
MDPs with Non-Deterministic Policies

Mahdi Milani Fard
School of Computer Science

McGill University
Montreal, Canada

mmilan1@cs.mcgill.ca

Joelle Pineau
School of Computer Science

McGill University
Montreal, Canada

jpineau@cs.mcgill.ca

Abstract

Markov Decision Processes (MDPs) have been extensively studied and used in the
context of planning and decision-making, and many methods exist to find the opti-
mal policy for problems modelled as MDPs. Although finding the optimal policy
is sufficient in many domains, in certain applications such as decision support sys-
tems where the policy is executed by a human (rather than a machine), finding all
possible near-optimal policies might be useful as it provides more flexibility to
the person executing the policy. In this paper we introduce the new concept of
non-deterministic MDP policies, and address the question of finding near-optimal
non-deterministic policies. We propose two solutions to this problem, one based
on a Mixed Integer Program and the other one based on a search algorithm. We
include experimental results obtained from applying this framework to optimize
treatment choices in the context of a medical decision support system.

1 Introduction

Markov Decision Processes (MDPs) have been extensively studied in the context of planning and
decision-making. In particular, MDPs have emerged as a useful framework for optimizing action
choices in the context of medical decision support systems [1, 2, 3, 4]. Given an adequate MDP
model (or data source), many methods can be used to find a good action-selection policy. This pol-
icy is usually a deterministic or stochastic function [5]. But policies of these types face a substantial
barrier in terms of gaining acceptance from the medical community, because they are highly pre-
scriptive and leave little room for the doctor’s input. In such cases, where the actions are executed
by a human, it may be preferable to instead provide several (near-)equivalently good action choices,
so that the agent can pick among those according to his or her own heuristics and preferences. 1

To address this problem, this paper introduces the notion of a non-deterministic policy 2, which is
a function mapping each state to a set of actions, from which the acting agent can choose. We aim
for this set to be as large as possible, to provide freedom of choice to the agent, while excluding
any action that is significantly worse than optimal. Unlike stochastic policies, here we make no
assumptions regarding which action will be executed. This choice can be based on the doctor’s
qualitative assessment, patient’s preferences, or availability of treatment.

While working with non-deterministic policies, it is important to ensure that by adding some free-
dom of choice to the policy, the worst-case expected return of the policy is still close enough to the
optimal value. We address this point by providing guarantees on the expected return of the non-
deterministic policy. We define a set of optimization problems to find such a policy and provide
two algorithms to solve this problem. The first is based on a Mixed Integer Program formulation,
which provides the best solution—in the sense of maximizing the choice of action, while remaining

1This is especially useful given that human preferences are often difficult to quantify objectively, and thus
difficult to incorporate in the reward function.

2Borrowing the term “non-deterministic” from the theory of computation, as opposed to deterministic or
stochastic actions.

1

within an allowed performance-loss threshold—but with high computational cost. Then we describe
a simple search algorithm that can be much more efficient in some cases.

The main contributions of this work are to introduce the concept of non-deterministic policies, pro-
vide solution methods to compute such policies, and demonstrate the usefulness of this new model
for providing acceptable solutions in medical decision support systems. From a pratical perspective,
we aim to improve the acceptability of MDP-based decision-support systems.

2 Non-Deterministic Policies

In this section, we formulate the concept of non-deterministic policies and provide some definitions
that are used throughout the paper.

An MDP M = (S,A, T,R) is defined by a set of states S, a function A(s) mapping each state to a
set of action, a transition function T (s, a, s′) defined as:

T (s, a, s′) = p(st+1 = s′|st = s, at = a),∀s, s′ ∈ S, a ∈ A(s), (1)

and a reward function R(s, a) : S × A → [Rmin, Rmax]. Throughout the paper we assume finite
state, finite action, discounted reward MDPs, with the discount factor denoted by γ.

A deterministic policy is a function from states to actions. The optimal deterministic policy is the
policy that maximizes the expected discounted sum of rewards (

∑
t γ

trt) if the agent acts according
to that policy. The value of a state-action pair (s, a) according to the optimal deterministic policy
on an MDP M = (S,A, T,R) satisfies the Bellman optimality equation [6]:

Q∗M (s, a) = R(s, a) + γ
∑
s′

(
T (s, a, s′) max

a′∈A(s′)
Q∗M (s′, a′)

)
. (2)

We further define the optimal value of state s denoted by V ∗M (s) to be maxa∈A(s)Q
∗
M (s, a).

