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Abstract

Bayesian priors offer a compact yet general
means of incorporating domain knowledge
into many learning tasks. The correctness of
the Bayesian analysis and inference, however,
largely depends on accuracy and correctness
of these priors. PAC-Bayesian methods over-
come this problem by providing bounds that
hold regardless of the correctness of the prior
distribution. This paper introduces the first
PAC-Bayesian bound for the batch reinforce-
ment learning problem with function approx-
imation. We show how this bound can be
used to perform model-selection in a trans-
fer learning scenario. Our empirical results
confirm that PAC-Bayesian policy evaluation
is able to leverage prior distributions when
they are informative and, unlike standard
Bayesian RL approaches, ignore them when
they are misleading.

1 Introduction

Prior distribution along with Bayesian inference have
been used in multiple areas of machine learning to
incorporate domain knowledge and impose general
variance-reducing constraints, such as sparsity and
smoothness, within the learning process. These meth-
ods, although elegant and concrete, have often been
criticized not only for their computational cost, but
also for their strong assumptions on the correctness of
the prior distribution. Bayesian guarantees often fail
to hold when the inference is performed with priors
that are different from the distribution of the under-
lying true model.

Frequentist methods such as Probably Approximately
Correct (PAC) learning, on the other hand, pro-
vide distribution-free convergence guarantees (Valiant,

1984). These bounds, however, are often loose and im-
practical, reflecting the inherent difficulty of the learn-
ing problem when no assumptions are made on the
distribution of the data.

Both Bayesian and PAC methods have been pro-
posed separately for reinforcement learning (Kearns
and Singh, 2002; Brafman and Tennenholtz, 2003;
Strehl and Littman, 2005; Kakade, 2003; Duff, 2002;
Wang et al., 2005; Poupart et al., 2006; Kolter and
Ng, 2009), where an agent is learning to interact with
an environment to maximize some objective function.
These methods are mostly focused on the so-called
exploration–exploitation problem, where one aims to
balance the amount of time spent on gathering infor-
mation about the dynamics of the environment and the
time spent acting optimally according to the current
estimates. PAC methods are much more conservative
and spend more time exploring the system and col-
lecting information. Bayesian methods, on the other
hand, are greedier and only solve the problem over a
limited planning horizon.

The PAC-Bayesian approach (McAllester, 1999;
Shawe-Taylor and Williamson, 1997), takes the best
of both worlds by combining the distribution-free cor-
rectness of PAC theorems with the data-efficiency of
Bayesian inference. PAC-Bayesian bounds do not re-
quire the Bayesian assumption to hold. They instead
measure the consistency of the prior over the train-
ing data, and leverage the prior only when it seems
informative. The empirical results of model selection
algorithms for classification tasks using these bounds
are comparable to some of the most popular learn-
ing algorithms, such as AdaBoost and Support Vector
Machines (Germain et al., 2009).

Fard and Pineau (2010) introduced the idea of PAC-
Bayesian model-selection in reinforcement learning
(RL) for finite state spaces. They provided PAC-
Bayesian bounds on the approximation error in the
value function of stochastic policies when a prior dis-
tribution is available either on the space of possible



models, or on the space of value functions. Model se-
lection based on these bounds provides a robust use of
Bayesian priors outside the Bayesian inference frame-
work. Their work, however, is limited to small and
discrete domains, and is mostly useful when sample
transitions are drawn uniformly across the state space.
This is problematic as most RL domains are relativity
large, and require function approximation over contin-
uous state spaces.

This paper provides the first PAC-Bayesian bound
for value function approximation on continuous state
spaces. We use results by Samson (2000) to handle
non i.i.d. data that are collected on Markovian pro-
cesses, and use this, along with general PAC-Bayesian
inequalities, to get a bound on the approximation error
of a value function sampled from any distribution over
measurable functions. We empirically evaluate these
bounds for model selection on two different continu-
ous RL domains in a knowledge-transfer setting. Our
results show that a PAC-Bayesian approach in this set-
ting is indeed able to use the prior distribution when
it is informative and matches the data, and ignore it
when it is misleading.

