdomain,asthecostsof mistakinga replycanbelarge.

Unfortunately, POMDPsof the sizeencounteredhereare
anorderof magnitudelargerthantoday’sbestexactPOMDP
algorithmscan tackle [14]. However, Pearl’s POMDP is a
highly structuredPOMDP, where certain actionsare only
applicablein certain situations. To exploit this structure,
we developed a hierarchical version of POMDPs, which
breaksdown thedecisionmakingprobleminto acollectionof
smallerproblemsthatcanbesolvedmoreefficiently. Ourap-
proachissimilarto theMAX-Q decompositionfor MDPs[8],
but definedoverPOMDPs(wherestatesareunobserved).

The basicideaof the hierarchicalPOMDPis to partition
the actionspace—notthe statespace,sincethe stateis not
fully observable—intosmallerchunks.For Pearl’s guidance
tasktheactionhierarchy is shown in Figure4,whereabstract
actions(shown in circles)areintroducedto subsumelogical
subgroupsof lower-level actions. This actionhierarchy in-
ducesadecompositionof thecontrolproblem,whereateach
nodeall lower-level actions,if any, areconsideredin thecon-
text of a local sub-controller. At thelowestlevel, thecontrol
problemis a regular POMDP, with a reducedactionspace.
At higher levels, the control problemis alsoa POMDP, yet
involves a mixture of physical and abstractactions(where
abstractactionscorrespondto lower level POMDPs.)

Let |N be suchan abstractaction,and }�~q the control pol-
icy associatedwith the respective POMDP. The “abstract”
POMDPis thenparameterized(in termsof statesK , obser-
vations L ) by assumingthatwhenever |N is chosen,Pearluses
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Figure 5: EmpiricalcomparisonbetweenPOMDPs(with uncertainty, shown in gray)andMDPs(no uncertainty, shown in black) for high-
level robotcontrol,evaluatedon datacollectedin theassistedliving facility. Shown aretheaveragetime to taskcompletion(a), theaverage
numberof errors(b), andtheaverageuser-assigned(not modelassigned)reward(c), for theMDP andPOMDP. Thedatais shown for three
users,with good,averageandpoorspeechrecognition.

lower-level controlpolicy ���� :���6�
��� �g�������� ���4�
��� �g� ���� �4��������-��� �g�������� ���-��� �g� ���� �4������ �4�g�������� � �4�g� ���� �4����� (7)

Here
�

denotestherewardfunction. It is importantto notice
thatsucha decompositionmayonly bevalid if reward is re-
ceivedat theleafnodesof thehierarchy, andis especiallyap-
propriatewhenthe optimal control transgressesdown along
a singlepath in the hierarchy to receive its reward. This is
approximatelythecasein thePearldomain,whererewardis
received uponsuccessfullydelivering a person,or success-
fully gatheringinformationthroughcommunication.

Using the hierarchicalPOMDP, the high-level decision
makingproblemin Pearlis tractable,andanear-optimalcon-
trol policy can be computedoff-line. Thus, during execu-
tion time thecontrollersimply monitorsthestate(calculates
the posterior)andlooks up the appropriatecontrol. Table1
shows an exampledialog betweenthe robot anda testsub-
ject. Becauseof the uncertaintymanagementin POMDPs,
the robot choosesto aska clarificationquestionat threeoc-
casions.Thenumberof suchquestionsdependsontheclarity
of aperson’sspeech,asdetectedby theSphinxspeechrecog-
nition system.

An importantquestionin our researchconcernstheimpor-
tanceof handlinguncertaintyin high-level control.To inves-
tigate this, we ran a seriesof comparative experiments,all
involving real datacollectedin our lab. In oneseriesof ex-
periments,we investigatedtheimportanceof consideringthe
uncertaintyarisingfrom the speechinterface. In particular,
we comparedPearl’s performanceto a systemthat ignores
thatuncertainty, but is otherwiseidentical.Theresultingap-
proachis anMDP, similar to theonedescribedin [23]. Fig-
ure5 showsresultsfor threedifferentperformancemeasures,
andthreedifferentusers(in decreasingorderof speechrecog-
nition performance).For poor speakers, the MDP requires
lesstime to “satisfy” a requestdueto thelackof clarification
questions(Figure5a). However, its errorrateis muchhigher
(Figure5b), which negatively affects the overall reward re-
ceivedby therobot(Figure5c). Theseresultsclearlydemon-
stratetheimportanceof consideringuncertaintyatthehighest
robotcontrollevel, specificallywith poorspeechrecognition.