A non-deterministic policy is a function that maps each state s to a non-empty set of actions
denoted by Π(s) ⊆ A(s). The agent can choose to do any action a ∈ Π(s) whenever the MDP is in
state s. Here we will provide a worst-case analysis, presuming that the agent may choose the worst
action in each state.

The value of a state-action pair (s, a) according to a non-deterministic policy Π on an MDP M =
(S,A, T,R) is given by the recursive definition:

QΠ
M (s, a) = R(s, a) + γ

∑
s′

(
T (s, a, s′) min

a′∈Π(s′)
QΠ

M (s′, a′)
)
, (3)

which is the worst-case expected return under the allowed set of actions. We define the value of state
s according to a non-deterministic policy Π denoted by V Π

M (s) to be mina∈Π(s)Q
Π
M (s, a).

To calculate the value of a non-deterministic policy, we construct an MDP M ′ = (S′, A′, R′, T ′)
where S′ = S, A′ = Π, R′ = −R and T ′ = T . It is straight-forward to show that:

QΠ
M (s, a) = −Q∗M ′(s, a). (4)

A non-deterministic policy Π is said to be augmented with state-action pair (s, a) denoted by Π′ =
Π + (s, a), if it satisfies:

Π′(s′) =
{

Π(s′), s′ 6= s

Π(s′) ∪ {a}, s′ = s
(5)

If a policy Π can be achieved by a number of augmentations from a policy Π′, we say that Π
includes Π′. The size of a policy Π, denoted by |Π|, is the sum of the cardinality of the action sets
in Π: |Π| = ∑s |Π(s)|.
A non-deterministic policy Π is said to be non-augmentable according to a constraint Ψ if and only
if Π satisfies Ψ, and for any state-action pair (s, a), Π + (s, a) does not satisfy Ψ. In this paper we

2

will be working with constraints that have this particular property: if a policy Π does not satisfy Ψ,
any policy that includes Π does not satisfy Ψ. We will refer to such constraints as being monotonic.

A non-deterministic policy Π on an MDP M is said to be ε-optimal (ε ∈ [0, 1]) if we have:3

V Π
M (s) ≥ (1− ε)V ∗M (s), ∀s ∈ S. (6)

This can be thought of as a constraint Ψ on the space of non-deterministic policies which makes sure
that the worst-case expected return is within some range of the optimal value. It is straight forward
to show that this constraint is monotonic.

A conservative ε-optimal non-deterministic policy Π on an MDP M is a policy that is non-
augmentable according to this constraint:

R(s, a) + γ
∑
s′

(T (s, a, s′)(1− ε)V ∗M (s′)) ≥ (1− ε)V ∗M (s), ∀a ∈ Π(s). (7)

This constraint indicates that we only add those actions to the policy whose reward plus (1 − ε)
of the future optimal return is within the sub-optimal margin. This ensures that non-deterministic
policy is ε-optimal by using the inequality:

QΠ
M (s, a) ≥ R(s, a) + γ

∑
s′

(T (s, a, s′)(1− ε)V ∗M (s′)) , (8)

instead of solving Eqn 3 and using the inequality constraint in Eqn 6. Applying Eqn 7 guarantees
that the non-deterministic policy is ε-optimal while it may still be augmentable according to Eqn 6,
hence the name conservative. It can also be shown that the conservative policy is unique.

A non-augmentable ε-optimal non-deterministic policy Π on an MDP M is a policy that is not
augmentable according to the constraint in Eqn 6. It is easy to show that any non-augmentable
ε-optimal policy includes the conservative policy. However, non-augmentable ε-optimal policies
are not necessarily unique. In this paper we will focus on a search problem in the space of non-
augmentable ε-optimal policies, trying to maximize some criteria. Specifically, we will be trying
to find non-deterministic policies that give the acting agent more options while staying within an
acceptable sub-optimal margin.

