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1. Introduction
The accuracy of parametrized policy evaluation depends on the quality of the features used for
estimating the value function. Hence, feature generation/selection in reinforcement learning (RL)
has received a lot of attention (Di Castro and Mannor, 2010). We focus on methods that aim to
generate features in the direction of the Bellman error of the current value estimates (Bellman Error
Based, or BEBF, features). Successive addition of exact BEBFs has been shown to reduce the error
of a linear value estimator at a rate similar to value iteration (Parr et al., 2007). However, unlike
fitted value iteration (Boyan and Moore, 1995), which works with a fixed feature set, iterative BEBF
generates new features and does not diverge, as long as the error in the generation does not cancel
out the contraction effect of the Bellman operator (Parr et al., 2007).

A number of methods have been introduced in RL to generate features related to the Bellman
error, with a fair amount of success (Geramifard et al., 2011; Di Castro and Mannor, 2010; Manoon-
pong et al., 2010; Parr et al., 2007; Keller et al., 2006). In this work, we use the idea of applying
random projections specifically in very large and sparse feature spaces. In short, we iteratively
project the original features into exponentially smaller-dimensional spaces and apply linear regres-
sion of Bellman residuals to approximate BEBFs. We carry out a finite sample analysis that helps
determine the optimal size of the projections and the number of iterations.

We focus on spaces that are large, bounded and k-sparse: at any state only k of the features
are non-zero, in some known or unknown basis. Such spaces occur both naturally (e.g. image,
audio and video signals) and also from most discretization-based methods (e.g. tile-coding). For
simplicity, we assume that regardless of the current estimate of the value function V̂ , the Bellman
error is always linearly representable in the feature space. This seems like a strong assumption, but
is true, for example, in virtually any tile-coded space (the number of representable states is smaller
than the number of features).

2. Random Projections Preserve Linearity
Our first contribution (tightening the bound in Fard et al. (2012)) shows that if a function is linear
in a sparse space, it is almost linear in an exponentially smaller projected space:

Theorem 1 Let ΦD×d be a random projection according to: φi,j ∼ N (0, 1/d). Let X be a D-
dimensional k-sparse space. Then for any fixed w and ε > 0 :

∀x ∈ X :
∣∣〈ΦTw,ΦTx〉 − 〈w, x〉

∣∣ ≤ ε‖w‖‖x‖, (1)
fails with probability less than (4D + 2)e−dε

2/48k.

Hence, projections of size O(k logD) preserve the linearity up to an arbitrary constant. Note
that this is a worst-case bound on the entire space.
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3. Compressed Linear BEBFs
We assume a finite MDP, with bounded stochastic reward of mean R, and transition matrix P for a
fixed policy. Let V be the vector of values assigned to the states. Let T be the Bellman operator:
TV def

= R + γPV. The Bellman error is defined as the difference between the value function and
the result of the Bellman operator applied on the value: BE(V)

def

= TV −V.
Linear function approximators can be used to estimate the value of a given state. Let V̂m be

an estimated value function described in a linear space defined by a feature set {ξ1, . . . ξm}. Parr
et al. (2007) show that if we add a new BEBF ξm+1 = BE(V̂m) to the feature set, (with mild
assumptions) the approximation error on the new linear space shrinks by a factor of γ. They also
show that if we can estimate the Bellman error within a constant angular error, cos−1(γ), the error
will still shrink. In light of this result, we propose the following (simplified) algorithm:

Algorithm 1: Compressed BEBFs
Input: Trajectory x1, r1,x2, r2 . . . , where xt is the observation received at time t, and rt is the

reward; Number of BEBFs: m; Projection size schedule: d1, d2, . . . , dm
Output: V, the approximated value function
V← 0;
for i← 1 to m do

Generate random projection ΦD×di ;
Approximate the Bellman residuals by the TD-errors, δt, computed at each step;
Let yt be the result of ordinary least-squares regression using ΦTxt as inputs and δt as outputs.
Update V← V + yt;

end

Theorem 1 suggests that if the Bellman error is linear in the original features, the bias due
to the projection can be bounded within a fixed angular error with logarithmic size projections.
With proper mixing assumptions, the on-sample variance of the estimator can also be bounded
if the trajectory size is on the order of the projected dimension size, using Azuma’s inequality
on the martingale induced by Bellman residuals (like in Ghavamzadeh et al. (2010) and Grinberg
et al. (2011)). If the Markov chain “forgets” exponentially fast, one can even bound the off-sample
worst-case variance part of the error by a constant angular error with similar sizes of sampled
transitions (Samson, 2000). In the poster we will also discuss empirical results using this method.
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