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Abstract

Planning in large partially observable Markov decision pro-
cesses (POMDPs) is challenging especially when a long
planning horizon is required. A few recent algorithms suc-
cessfully tackle this case but at the expense of a weaker
information-gathering capacity. In this paper, we propose In-
formation Gathering and Reward Exploitation of Subgoals
(IGRES), a randomized POMDP planning algorithm that
leverages information in the state space to automatically gen-
erate “macro-actions” to tackle tasks with long planning hori-
zons, while locally exploring the belief space to allow ef-
fective information gathering. Experimental results show that
IGRES is an effective multi-purpose POMDP solver, provid-
ing state-of-the-art performance for both long horizon plan-
ning tasks and information-gathering tasks on benchmark do-
mains. Additional experiments with an ecological adaptive
management problem indicate that IGRES is a promising tool
for POMDP planning in real-world settings.

Introduction
Partially observable Markov decision processes (POMDPs)
have emerged as a rich framework for planning under uncer-
tainty due to their ability to capture a number of important
planning aspects that appear in many real-world sequential
decision tasks, such as the ability to handle stochastic ac-
tions, missing or noisy observations, and stochastic costs and
rewards. The POMDP framework has been widely applied
to various complex situations in practice thanks to its rich
capabilities for planning in an uncertain environment (Cas-
sandra 1998; Hsiao, Kaelbling, and Lozano-Pérez 2007;
Pineau and Atrash 2007; Chades et al. 2012). Despite their
mathematical expressivity, the difficulty of solving large
POMDPs has limited their application in complex domains.
For a POMDP problem modelled with n states, we must
reason in an (n � 1)-dimensional continuous belief space.
Moreover, the complexity of POMDP planning is affected
by the length of planning horizon (Littman 1996). Practi-
cally speaking, solving real-world tasks in this framework
involves two challenges: how to carry out intelligent infor-
mation gathering in a large high dimensional belief space;
and how to scale up planning with long sequences of actions
and delayed rewards.
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Recent point-based planning algorithms have made im-
pressive improvements by addressing one or the other of the
above challenges: PBVI (Pineau, Gordon, and Thrun 2003),
HSVI2 (Smith and Simmons 2004; 2005), FSVI (Shani,
Brafman, and Shimony 2007) and SARSOP (Kurniawati,
Hsu, and Lee 2008) work very successfully in problems
that require gathering information with a large state space,
using bias expansion of belief sampling to yield good ap-
proximations of value functions; MiGS (Kurniawati et al.
2011) and some online solvers, e.g. PUMA (He, Brunskill,
and Roy 2010), facilitate planning for problems that re-
quire long sequences of actions to reach a goal, by gener-
ating macro-actions and restricting the policy space. Other
approaches, including a dynamic programming adaption to
POMDPs called RTDP-Bel (Bonet and Geffner 2009) and
a UCT-based online method called POMCP (Silver and Ve-
ness 2010) have demonstrated strong performance on some
of the POMDP domains. However, we still lack methods that
can tackle problems simultaneously requiring substantial in-
formation gathering and long planning horizons.

Here we propose a point-based POMDP solution method,
called Information Gathering and Reward Exploitation of
Subgoals (IGRES), that effectively tackles both challenges
by incorporating elements from the two families of ap-
proaches: first, IGRES identifies potentially important states
as subgoals; second, IGRES only gathers information and
exploits rewards with macro-actions in the neighbourhood
of those subgoals. Thus, IGRES is efficient in terms of com-
putational time and space in the sense that it covers the be-
lief space well with a much smaller size of belief points
set for expensive backup operations while still maintain-
ing good performance. Promising experimental results show
that IGRES provides state-of-the-art performance on tasks
that require significant information gathering and planning
with long sequences of actions. We also show that IGRES
can effectively tackle a new class of ecological adaptive
management problems presented in the IJCAI 2013 data
challenge track, thus providing evidence that IGRES is ca-
pable of solving tasks in useful real-world settings.

Technical Background
A partially observable Markov decision process (POMDP)
is a tuple hS,A,⌦, T,O,R, b0, �i (Kaelbling, Littman, and
Cassandra 1998), where S is a finite set of states, A is
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a finite set of actions, ⌦ is a finite set of observations,
T (s, a, s0) = p(s0|s, a) is the transition function that maps
each state and action to a probability distribution over states,
O(s0, a, o) = p(o|s0, a) is the observation function that maps
a state and an action to a probability distribution over possi-
ble observations, R(s, a) is the reward function, b0(s) is the
initial belief state, and � is the discount factor.

A belief state b 2 B is a sufficient statistic for the history,
and is updated after taking action a and receiving observa-
tion o as follows:

ba,o(s0) =
O(s0, a, o)

P
s2S T (s, a, s0)b(s)

p(o|a, b) , (1)

where p(o|a, b) =

P
s2S b(s)

P
s

02S T (s, a, s0)O(s0, a, o)
is a normalizing factor.