We now present an example that clarifies the concepts introduced so far. To simplify drawing graphs
of the MDP and policies, we assume deterministic transitions in this example. However the concepts
apply to any probabilistic MDP as well. Fig 1 shows a sample MDP. The labels on the arcs show
action names and the corresponding rewards are shown in the parentheses. We assume γ ' 1 and
ε = 0.05. Fig 2 shows the optimal policy of this MDP. The conservative ε-optimal non-deterministic
policy of this MDP is shown in Fig 3.

a(0)

b(−3)

a(0)

b(−3)

a(100)

b(99)

a(0)

a(0)

S1 S2 S3 S4 S5

Figure 1: Example MDP

a(0) a(0) a(100) a(0)

a(0)

S1 S2 S3 S4 S5

Figure 2: Optimal policy

a(0) a(0) a(100)

b(99)

a(0)

a(0)

S1 S2 S3 S4 S5

Figure 3: Conservative policy

Fig 4 includes two possible non-augmentable ε-optimal policies. Although both policies in Fig 4 are
ε-optimal, the union of these is not ε-optimal. This is due to the fact that adding an option to one
of the states removes the possibility of adding options to other states, which illustrates why local
changes are not always appropriate when searching in the space of ε-optimal policies.

3In some of the MDP literature, ε-optimality is defined as an additive constraint (QΠ
M ≥ Q∗M − ε) [7]. The

derivations will be analogous in that case.

3

a(0) a(0)

b(−3)

a(100)

b(99)

a(0)

a(0)

S1 S2 S3 S4 S5

a(0)

b(−3)

a(0) a(100)

b(99)

a(0)

a(0)

S1 S2 S3 S4 S5

Figure 4: Two non-augmentable policies

3 Optimization Problem

We formalize the problem of finding an ε-optimal non-deterministic policy in terms of an optimiza-
tion problem. There are several optimization criteria that can be formulated, while still complying
with the ε-optimal constraint. Notice that the last two problems can be defined both in the space of
all ε-optimal policies or only the non-augmentable ones.

• Maximizing the size of the policy: According to this criterion, we seek non-augmentable
ε-optimal policies that have the biggest overall size. This provides more options to the
agent while still keeping the ε-optimal guarantees. The algorithms proposed in this paper
use this optimization criterion. Notice that the solution to this optimization problem is non-
augmentable according to the ε-optimal constraint, because it maximizes the overall size of
the policy.

• Maximizing the margin: We aim to maximize margin of a non-deterministic policy Π:

ΦM (Π) = min
s

(
min

a∈Π(s),a′ /∈Π(s)
(Q(s, a)−Q(s, a′))

)
. (9)

This optimization criterion is useful when one wants to find a clear separation between the
good and bad actions in each state.

• Minimizing the uncertainly: If we learn the models from data we will have some uncer-
tainly about the optimal action in each state. We can use some variance estimation on the
value function [8] along with a Z-Test to get some confidence level on our comparisons and
find the probability of having the wrong order when comparing actions according to their
values. Let Q be the value of the true model and Q̂ be our empirical estimate based on
some dataset D. We aim to minimize the uncertainly of a non-deterministic policy Π:

ΦM (Π) = max
s

(
max

a∈Π(s),a′ /∈Π(s)
p (Q(s, a) < Q(s, a′)|D)

)
. (10)

4 Solving the Optimization Problem

In the following sections we provide algorithms to solve the first optimization problem mentioned
above, which aims to maximize the size of the policy. We focus on this criterion as it seems most
appropriate for medical decision support systems, where it is desirable for the acceptability of the
system to find policies that provide as much choice as possible for the acting agent. We first present
a Mixed Integer Program formulation of the problem, and then present a search algorithm that uses
the monotonic property of the ε-optimal constraint. While the MIP method is useful as a general
formulation of the problem, the search algorithm has potential for further extensions with heuristics.

4.1 Mixed Integer Program

Recall that we can formulate the problem of finding the optimal deterministic policy on an MDP as
a simple linear program [5]:

minV µ
TV, subject to

V (s) ≥ R(s, a) + γ
∑

s′ T (s, a, s′)V (s′) ∀s, a, (11)

where µ can be thought of as the initial distribution over the states. The solution to the above problem
is the optimal value function (denoted by V ∗). Similarly, having computed V ∗ using Eqn 11, the

4

problem of a search for an optimal non-deterministic policy according to the size criterion can be
rewritten as a Mixed Integer Program:4

maxV,Π(µTV + (Vmax − Vmin)eT
s Πea), subject to

V (s) ≥ (1− ε)V ∗(s) ∀s∑
a Π(s, a) > 0 ∀s

V (s) ≤ R(s, a) + γ
∑

s′ T (s, a, s′)V (s′) + Vmax(1−Π(s, a)) ∀s, a. (12)