2 Background and Notation

A Markov Decision Process (MDP) M = (X ,A, T, R)
is defined by a (possibly infinite) set of states X ,
a set of actions A, a transition probability kernel
T : X × A → M(X ), where T (.|x, a) defines the dis-
tribution of next state given that action a is taken in
state x, and a (possibly stochastic) reward function
R : X × A → M([0, Rmax]). Throughout the paper,
we focus on finite-action, continuous state, discounted-
reward MDPs, with the discount factor denoted by
γ ∈ [0, 1). At discrete time steps, the reinforcement
learning agent chooses an action and receives a reward.
The environment then changes to a new state accord-
ing to the transition kernel.

A policy is a (possibly stochastic) function from states
to actions. The value of a state x for policy π, denoted
by V π(x), is the expected value of the discounted sum
of rewards (

∑
t γ

trt) if the agent starts in state x and
acts according to policy π. The value function satisfies
the Bellman equation:

V π(x) = R(x, π(x)) + γ

∫
V π(y)T (dy|x, π(x)). (1)

There are many methods developed to find the value of
a policy (policy evaluation) when the transition and re-
ward functions are known. Among these there are dy-
namic programming methods in which one iteratively
applies the Bellman operator (Sutton and Barto, 1998)
to an initial guess of the optimal value function. When

the transition and reward models are not known, one
can use a finite sample set of transitions to learn an
approximate value function. Least-squares temporal
difference learning (LSTD) and its derivations (Boyan,
2002; Lagoudakis and Parr, 2003) are among the meth-
ods used to learn a value function based on a finite
sample.

3 A general PAC-Bayes bound

We begin by first stating a general PAC-Bayes bound.
In the next section, we use this result to derive our
main bound for the approximation error in an RL set-
ting.

Let F be a class of real-valued functions over a well-
behaved domain X (i.e., X could be a bounded mea-
surable subset of a Euclidean space). For ease of
presentation, we assume that F has countably many
functions. For a measure ρ over F , and a functional,

R : F → R, we define ρR def
=

∫
R(f)dρ(f).

Theorem 1. Let R be a random functional over F
with a bounded range. Assume that for some C > 0,
c > 1, for any 0 < δ < 1 and f ∈ F , w.p. 1− δ,

R(f) ≤
√

log(C/δ)

c
. (2)

Then, for any measure ρ0 over F , w.p. 1 − δ, for all
measures ρ over F :

ρR ≤

√
log( 1+C(c−1)

δ ) +K(ρ, ρ0)

c− 1
, (3)

where K(ρ, ρ0) denotes the Kullback-Leibler divergence
between ρ and ρ0.

The proof (included in the appendix) is a straight-
forward generalization of the proof presented by
Boucheron et al. (2005).

4 Application to RL

Consider some MDP, with state space X , and a policy
π whose stationary distribution ρπ exists. Let Dn =
((Xi, Ri, X ′

i+1)
n
i=1) be a random sample of size n such

that Xi ∼ ρπ, (X ′
i+1, Ri) ∼ Pπ(·|Xi), where Pπ is the

Markov kernel underlying policy π: The ith datum
(Xi, Ri, X ′

i+1) is an elementary transition from state
Xi to state X ′

i+1 while policy π is followed and the
reward associated with the transition isRi. Further, to
simplify the exposition, let (X,R,X ′) be a transition
whose joint distribution is the same as the common
joint of (Xi, Ri, X ′

i+1).



Define the functionals R,Rn over the space of real-
valued, bounded measurable functions over X as fol-
lows: Let V : X → R be such a function. Then

R(V ) = E
[{

R+ γV (X ′)− V (X)
}2

]
,

Rn(V ) =
1

n

n∑

i=1

{
Ri + γV (X ′

i)− V (Xi)
}2

.

The functional R is called the squared sample Bell-
man error, while Rn is the empirical squared sample
Bellman error. Clearly, E [Rn(V )] = R(V ) holds. The
following lemma (proved in the appendix) is a concen-
tration bound connecting R and Rn.

