Random Projections Preserve Linearity in Sparse Spaces

Mahdi Milani Fard and Yuri Grinberg and Joelle Pineau and Doina Precup

School of Computer Science McGill University, Montreal, Canada {mmilan1, ygrinb, jpineau, dprecup}@cs.mcgill.ca

Introduction

This paper includes a tightening of the bound presented in Theorem 2 of Fard et al. (2012). The new bound is simpler and easier to prove.

Notations and Sparsity Assumption

Throughout this paper, column vectors are represented by lower case bold letters, and matrices are represented by bold capital letters. |.| denotes the size of a set, and $\|.\|_0$ is Donoho's zero "norm" indicating the number of non-zero elements in a vector. $\|.\|$ denotes the L^2 norm for vectors and the operator norm for matrices: $\|\mathbf{M}\| = \sup_{\mathbf{v}} \|\mathbf{M}\mathbf{v}\| / \|\mathbf{v}\|$. Also, we denote the Moore-Penrose pseudo-inverse of a matrix \mathbf{M} with \mathbf{M}^{\dagger} and the smallest singular value of \mathbf{M} by $\sigma_{\min}^{(M)}$. We will be working in sparse input spaces. Our input is

We will be working in sparse input spaces. Our input is represented by a vector $\mathbf{x} \in \mathcal{X}$ of D features, having $\|\mathbf{x}\| \leq$ 1. We assume that \mathbf{x} is k-sparse in some known or unknown basis Ψ , implying that $\mathcal{X} \triangleq \{\Psi \mathbf{z}, \text{ s.t. } \|\mathbf{z}\|_0 \leq k \text{ and } \|\mathbf{z}\| \leq$ 1}. For a concrete example, the signals can be natural images and Ψ can represent these signals in the frequency domain (e.g., see Olshausen, Sallee, and Lewicki (2001)).

Random Projections and Inner Product

In this work, we assume that each entry in a projection $\Phi^{D \times d}$ is an i.i.d. sample from a Gaussian ¹:

$$\phi_{i,j} = \mathcal{N}(0, 1/d). \tag{1}$$

We build our work on the following (based on theorem 4.1 from Davenport, Wakin, and Baraniuk (2006)), which shows that for a finite set of points, inner product with a fixed vector is almost preserved after a random projection.

Theorem 1. (Davenport, Wakin, and Baraniuk (2006)) Let $\Phi^{D \times d}$ be a random projection according to Eqn 1. Let S be a finite set of points in \mathbb{R}^D . Then for any fixed $\mathbf{w} \in \mathbb{R}^D$ and $\epsilon > 0$:

$$\forall \mathbf{s} \in S : \left| \langle \mathbf{\Phi}^T \mathbf{w}, \mathbf{\Phi}^T \mathbf{s} \rangle - \langle \mathbf{w}, \mathbf{s} \rangle \right| \le \epsilon \|\mathbf{w}\| \|\mathbf{s}\|, \qquad (2)$$

fails with probability less than $(4|S|+2)e^{-d\epsilon^2/48}$.

We derive the corresponding theorem for sparse feature spaces.

Theorem 2. Let $\Phi^{D \times d}$ be a random projection according to Eqn 1. Let \mathcal{X} be a D-dimensional k-sparse space. Then for any fixed \mathbf{w} and $\epsilon > 0$:

$$\forall \mathbf{x} \in \mathcal{X} : \left| \langle \mathbf{\Phi}^T \mathbf{w}, \mathbf{\Phi}^T \mathbf{x} \rangle - \langle \mathbf{w}, \mathbf{x} \rangle \right| \le \epsilon \|\mathbf{w}\| \|\mathbf{x}\|, \qquad (3)$$

fails with probability less than $(4D+2)e^{-d\epsilon^2/48k}$.

Proof of Theorem 2

Proof of Theorem 2. Let e_i be the *i*th column of Ψ . Then $S = \{\mathbf{e}_i\}_{1 \le i \le D}$ is an orthonormal basis under which the signal \mathbf{x} is sparse and all \mathbf{e}_i 's are in \mathcal{X} . Using Theorem 1, with probability no less than $(4D+2)e^{-d\epsilon^2/48k}$:

$$\forall i: \left| \langle \mathbf{\Phi}^T \mathbf{w}, \mathbf{\Phi}^T \mathbf{e}_i \rangle - \langle \mathbf{w}, \mathbf{e}_i \rangle \right| \le \frac{\epsilon}{\sqrt{k}} \| \mathbf{w} \|.$$
(4)

For any $\mathbf{x} = \sum_i \alpha_i \mathbf{e}_i$:

$$\begin{split} \left| \langle \boldsymbol{\Phi}^{T} \mathbf{w}, \boldsymbol{\Phi}^{T} \mathbf{x} \rangle - \langle \mathbf{w}, \mathbf{x} \rangle \right| \\ &\leq \sum_{i} \left| \alpha_{i} (\langle \boldsymbol{\Phi}^{T} \mathbf{w}, \boldsymbol{\Phi}^{T} \mathbf{e}_{i} \rangle - \langle \mathbf{w}, \mathbf{e}_{i} \rangle) \right| \\ &\leq \frac{\epsilon}{\sqrt{k}} \| \mathbf{w} \| \sum_{i} |\alpha_{i}| \,. \end{split}$$

As **x** is k-sparse in $\{\mathbf{e}_i\}$, we have that $\sum_i |\alpha_i| \le \sqrt{k} ||\mathbf{x}||$, which completes the proof.

References

Davenport, M.; Wakin, M.; and Baraniuk, R. 2006. Detection and estimation with compressive measurements. *Dept. of ECE, Rice University, Tech. Rep.*

Fard, M.; Grinberg, Y.; Pineau, J.; and Precup, D. 2012. Compressed least-squares regression on sparse spaces. In *AAAI*.

Olshausen, B.; Sallee, P.; and Lewicki, M. 2001. Learning sparse image codes using a wavelet pyramid architecture. In *Proceedings of Advances in neural information processing systems*.

¹The elements of the projection are typically taken to be distributed with $\mathcal{N}(0, 1/D)$, but we scale them by $\sqrt{D/d}$, so that we avoid scaling the projected values (see e.g. Davenport, Wakin, and Baraniuk (2006)).