A policy is a mapping from the current belief state to an
action. A value function V

⇡

(b) specifies the expected reward
gained starting from b followed by policy ⇡:

V
⇡

(b) =
X

s2S

b(s)R(s,⇡(b)) + �
X

o2⌦

p(o|b,⇡(b))V
⇡

(b⇡(b),o
).

The goal of POMDP planning is to find an optimal
policy that maximizes its value function denoted by V⇤.
In general, V can be approximated arbitrarily closely by
a piecewise-linear and convex function (Sondik 1978):
V(b) = max

↵2�(b(s)↵(s)), represented by a finite set of
hyper-planes, �.

Point-based Solvers Information gathering in large state
spaces and planning with long sequences of actions are
two major challenges for planning in large POMDPs.
Point-based approximations are among the most success-
ful approaches to approximate the value function in large
POMDPs. Solutions are computed by applying iterative
value function backups over a small set of belief points (see
Algorithm 1). To reduce computation, the choice of the can-
didate belief points at which to apply backups becomes cru-
cial for this class of algorithms. PBVI (Pineau, Gordon, and
Thrun 2003), one of the first point-based algorithm, samples
only belief points in a reachable space R(b0) from an initial
belief point b0 as the representative set for backup opera-
tions rather than sampling from the high dimensional contin-
uous B. HSVI2 keeps lower and upper bounds on the value
function and use heuristics to sample belief states that re-
duce the gap between bounds. FSVI (Shani, Brafman, and
Shimony 2007) uses only upper bound to guide the belief
point sampling, and works well for domains that require
only simple information gathering actions. SARSOP (Kur-
niawati, Hsu, and Lee 2008) focuses sampling around the
optimal reachable space, R⇤

(b0) ✓ R(b0), sampled from
optimal sequences of actions. MiGS (Kurniawati et al. 2011)
adopts the notion of generating macro-actions, which are se-
quences of actions, rather than single actions to expand the
belief point set, which is one of the successful strategies to
tackle problems with long planning horizons and delayed re-
wards.

Algorithm 1 Backup(�,b)
↵
a,o

 argmax

↵2�

P
s2S ↵(s)ba,o(s), 8a 2 A, o 2 ⌦;

↵
a

(s)  R(s, a) + �
P

o,s

0 T (s, a, s
0
)O(s0, a, o)↵

a,o

(s0),
8a 2 A, s 2 S;
↵0  argmax

a2A
P

s2S ↵0
(s)b(s);

� � [ {↵0}.

Gathering Information & Exploiting Rewards
Our work attempts to bridge the gap between the two classes
of point-based approaches, to produce a single POMDP
solver with sufficient versatility to address both problems
that require substantial information gathering actions, and
problems that require long sequences of actions. To achieve
this, IGRES tries to identify potentially important states as
subgoals using a strategy similar to MiGS (Kurniawati et
al. 2011). Then for each belief associated with a subgoal,
IGRES generates another macro-action to gather informa-
tion and exploit rewards.

Capturing Important States
In general, actions that yield high rewards or gather signif-
icant information from the current belief state play an im-
portant role in constructing good policies (Cassandra, Kael-
bling, and Kurien 1996; He, Brunskill, and Roy 2010). This
suggests that states associated with high rewards or infor-
mative observations may also be important. Our algorithm
leverages this structure by attempting to identify these po-
tentially important states and use them as subgoals.

Specifically, we define two heuristic functions h
r

(s) and
h
i

(s) of a state s 2 S, to describe its importance in terms
of rewards exploitation and information gathering respec-
tively. We calculate the importance of rewards exploitation
for some state s:

h
r

(s) = max

a2A

R(s, a)�R
min

R
max

�R
min

, (2)

which captures the highest immediate reward we can get
from state s over all actions. We also calculate its informa-
tion gain as:

h
i

(s) = max

a2A

X

o2⌦✓
� 1

|⌦| log(
1

|⌦| ) +O(s, a, o) log (O(s, a, o))

◆
.

(3)

which measures for some s over all actions the highest pos-
sible entropy of observation probabilities against a uniform
distribution.