Lemma 2. Under proper mixing conditions for the
sample, and assuming that the random rewards are
sub-Gaussian, there exists constants c1 > 0, c2 ≥ 1
which depend only on Pπ such that for any Vmax > 0,
for any measurable function V bounded by Vmax, and
any 0 < δ < 1, w.p. 1− δ,

R(V )−Rn(V ) ≤
√

V 2
maxc1
n

log
(c2
δ

)
. (4)

Hence, by Theorem 1, for any countable set F of func-
tions V bounded by Vmax, for any distribution µ0 over
these functions, if n > V 2

maxc1, then for all 0 < δ < 1,
w.p. 1− δ, for all measures µ over F :

µ(R−R n) ≤

√√√√√
log

(
c2n

c1V 2
maxδ

)
+K(µ, µ0)

n
V 2
maxc1

− 1
. (5)

Now, we show how this bound can be used to derive a
PAC-Bayes bound on the error of a value function V
that is drawn from an arbitrary distribution over mea-
surable functions. For a distribution ρ over the state
space X , let ‖ · ‖ρ be the weighted L2 norm: ‖V ‖2ρ =∫
[V (x)]2dρ(x). Further, let Bπ be the Bellman oper-

ator underlying π: BπV (x) = E [R+ γV (X ′)|X = x].
Fix some V . Since Bπ is a γ-contraction w.r.t. the
norm ‖ · ‖ρπ , a standard argument shows that (Bert-
sekas and Tsitsiklis, 1996):

‖V − V π‖ρπ ≤
‖BπV − V ‖ρπ

1− γ
. (6)

Now, using the variance decomposition Var [U ] =
E
[
U2

]
−E [U ]2, we get R(V ) = ‖BπV −V ‖2ρπ+Γπ(V ),

where Γπ(V ) = E [Var [R+ γV (X ′)|X]] (see, e.g.,

(Antos et al., 2008)).1 Thus, for ε2π(V ) = ‖V − V π‖2ρπ ,

ε2π(V ) ≤ 1

(1− γ)2
[R(V )− Γπ(V )] . (7)

Combining this inequality with (5), we get the follow-
ing result:

Theorem 3. Fix a countable set F of real-valued,
measurable functions with domain X , which are
bounded by Vmax. Assume that the conditions of
Lemma 2 hold and let c1, c2 be as in this lemma. Fix
any measure µ0 over these functions. Assume that
n > V 2

maxc1. Then, for all 0 < δ < 1, with probability
1− δ, for all measures µ over F :

µε2π ≤ 1

(1− γ)2

{
µRn +

√√√√√
log

(
c2n

c1V 2
maxδ

)
+K(µ, µ0)

n
V 2
maxc1

− 1

−µE [Γπ]

}
.

Further, the same bound holds for
∥∥V̄µ − V π

∥∥2
ρπ , where

V̄µ =
∫
V dµ(V ) is the µ-average of value functions

from F .

Proof. The first statement follows from (7) combined
with (5), as noted earlier. To see this just re-
place R(V ) in (7) with R(V ) − Rn(V ) + Rn(V ).
Then, integrate both sides with respect to µ and ap-
ply (5) to bound µ(R − Rn). The second part fol-
lows from the first part, Fubini’s theorem and Jensen’s

inequality:
∥∥V̄µ − V π

∥∥2
ρπ =

∥∥∫ (V π − V )dµ(V )
∥∥2
ρπ ≤

∫
‖V π − V ‖2ρπ dµ(V ) = µε2π.

The theorem bounds the expected error of approximat-
ing V π with a value function drawn randomly from
some distribution µ. Note that in this theorem, µ0

must be a fixed distribution, chosen a priori (i.e. prior
distribution), but µ can be chosen in a data dependent
manner, i.e., it can be a “posterior” distribution.

Notice that there are three elements to the above
bound (right hand side). The first term is the em-
pirical component of the bound, which enforces the
selection of solutions with smaller empirical Bellman
residuals. The second term is the Bayesian compo-
nent of the bound, which penalizes distributions that
are far from the prior. The third term corrects for the
variance in the return at each state.

1Here, Var [U |V ] = E
[
(U − E [U |V ])2|V

]
is the condi-

tional variance of U as usual. We shall also use the sim-
ilarly defined conditional covariance, Cov [(U1, U2)|V ] =
E
[
(U1 − E [U1|V ])(U2 − E [U2|V ])!|V

]
. When U1 = U2,

we will also use Cov [U1|V ]
def
= Cov [(U1, U2)|V ].



If we can empirically estimate the right hand side of
the above inequality, then we can use the bound in
an algorithm. For example, we can derive a PAC-
Bayesian model-selection algorithm that searches in
the space of posteriors µ so as to minimize the upper
bound.

