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Introduction
This paper includes a tightening of the bound presented in
Theorem 2 of Fard et al. (2012). The new bound is simpler
and easier to prove.

Notations and Sparsity Assumption
Throughout this paper, column vectors are represented by
lower case bold letters, and matrices are represented by
bold capital letters. |.| denotes the size of a set, and ‖.‖0
is Donoho’s zero “norm” indicating the number of non-zero
elements in a vector. ‖.‖ denotes theL2 norm for vectors and
the operator norm for matrices: ‖M‖ = supv ‖Mv‖/‖v‖.
Also, we denote the Moore-Penrose pseudo-inverse of a ma-
trix M with M† and the smallest singular value of M by
σ
(M)
min .
We will be working in sparse input spaces. Our input is

represented by a vector x ∈ X of D features, having ‖x‖ ≤
1. We assume that x is k-sparse in some known or unknown
basis Ψ, implying that X , {Ψz, s.t. ‖z‖0 ≤ k and ‖z‖ ≤
1}. For a concrete example, the signals can be natural images
and Ψ can represent these signals in the frequency domain
(e.g., see Olshausen, Sallee, and Lewicki (2001)).

Random Projections and Inner Product
In this work, we assume that each entry in a projection
ΦD×d is an i.i.d. sample from a Gaussian 1:

φi,j = N (0, 1/d). (1)
We build our work on the following (based on theorem 4.1

from Davenport, Wakin, and Baraniuk (2006)), which shows
that for a finite set of points, inner product with a fixed vector
is almost preserved after a random projection.
Theorem 1. (Davenport, Wakin, and Baraniuk (2006)) Let
ΦD×d be a random projection according to Eqn 1. Let S be
a finite set of points in RD. Then for any fixed w ∈ RD and
ε > 0:
∀s ∈ S :

∣∣〈ΦTw,ΦT s〉 − 〈w, s〉
∣∣ ≤ ε‖w‖‖s‖, (2)

fails with probability less than (4|S|+ 2)e−dε
2/48.

1The elements of the projection are typically taken to be dis-
tributed with N (0, 1/D), but we scale them by

√
D/d, so that we

avoid scaling the projected values (see e.g. Davenport, Wakin, and
Baraniuk (2006)).

We derive the corresponding theorem for sparse feature
spaces.
Theorem 2. Let ΦD×d be a random projection according to
Eqn 1. Let X be a D-dimensional k-sparse space. Then for
any fixed w and ε > 0 :

∀x ∈ X :
∣∣〈ΦTw,ΦTx〉 − 〈w,x〉

∣∣ ≤ ε‖w‖‖x‖, (3)

fails with probability less than (4D + 2)e−dε
2/48k.

Proof of Theorem 2
Proof of Theorem 2. Let ei be the ith column of Ψ. Then
S = {ei}1≤i≤D is an orthonormal basis under which the
signal x is sparse and all ei’s are in X . Using Theorem 1,
with probability no less than (4D + 2)e−dε

2/48k:

∀i :
∣∣〈ΦTw,ΦTei〉 − 〈w, ei〉

∣∣ ≤ ε√
k
‖w‖. (4)

For any x =
∑
i αiei:∣∣〈ΦTw,ΦTx〉 − 〈w,x〉

∣∣
≤

∑
i

∣∣αi(〈ΦTw,ΦTei〉 − 〈w, ei〉)
∣∣

≤ ε√
k
‖w‖

∑
i

|αi| .

As x is k-sparse in {ei}, we have that
∑
i |αi| ≤

√
k‖x‖,

which completes the proof.
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