Here we are overloading the notation Π to define a binary matrix representing the policy. Π(s, a)
is 1 if a ∈ Π(s), and 0 otherwise. We define Vmax = Rmax/(1 − γ) and Vmin = Rmin/(1 − γ).
e’s are column vectors of 1 with the appropriate dimensions. The first set of constraints makes sure
that we stay within ε of the optimal return. The second set of constraints ensures that at least one
action is selected per state. The third set ensures that for those state-action pairs that are chosen
in any policy, the Bellman constraint holds, and otherwise, the constant Vmax makes the constraint
trivial. Notice that the solution to the above maximizes |Π| and the result is non-augmentable. As a
counter argument, suppose that we could add a state-action pair to the solution Π, while still staying
in ε sub-optimal margin. By adding that pair, the objective function is increased by (Vmax− Vmin),
which is bigger than any possible decrease in the µTV term, and thus the objective is improved,
which conflicts with Π being the solution.

We can use any MIP solver to solve the above problem. Note however that we do not make use of
the monotonic nature of the constraints. A general purpose MIP solver could end up searching in the
space of all the possible non-deterministic policies, which would require exponential running time.

4.2 Search Algorithm

We can make use of the monotonic property of the ε-optimal policies to narrow down the search. We
start by computing the conservative policy. We then augment it until we arrive at a non-augmentable
policy. We make use of the fact that if a policy is not ε-optimal, neither is any other policy that
includes it, and thus we can cut the search tree at this point.

The following algorithm is a one-sided recursive depth-first-search-like algorithm that searches in
the space of plausible non-deterministic policies to maximize a function g(Π). Here we assume that
there is an ordering on the set of state-action pairs {pi} = {(sj , ak)}. This ordering can be chosen
according to some heuristic along with a mechanism to cut down some parts of the search space. V ∗
is the optimal value function and the function V returns the value of the non-deterministic policy
that can be calculated by minimizing Equation 3.

Function getOptimal(Π, startIndex, ε)
Πo ← Π
for i← startIndex to |S||A| do

(s, a)← pi

if a /∈ Π(s) & V (Π + (s, a)) ≥ (1− ε)V ∗ then
Π′ ← getOptimal (Π + (s, a), i+ 1, ε)
if g(Π′) > g(Πo) then

Πo ← Π′

end
end

end
return Πo

We should make a call to the above function passing in the conservative policy Πm and starting from
the first state-action pair: getOptimal(Πm, 0, ε).

The asymptotic running time of the above algorithm is O((|S||A|)d(tm + tg)), where d is the maxi-
mum size of an ε-optimal policy minus the size of the conservative policy, tm is the time to solve the
original MDP and tg is the time to calculate the function g. Although the worst-case running time is
still exponential in the number of state-action pairs, the run-time is much less when the search space
is sufficiently small. The |A| term is due to the fact that we check all possible augmentations for

4Note that in this MIP, unlike the standard LP for MDPs, the choice of µ can affect the solution in cases
where there is a tie in the size of Π.

5

each state. Note that this algorithm searches in the space of all ε-optimal policies rather than only
the non-augmentable ones. If we set function g(Π) = |Π|, then the algorithm will return the biggest
non-augmentable ε-optimal policy.

This search can be further improved by using heuristics to order the state-action pairs and prune the
search. One can also start the search from any other policy rather than the conservative policy. This
can be potentially useful if we have further constraints on the problem. One way to narrow down
the search is to only add the action that has the maximum value for any state s:

Π′ = Π +
(
s, arg max

Q(s,a)

)
, (13)

This leads to a running time of O(|S|d(tm + tg)). However this does not guarantee that we see all
non-augmentable policies. This is due to the fact that after adding an action, the order of values
might change. If the transition structure of the MDP contains no loop with non-zero probability
(transition graph is directed acyclic, DAG), then this heuristic will produce the optimal result while
cutting down the search time. In other cases, one might do a partial evaluation of the augmented
policy to approximate the value after adding the actions, possibly by doing a few backups rather
than using the original Q values. This offers the possibility of trading-off computation time for
better solutions.

5 Empirical Evaluation

To evaluate our proposed algorithms, we first test the both the MIP and search formulations on MDPs
created randomly, and then test the search algorithm on a real-world treatment design scenario.