4.1 Linearly parametrized classes of
functions

Theorem 3 is presented for any countable families of
functions. One can extend this result to sufficiently
regular classes of functions (which can carry measures)
without any problems.2 Here we consider the case
where F is the class of linearly parametrized functions
with bounded parameters,

FC =
{
θ#φ : ‖θ‖ ≤ C

}

where φ : X → Rd is some measurable function such

that Fmax
def
= supx∈X ‖φ(x)‖2 < ∞. In this case, the

measures can be put on the ball { θ : ‖θ‖ ≤ C }.

Let us now turn to the estimation of the variance term.
Assuming that the reward for each transition is inde-
pendent of the next state, one gets

Var [R+ γV (X ′)|X] = Var [R|X]

+γ2Var [V (X ′)|X] .

Now, if Vθ = φ#θ, then:

Var [V (X ′)|X] = θ#Cov [φ(X ′)|X] θ.

Assuming homoscedastic variance for the rewards, and
defining σ2

R = Var [R] and Σφ = E [Cov [φ(X ′)|X]], we
get:

Var [R+ γV (X ′)|X] = σ2
R + γ2θ#Σφθ .

4.2 Estimating the constants

In some cases the terms σ2
R and Σφ are known (e.g.,

σ2
R = 0 when the rewards are a deterministic function

of the start state and action, and Σφ = 0 when the
dynamics is deterministic). An alternative is to esti-
mate these terms empirically. This can be done by,
e.g., double sampling of next states (assuming one has
access to a generative model, or if one can reset the
state).3 If such estimates are generated based on finite
sample sets, then we might need to add extra devia-
tion terms to the bound of Theorem 3. For simplicity,

2The extension presents only technical challenges, but
leaves the result intact and hence is omitted.

3Alternately, one can co-estimate the mean and vari-
ance terms (Sutton et al., 2009), keeping a current guess of
them and updating both estimates as new transitions are
observed.

we assume that these terms are either known or can be
estimated on a separate dataset of many transitions.
Examples of such cases are studied in the empirical
results.

The constant c2, which depends on the mixing condi-
tion of the process, can also be estimated if we have
access to a generative model. There are upper bounds
for c2 when the sample is a collection of independent
trajectories of length less than h.

5 Empirical Results

In this section, we investigate how the bound of Theo-
rem 3 can be used in a model selection mechanism for
transfer learning in the RL setting. One experiment
is presented on the well-known mountain car problem,
the other focuses on a generative model of epileptic
seizures built from real-world data.

5.1 Case Study: Mountain Car

We design a transfer learning experiment on the Moun-
tain Car domain (Sutton and Barto, 1998), where the
goal is to drive an underpowered car beyond a cer-
tain altitude up a mountain. We refer the reader to
the reference for details of the domain. We learn the
optimal policy (name it π) on the original Mountain
Car problem (γ = 0.9, reward = 1 passed the goal
threshold and 0 otherwise). Note that the reward and
the dynamics are deterministic, therefore σ2

R = 0 and
Σφ = 0. The task is to learn the value function on
the original domain, and use that knowledge in simi-
lar (though not identical) environments to accelerate
the learning process in those new environments. (The
other environments will be described later.)

We estimate the value of π on the original domain with
tile coding (4 tiles of size 8× 8). Let θ0 be the LSTD
solution on a very large sample set in the original do-
main. To transfer the domain knowledge from this
problem, we construct a prior distribution µ0: prod-
uct of Gaussians with mean θ0 and variance σ2

0 = 0.01.

In a new environment, we collect a set of trajectories
(100 trajectories of length 5), and search in the space of
λ-parametrized posterior measures, defined as follows:
measure µλ is the product of Gaussians with mean(

λθ0
σ2
0
+ θ̂

σ̂2

)/(
λ
σ2
0
+ 1

σ̂2

)
and variance

(
λ
σ2
0
+ 1

σ̂2

)−1
,

where θ̂ is the LSTD solution based on the sample set
on the new environment, and σ̂2 (variance of the em-
pirical estimate) is set to 0.01. The search for the best
λ-parameterized posterior is driven by our proposed
PAC-Bayes upper bound on the approximation error.
When λ = 0, µλ will be a purely empirical estimate,
whereas when λ = 1, we get the Bayesian posterior for



the mean of a Gaussian with known variance (standard
Bayesian inference with empirical priors).