In a secondseriesof experiments,we investigatedtheim-
portanceof uncertaintymanagementin thecontext of highly
imbalancedcostsand rewards. In Pearl’s case,suchcosts
areindeedhighly imbalanced:askingaclarificationquestion
is much cheaperthan accidentallydelivering a personto a
wronglocation,or guidinga personwho doesnot wantto be
walked. In this experimentwe comparedperformanceusing
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twoPOMDPmodelswhichdifferedonly in theircostmodels.
One model assumeduniform costsfor all actions,whereas
thesecondmodelassumeda morediscriminative costmodel
in which thecostof verbalquestionswaslower thanthecost
of performingthewrongmotionactions.A POMDPpolicy
waslearnedfor eachof thesemodels,andthentestedexper-
imentally in our laboratory. Theresultspresentedin figure6
show that thenon-uniformmodelmakesmorejudicioususe
of confirmationactions,thusleadingto a significantlylower
errorrate,especiallyfor userswith low recognitionaccuracy.

Results
Wetestedtherobotin fiveseparateexperiments,eachlasting
onefull day. Thefirst threedaysfocusedon open-endedin-
teractionswith a largenumberof elderlyusers,duringwhich
therobotinteractedverballyandspatiallywith elderlypeople
with thespecifictaskof deliveredsweets.This allowedusto
gaugepeople’s initial reactionsto therobot.

Following this, we performedtwo daysof formal experi-
mentsduringwhich therobotautonomouslyled12 full guid-
ances,involving 6 differentelderly people. Figure7 shows
anexampleguidanceexperiment,involving anelderlyperson
who usesa walking aid. The sequenceof imagesillustrates
the major stagesof a successfuldelivery: from contacting
theperson,explainingto herthereasonfor thevisit, walking
her throughthe facility, andproviding informationafter the
successfuldelivery—in this caseon theweather.

In all guidanceexperiments,the task was performedto
completion. Post-experimentaldebriefingsillustrateda uni-
form highlevel of excitementonthesideof theelderly. Over-
all, only a few problemsweredetectedduringtheoperation.
Noneof the test subjectsshowed difficulties understanding
themajorfunctionsof therobot.They all wereabletooperate
the robot after lessthanfive minutesof introduction. How-
ever, initial flaws with a poorly adjustedspeechrecognition



(a)Pearlapproachingelderly (b) Remindingof appointment

(c) Guidancethroughcorridor (d) Enteringphysiotherapy dept.

(e)Asking for weatherforecast (f) Pearlleaves

Figure7: Exampleof asuccessfulguidanceexperiment.Pearlpicks
up thepatientoutsideherroom,remindsherof a physiotherapy ap-
pointment,walks the personto the department,andrespondsto a
requestof the weatherreport. In this interaction,the interaction
tookplacethroughspeechandthetouch-sensitivedisplay.

systemled to occasionalconfusion,which wasfixed during
thecourseof this project.An additionalproblemarosefrom
the robot’s initial inability to adaptits velocity to people’s
walking pace,which wasfound to becrucial for the robot’s
effectiveness.

Discussion
Thispaperdescribedamobileroboticassistantfor nursesand
elderly in assistedliving facilities. Building on a robotnav-
igation systemdescribedin [5, 24], new software modules
specificallyaimedat interactionwith elderlypeoplewerede-
veloped. The systemhasbeentestedsuccessfullyin exper-
imentsin an assistedliving facility. Our experimentswere
successfulin two maindimensions.First, they demonstrated
the robustnessof the various probabilistic techniquesin a
challengingreal-world task.Second,they providedsomeev-
idencetowardsthe feasibility of using autonomousmobile
robots as assistantsto nursesand institutionalizedelderly.
Oneof thekey lessonslearnedwhile developingthis robotis
that theelderlypopulationrequirestechniquesthatcancope
with their degradation(e.g.,speakingabilities)andalsopays
specialattentionto safetyissues.We view theareaof assis-
tive technologyasa prime sourcefor greatAI problemsin
thefuture.

Possiblythemostsignificantcontribution of this research
to AI is the fact that the robot’s high-level control systemis
entirely realizedby a partially observableMarkov decision
process(POMDP) [14]. This demonstratesthat POMDPs
have maturedto a level that makesthemapplicableto real-
world robotcontroltasks.Furthermore,our experimentalre-
sultssuggestthat uncertaintymattersin high-level decision

making.Thesefindingschallengea long termview in main-
streamAI thatuncertaintyis irrelevant,or atbestcanbehan-
dleduniformlyatthehigherlevelsof robotcontrol[6, 17]. We
conjectureinsteadthatwhenrobotsinteractwith people,un-
certaintyis pervasiveandhasto beconsideredatall levelsof
decisionmaking,not solelyin low-level perceptualroutines.