To begin, we generated random MDPs with 5 states and 4 actions. The transitions are deterministic
(chosen uniformly random) and the rewards are random values between 0 and 1, except for one of
the states with reward 10 for one of the actions; γ was set to 0.95. The MIP method was imple-
mented with MATLAB and CPLEX. Fig 5 shows the solution to the MIP defined in Eqn 12 for a
particular randomly generated MDP. We see that the size of non-deterministic policy increases as
the performance threshold is relaxed.

1, 0.4

3, 0.9

3, 9.9

3, 0.5

3, 0.2S1

S4

S5

S2

S3

1, 0.4

2, 0.7

3, 0.9

3, 9.9

3, 0.5

3, 0.2S1

S4

S5

S2

S3

1, 0.4

2, 0.7

3, 0.5

3, 0.9

3, 9.9

3, 0.5

3, 0.2S1

S4

S5

S2

S3

1, 0.4

2, 0.7

3, 0.5

3, 0.9

3, 9.9

3, 0.5

4, 0.2

3, 0.2
S1

S4

S5

S2

S3

Figure 5: MIP solution for different values of ε ∈ {0, 0.01, 0.02, 0.03}. The labels on the edges are
action indices, followed by the corresponding immediate rewards.

To compare the running time of the MIP solver and the search algorithm, we constructed random
MDPs as described above with more state-action pairs. Fig 6 Left shows the running time averaged
over 20 different random MDPs , assuming ε = 0.01. It can be seen that both algorithms have

6

20 30 40

Number of state-action pairs

0.01

0.1

1

10

100

Ti
m

e
 (

s)

MIP
Search

0 0.5 1 1.5 2

STD of Gaussian noise in the reward model

0%

2%

4%

6%

8%

10%

12%

14%

16%

A
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e
 o

f
d

iff
e
re

ce

Figure 6: Left: Running time of MIP and search algorithm as a function of the number of state-action
pairs. Right: Average percentage of state-action pairs that were different in the noisy policy.

exponential running time. The running time of the search algorithm has a bigger constant factor, but
has a smaller exponent base which results in a faster asymptotic running time.

To study how stable non-deterministic policies are to potential noise in the models, we check to see
how much the policy changes when Gaussian noise is added to the reward function. Fig 6 Right
shows the percentage of the total state-action pairs that were either added or removed from the
resulting policy by adding noise to the reward model (we assume a constant ε = 0.02). We see that
the resulting non-deterministic policy changes somewhat, but not drastically, even with noise level
of similar magnitude as the reward function.

Next, we implemented the full search algorithm on an MDP constructed for a medical decision-
making task involving real patient data. The data was collected as part of a large (4000+ patients)
multi-step randomized clinical trial, designed to investigate the comparative effectiveness of differ-
ent treatments provided sequentially for patients suffering from depression [9]. The goal is to find
a treatment plan that maximizes the chance of remission. The dataset includes a large number of
measured outcomes. For the current experiment, we focus on a numerical score called the Quick
Inventory of Depressive Symptomatology (QIDS), which was used in the study to assess levels of
depression (including when patients achieved remission). For the purposes of our experiment, we
discretize the QIDS scores (which range from 5 to 27) uniformly into quartiles, and assume that
this, along with the treatment step (up to 4 steps were allowed), completely describe the patient’s
state. Note that the underlying transition graph can be treated as a DAG because the study is limited
to four steps of treatment. There are 19 actions (treatments) in total. A reward of 1 is given if the
patient achieves remission (at any step) and a reward of 0 is given otherwise. The transition and
reward models were generated empirically from the data using a frequentist approach.

Table 1: Policy and running time of the full search algorithm on the medical problem

ε = 0.02 ε = 0.015 ε = 0.01 ε = 0

Time (seconds) 118.7 12.3 3.5 1.4

5 < QIDS < 9
CT CT CT CT

SER SER
BUP, CIT+BUS

9 ≤ QIDS < 12
CIT+BUP CIT+BUP CIT+BUP CIT+BUP
CIT+CT CIT+CT

12 ≤ QIDS < 16
VEN VEN VEN VEN

CIT+BUS CIT+BUS
CT

16 ≤ QIDS ≤ 27
CT CT CT CT

CIT+CT CIT+CT CIT+CT

Table 1 shows the non-deterministic policy obtained for each state during the second step of the
trial (each acronym refers to a specific treatment). This is computed using the search algorithm,
assuming different values of ε. Although this problem is not tractable with the MIP formulation
(304 state-action pairs), a full search in the space of ε-optimal policies is still possible. Table 1 also
shows the running time of the algorithm, which as expected increases as we relax the threshold ε.
Here we did not use any heuristics. However, as the underlying transition graph is a DAG, we could
use the heuristic discussed in the previous section (Eqn 13) to get the same policies even faster. An