Note that because the Mountain Car is a deterministic
domain, the variance term of Theorem 3 is 0. As we
use trajectories with known length, we can also bound
the other constants in the bound and evaluate the
bound completely empirically based on the observed
sample set.

We test this model-selection method on two new envi-
ronments. The first is a mountain domain very similar
to the original problem, where we double the effect
of the acceleration of the car. The true value func-
tion of this domain is close the original domain, and
so we expect the prior to be informative (and thus λ
to be close to 1). In the second domain, we change
the reward function such that it decreases, inversely
proportional to the car’s altitude: r(x) = 1 − h(x),
where h(x) ∈ [0, 1] is the normalized altitude at state
x. The value function of π under this reward function
is largely different from that of the original one, which
means that the prior distribution is misleading, and
the empirical estimate should be more reliable (and λ
close to 0).

Table 1 reports the average true error of approximat-
ing V π using different methods over 100 runs (purely
empirical method is when λ = 0, Bayesian is when
λ = 1). This corresponds to the left hand side of The-
orem 3 for these methods. For the similar environ-
ment, the PAC-Bayes bound is minimized consistently
with λ = 1, indicating that the method is fully us-
ing the Bayesian prior. The error is thus decreased to
less than a half of that of the empirical estimate. For
the environment with largely different reward function,
standard Bayesian inference results in poor approxi-
mation, whereas the PAC-Bayes method is selecting
small values of λ and is mostly ignoring the prior.

Table 1: Error in the estimated value function V π

(
∫
‖V − V π‖2ρπ dµ(V )) on the Mountain Car domain.

The last row shows the value of the λ parameter se-
lected by the PAC-Bayesian method.

Similar Env Different Env

Purely empirical 2.35± 0.12 0.03± 0.01
Bayesian 1.03± 0.09 2.38± 0.05

PAC-Bayes 1.03± 0.09 0.07± 0.01

λPAC−Bayes 1 0.06± 0.01

To further investigate how the value function estimate
changes with these different methods, we consider an
estimate of the value for the state when the car is at
the bottom of the hill. This point estimate is con-
structed from the PAC-Bayes estimate using the value
function obtained by using only the mean of µλ. To

get a sense of the dependence of this estimate on the
randomness of the sample the estimate is constructed
over 100 runs. We also obtain these estimates using
a Bayes estimate and purely empirical estimate. Fig-
ure 5.1(left) shows a normal fit to the histogram of the
resulting estimates, for the purely empirical and the
PAC-Bayes estimates. As it can be seen, the distri-
bution of PAC-Bayes estimates (which coincides with
the Bayesian posterior as the best λ is consistently 1
in this case) is centered around the correct value, but
is more peaked than the empirical distribution. This
shows that the method is using the prior to converge
faster to the correct value.

Figure 5.1(right) compares the distribution of the es-
timated values for the highly different environment.
We can see that, as expected, the Bayesian estimate
is heavily biased due to the use of a misleading prior.
The PAC-Bayes estimate is only slightly biased away
from the empirical one with the same variance on the
value. Again, this confirms that PAC-Bayes model-
selection is largely ignoring the prior when the prior is
misleading.
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Figure 1: Distribution of the estimated value function
on similar (left) and different (right) environments

5.2 Case Study: Epilepsy Domain

We also evaluate our method on a more complex do-
main. The goal of the RL agent here is to apply
direct electrical neurostimulation such as to suppress
epileptiform behavior. We use a generative model con-
structed from real-world data collected on slices of rat
brain tissues (Bush et al., 2009); the model is available
in the RL-Glue framework. Observations are gener-
ated over a 4-dimensional real-valued state space. The
action choice corresponds to selecting the frequency at
which neurostimulation is applied. The reward is −1
for steps when a seizure is occurring, −1/40 for each
stimulation pulse, and 0 otherwise.

We first apply the best clinical fixed rate policy (stim-
ulation is applied at a consistent 1Hz) to collect a large
sample set (Bush et al., 2009). We then use LSTD to
learn a linear value function over the original feature
space. Similar to the experiment described above, we
construct a prior (with a similar mean and variance
structure), and use it for knowledge transfer in two



new cases. This time, we keep the dynamics and re-
ward function intact and instead change the policy.
The first modified policy we consider applies stimula-
tion at a fixed rate of 2Hz; this is expected to have
a similar value function as the original (1Hz) policy.
The other policy we consider applies no stimulation;
this is expected to have a very different value function
as the seizures are not suppressed.