References
[1] R. Arkin. Behavior-BasedRobotics. MIT Press,1998.
[2] Y. Bar-ShalomandT. E. Fortmann.Tracking andData Asso-

ciation. AcademicPress,1998.
[3] A.W. Black, P. Taylor, and R. Caley. The Festival Speech

SynthesisSystem. Universityof Edinburgh,1999.
[4] R.A. Brooks. A robust layeredcontrol systemfor a mobile

robot. TR AI memo864,MIT, 1985.
[5] W. Burgard, A.B., Cremers,D. Fox, D. Hähnel, G. Lake-

meyer, D. Schulz,W. Steiner, andS. Thrun. The interactive
museumtour-guiderobot. AAAI-98

[6] G. De Giacomo,editor. NotesAAAI Fall SymposiumonCog-
nitiveRobotics, 1998.

[7] F. Dellaert,D. Fox, W. Burgard,andS. Thrun. MonteCarlo
localizationfor mobilerobots.ICRA-99

[8] T. Dietterich. TheMAXQ methodfor hierarchicalreinforce-
mentlearning.ICML-98.

[9] A. Doucet,N. deFreitas,andN.J.Gordon,editors.Sequential
MonteCarlo MethodsIn Practice. Springer, 2001.

[10] A Doucet,N. de Freitas,K. Murphy, and S. Russell. Rao-
Blackwellised particle filtering for dynamic bayesiannet-
works. UAI-2000.

[11] G.Engelberger. Services.In Handbookof IndustrialRobotics,
JohnWiley andSons,1999.

[12] E. Gat. Esl: A languagefor supportingrobustplanexecution
in embeddedautonomousagents. NotedAAAI Fall Sympo-
siumonPlanExecution, 1996.

[13] D. M. Gavrila. The visual analysisof humanmovement:A
survey. ComputerVision and Image Understanding, 73(1),
1999.

[14] L.P. Kaelbling,M.L. Littman, andA.R. Cassandra.Planning
andactingin partially observablestochasticdomains.Artifi-
cial Intelligence, 101,1998.

[15] D. Kortenkamp,R.P. Bonasso,andR. Murphy, editors. AI-
basedMobile Robots: Casestudiesof successfulrobot sys-
tems, MIT Press,1998.

[16] G. Lacey and K.M. Dawson-Howe. The application of
roboticsto a mobility aid for theelderlyblind. Roboticsand
AutonomousSystems, 23,1998.

[17] G. Lakemeyer, editor. NotesSecondInternationalWorkshop
onCognitiveRobotics, Berlin, 2000

[18] C.E.McCarthy, andM. Pollack. A Plan-BasedPersonalized
CognitiveOrthotic. AIPS-2002.

[19] P. Poupart,L.E. Ortiz, andC. Boutilier. Value-directedsam-
pling methodsfor monitoringPOMDPs.UAI-2001.

[20] M. Ravishankar. Efficient algorithmsfor speechrecognition,
1996.InternalReport.

[21] H.A. Rowley, S.Baluja,andT. Kanade.Neuralnetwork-based
facedetection. IEEE Transactionson Pattern Analysisand
MachineIntelligence, 20(1),1998.

[22] D. Schulz,W. Burgard, D. Fox, andA. Cremers. Tracking
multiple moving targetswith a mobile robot using particles
filtersandstatisticaldataassociation.ICRA-2001.

[23] S. Singh,M. Kearns,D. Litman, andM. Walker. Reinforce-
mentlearningfor spokendialoguesystems.NIPS-2000.

[24] S. Thrun, M. Beetz,M. Bennewitz, W. Burgard, A.B. Cre-
mers,F. Dellaert,D. Fox, D. Hähnel,C. Rosenberg, N. Roy,
J. Schulte,and D. Schulz. Probabilisticalgorithmsand the
interactive museumtour-guiderobot Minerva. International
Journalof RoboticsResearch, 19(11),2000.

[25] S. Thrun,Langford.J.,andV. Verma. Risk sensitive particle
filters. NIPS-2002.

[26] US Departmentof Health and Human Services. Health,
Unitedstates,1999.Healthandagingchartbook,1999.