7

interesting question is how to set ε a priori. In practice, a doctor may use the full table as a guideline,
using smaller values of ε when s/he wants to rely more on the decision support system, and larger
values when relying more on his/her own assessments.

6 Discussion

This paper introduces a framework for computing non-deterministic policies for MDPs. We believe
this framework can be especially useful in the context of decision support systems to provide more
choice and flexibility to the acting agent. This should improve acceptability of decision support
systems in fields where the policy is used to guide (or advise) a human expert, notably for the
optimization of medical treatments.

The framework we propose relies on two competing objectives. On the one hand we want to provide
as much choice as possible in the non-deterministic policy, while at the same time preserving some
guarantees on the return (compared to the optimal policy). We present two algorithms that can solve
such an optimization problem: a MIP formulation that can be solved by any general MIP solver,
and a search algorithm that uses the monotonic property of the studied constraints to cut down
on the running time. The search algorithm is particularly useful when we have good heuristics to
further prune the search space. Future work will consider different optimizing criteria, such as those
outlined in Section 3, which may be more appropriate for some domains with very large action sets.

A limitation of our current approach is that the algorithms presented so far are limited to relatively
small domains, and scale well only for domains with special properties, such as a DAG structure
in the transition model or good heuristics for pruning the search. This clearly points to future work
in developing better approximation techniques. Nonetheless it is worth keeping in mind that many
domains of application, may not be that large (see [1, 2, 3, 4] for examples) and the techniques as
presented can already have a substantial impact.

Finally, it is worth noting that non-deterministic policies can also be useful in cases where the MDP
transition and reward models are imperfectly specified or learned from data, though we have not
explored this case in detail yet. In such a setting, the difference between the optimal and a near
optimal policy may not be computed accurately. Thus, it is useful to find all actions that are close to
optimal so that the real optimal action is not missed. An interesting question here is whether we can
find the smallest non-deterministic policy that will include the optimal policy with some probability
1− δ. This is similar to the framework in [7], and could be useful in cases where there is not enough
data to compare policies with good statistical significance.

Acknowledgements: The authors wish to thank A. John Rush, Susan A. Murphy, Doina Precup, and
Stephane Ross for helpful discussions regarding this work. Funding was provided by the National
Institutes of Health (grant R21 DA019800) and the NSERC Discovery Grant program.

References
[1] A. Schaefer, M. Bailey, S. Shechter, and M. Roberts. Handbook of Operations Research / Management

Science Applications in Health Care, chapter Medical decisions using Markov decision processes. Kluwer
Academic Publishers, 2004.

[2] M. Hauskrecht and H. Fraser. Planning treatment of ischemic heart disease with partially observable
Markov decision processes. Artificial Intelligence in Medicine, 18(3):221–244, 2000.

[3] P. Magni, S. Quaglini, M. Marchetti, and G. Barosi. Deciding when to intervene: a Markov decision
process approach. International Journal of Medical Informatics, 60(3):237–253, 2000.

[4] D. Ernst, G. B. Stan, J. Concalves, and L. Wehenkel. Clinical data based optimal sti strategies for hiv: a
reinforcement learning approach. In Proceedings of Benelearn, 2006.

[5] D.P. Bertsekas. Dynamic Programming and Optimal Control, Vol 2. Athena Scientific, 1995.
[6] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1998.
[7] M. Kearns and S. Singh. Near-optimal reinforcement learning in poly. time. Machine Learning, 49, 2002.
[8] S. Mannor, D. Simester, P. Sun, and J.N. Tsitsiklis. Bias and variance in value function estimation. In

Proceedings of ICML, 2004.
[9] M. Fava, A.J. Rush, and M.H. Trivedi et al. Background and rationale for the sequenced treatment alterna-

tives to relieve depression (STAR*D) study. Psychiatr Clin North Am, 26(2):457–94, 2003.

8