Table 2: The error of value-function estimates
(
∫
‖V − V π‖2ρπ dµ(V )) on the Epilepsy domain.

2 Hz Stimulation No Stimulation

Empirical 0.0044± 0.0007 0.54± 0.06
Bayesian 0.0013± 0.0001 0.86± 0.07

PAC-Bayes 0.0022± 0.0004 0.69± 0.08

λPAC−Bayes 0.62± 0.05 0.30± 0.05

We sample 10,000 on-policy trajectories of length 1
and use them with the PAC-Bayes model-selection
mechanism described previously (with similar λ-
parametrized posterior family on the θ parameters,
γ = 0.8) to get estimates of the value function. Ta-
ble 2 summarizes the performance of different methods
on the evaluation of the new policies (averaged over
50 runs). The results are not as polarized as those
of the Mountain Car experiment, partly because the
domain is noisier, and because the prior is neither ex-
clusively informative or misleading. Nonetheless, we
observe that the PAC-Bayes method is using the prior
more (λ averaging around 0.62) in the case of the 2Hz
policy, which is consistent with clinical evidence show-
ing that 1Hz and 2Hz have similar effect (Bush et al.,
2009), whereas the prior is considered less (λ averaging
around 0.30) in the case of the 0Hz policy which has
substantially (though not entirely) different effects.

6 Discussion

This paper introduces the first PAC-Bayesian bound
for policy evaluation with function approximation and
general state spaces. We demonstrate how such
bounds can be used for value function estimation based
on finite sample sets. Our empirical results show that
PAC-Bayesian model-selection uses prior distributions
when they are informative, and ignores them when
they are misleading. Our results thus far focus on the
policy evaluation case. This approach can be used in
a number of applications, including transfer learning,
as explored above.

Model-selection based on error bounds has been stud-
ied previously with regularization techniques (Farah-
mand et al., 2009). These bounds are generally tighter
for point estimates, as compared to the distributions

used in this work. However, our method is more gen-
eral as it could incorporate arbitrary domain knowl-
edge into the learning algorithm with any type of prior
distribution. It can of course use sparsity or smooth-
ness priors, which correspond to well-known regular-
ization methods.

An alternative is to derive margin bounds, similar
to those of large-margin classifiers, using PAC-Bayes
techniques. This was recently done by Fard and
Pineau (2010) in the discrete case. The extension to
continuous domains with general function approxima-
tion is an interesting future work.

This work does not address the application of PAC-
Bayes bounds to derive exploration strategies for the
RL problem. Seldin et al. (2011b,a) have studied
the exploration problem for multiarmed bandits and
have provided algorithms based on PAC-Bayes anal-
ysis of martingales. Extensions to contextual bandits
and more general RL settings remain interesting open
problems.
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7 Appendix

7.1 Proof of Theorem 1

Proof. Let ∆ be some functional over F . For some
real-valued function over the reals g, we will use g(∆)

to denote the functional over F which maps f ∈ F
to g(∆(f)). When g is measurable, this allows us to
write ρ0g(∆), where ρ0 is a measure over F .

For any functional ∆ over F , by the convex duality of
relative entropy, we have

ρ∆ ≤ inf
λ>0

1

λ

{
log

(
ρ0e

λ∆
)
+K(ρ, ρ0)

}
.

We can apply this to ∆(f) = (R(f))2+. Let λ be a
positive real to be chosen later. Then, we will see that
it will be sufficient to bound the right tail probabilities
of ρ0eλ∆(f). By Markov’s inequality and Fubini, for
ε > 0,

P
(
ρ0e

λ∆ ≥ ε
)
≤ ε−1 E

[
ρ0e

λ∆
]
= ε−1ρ0E

[
eλ∆

]
,

where we used the boundedness of R. Now, fix some
f ∈ F . Then,

E
[
eλ∆(f)

]
= 1 +

∫ ∞

1
P
(
eλ∆(f) ≥ t

)
dt

= 1 +

∫ ∞

0
P (λ∆(f) ≥ t) et dt

= 1 +

∫ ∞

0
P
(
R(f) ≥

√
t

λ

)
et dt

≤ 1 + C

∫ ∞

0
e−c(t/λ)+t dt by (2)

= 1 +
C

c/λ− 1
= 1 + C(c− 1) ,

where in the last step we have chosen λ = c−1. Hence,
P
(
ρ0eλ∆ ≥ ε

)
≤ 1+C(c−1)

ε . Let ε = (1+C(c−1))/δ to
get P

(
log ρ0eλ∆ ≥ log((1 + C(c− 1))/δ)

)
≤ δ. Hence,

ρ∆ ≤ log((1 + C(c− 1))/δ) +K(ρ, ρ0)

c− 1

holds w.p. 1− δ. The proof is finished by noting that

ρ(R)+ ≤
√

ρ(R)2+ =
√

ρ∆ .

7.2 Proof of Lemma 2

In this section we give an extension of Bernstein’s in-
equality based on Samson (2000).

Let X1, . . . , Xn be a time-homogeneous Markov chain
with transition kernel P (·|·) taking values in some mea-
surable space X . We shall consider the concentration
of the average of the Hidden-Markov Process

(X1, f(X1)), . . . , (Xn, f(Xn)),



where f : X → [0, B] is a fixed measurable function.
To arrive at such an inequality, we need a characteri-
zation of how fast (Xi) forgets its past.

For i > 0, let P i(·|x) be the i-step transition prob-
ability kernel: P i(A|x) = P (Xi+1 ∈ A |X1 = x) (for
all A ⊂ X measurable). Define the upper-triangular
matrix Γn = (γij) ∈ Rn×n as follows:

γ2
ij = sup

(x,y)∈X 2

∥∥P j−i(·|x)− P j−i(·|y)
∥∥
TV

. (8)

for 1 ≤ i < j ≤ n and let γii = 1 (1 ≤ i ≤ n).

Matrix Γn, and its operator norm ‖Γn‖ w.r.t. the Eu-
clidean distance, are the measures of dependence for
the random sequence X1, X2, . . . , Xn. For example if
the Xis are independent, Γn = I and ‖Γn‖ = 1. In
general ‖Γn‖, which appears in the forthcoming con-
centration inequalities for dependent sequences, can
grow with n. Since the concentration bounds are ho-
mogeneous in n/ ‖Γn‖2, a larger value ‖Γn‖2 means
a smaller “effective” sample size. This motivates the
following definition.

Definition 4. We say that a time-homogeneous
Markov chain uniformly quickly forgets its past if
τ = supn≥1 ‖Γn‖2 < +∞. Further, τ is called the
forgetting time of the chain.

Conditions under which a Markov chain uniformly
quickly forgets its past are of major interest. The fol-
lowing proposition, extracted from the discussion on
pages 421–422 of the paper by Samson (2000), gives
such a condition.

Proposition 5. Let µ be some nonnegative measure
on X with nonzero mass µ0. Let P i be the i-step tran-
sition kernel as defined above. Assume that there exists
some integer r such that for all x ∈ X and all measur-
able sets A,

P r(A|x) ≤ µ(A). (9)

Then,

‖Γn‖ ≤
√
2

1− ρ
1
2r

,

where ρ = 1− µ0.

Meyn and Tweedie (2009) call homogeneous Markov
chains that satisfy the majorization condition (9) uni-
formly ergodic. We note in passing that there are other
cases when ‖Γn‖ is known to be independent of n.
Most notable, this holds when the Markov chain is con-
tracting. The matrix Γn can also be defined for more
general dependent processes and such that the theo-
rem below remains valid. With such a definition, ‖Γn‖
can be shown to be bounded for general Φ-dependent
processes.

The following result is a trivial corollary of Theorem 2
of Samson (2000) (Theorem 2 is stated for empirical
processes and can be considered as a generalization
of Talagrand’s inequality to dependent random vari-
ables):

Theorem 6. Let f be a measurable function on X
whose values lie in [0, B], (Xi)1≤i≤n be a homogeneous
Markov chain taking values in X and let Γn be the
matrix with elements defined by (8). Let

Z =
1

n

n∑

i=1

f(Xi).

Then, for every ε ≥ 0,

P (Z − E [Z] ≥ ε) ≤ exp

(
− ε2 n

2B ‖Γn‖2 (E [Z] + ε)

)
,

P (E [Z]− Z ≥ ε) ≤ exp

(
− ε2 n

2B ‖Γn‖2 E [Z]

)
.

Lemma 2 is an immediate consequence of this theorem.