Then a state s 2 S is sampled as subgoal using the soft-
max function:

p(s) / e
⌘( hr(s)P

hr(s)+�

hi(s)P
hi(s)

)
, (4)

where the pre-defined positive constant ⌘ serves as a nor-
malizer and a controller for the smoothness of our random
sampling, and � balances between the two heuristic func-
tions.
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Leveraging State Structure
In this section, we follow the algorithm of MiGS to ex-
ploit structure in the state space, that helps focus sam-
pling in the belief space. We first consider the state graph
GS . We associate with each edge (ss0, a) a weight that
measures the difference between the expected total reward
of state s and destination s0 via action a: w(ss0, a) =

↵(s) � ↵(s0) = R(s, a) + �
P

s

002S/{s0} T (s, a, s
0
) ⇥P

o2⌦

O(s00, a, o)(↵(s00)�↵(s0)), where ↵(s) = R(s, a)+
�
P

o,s

0 T (s, a, s0)O(s0, a, o)↵(s0) approximates the ex-
pected total reward. Since s00 can be reached from s with
one single action, we expect the difference between ↵(s00)
and ↵(s) is small. By replacing ↵(s00) with ↵(s), we get:

w(ss0, a) =
�R(s, a) ·

R(s,a)0

1� � + �T (s, a, s0)
, (5)

which captures the cost of selecting action a transitioning
from s to s0. Then we define the distance as dS(s, s

0
) =

min

a2A:T (s,a,s0)>0 w(ss0, a). We further extend the notion
of distance dS such that distance from s to s0 is just the
shortest path by the distance measure above. Now we have
reduced the directed multigraph GS to a weighted directed
graph. If we assume strong connectivity of the state graph,
an inward Voronoi partitioning (Erwig 2000) can then be
used to partition the states based on dS into a partitioning

K = {K
m

|m 2 M}, (6)

where M ✓ S is a set of subgoals and K
m

= {s 2
S|dS(s,m) < dS(s,m

0
), 8m0 6= m and m,m0 2 M} is

the set of states whose distance to subgoal m is less than the
distance to any other subgoal in M.

We build a roadmap graph GM where each node corre-
sponds to a sampled subgoal. Edge mm0 from subgoal m to
m0 is present if there exists a path from m to m0 in graph
G

Km[Km0 . And this edge is labeled with a sequence of ac-
tions and a sequence of states according to the path. Then
we know the edge mm0 is also associated with the weight
of the shortest path. In this way, we partition the state space
into regions where the states in each region lead towards a
subgoal inducing that region, and the connectivity between
regions is also well structured by the edges of GM.

Sampling Belief States Using Macro-actions
Now we give a description of the belief sampling strategy.
Specifically, given an estimate of current state s, a new be-
lief state b0 is sampled from the current belief state b accord-
ing to a macro-action (a1, a2, . . . , al) and a state sequence
(s0, s1, s2, . . . , sl) where s0 = s. To achieve this, we first
generate an observation sequence (o1, o2, . . . , ol) where o

i

is sampled with probability

p(o
i

) / O(s
i

, a
i

, o
i

) = p(o
i

|s
i

, a
i

). (7)

Using the updating rule of belief states (1), we immediately
get a sequence of belief states (b0, b1, b2, . . . , bl) such that

b1 = ba1,o1
0 ; b

i

= b
ai�1,oi�1

i�1 , for 2  i  l, (8)

where b0 = b and b
l

= b0. As the core of the algorithm,
two types of macro-actions, subgoal-oriented macro-actions

and exploitation macro-actions, are generated, which split
our planning strategy into subgoal transitioning phase and
exploitation phase respectively.

Generating Subgoal-Oriented Macro-actions With the
help of roadmap GM, we first extract a path transitioning
to the closest m 2 M from current state s. To do so, we
store a list of all outgoing edges for each subgoal according
to GM. If s is not a subgoal, the path will be the only path
from s to the subgoal in the same partition; otherwise s is
a subgoal and the path is just the next outgoing edge in the
list. From this path, we obtain a sequence of actions as our
subgoal oriented macro-action and a sequence of states that
are visited along the path. According to the belief sampling
strategy (Eqn 7,8), we get a new belief state b0 associated
with m. Since the subgoal m 2 M is potentially important,
next we introduce an exploitation macro-action which is re-
stricted to the neighbourhood of m.

Generating Exploitation Macro-actions Given an esti-
mate of current state s at each iteration, we sample an ac-
tion a with probability p(a) proportional to some heuristic
function ã(s). Many heuristics can be adopted here, such as
choosing the action that maximizes long term reward, or just
uniformly at random. We define ã(s) = eµT (s,a,s) to favor
the action that could gather information explicitly without
changing the estimate of state, which works well empiri-
cally. And we update the estimate of state as s0 with proba-
bility p(s0) / T (s, a, s0). We stop exploiting with probabil-
ity (1 � p

ex

) at each iteration, where p
ex

is an exploitation
probability parameter to control the length of this macro-
action. At the end of the exploitation, we add an action that
maximizes the reward from the current estimate of state if
necessary, which is consistent with the heuristic function
(Eqn 2) for choosing subgoals.

Data Structures
IGRES maintains a belief tree TR rooted at the initial belief
node u

b0 which consists of all belief states that are sampled.
It also stores all belief states that are associated with sub-
goals in a set R

�

. Similar to MiGS, at each iteration, the
algorithm chooses a belief state in the tree with probability
proportional to 1

|Kc(b)| , where the c-neighbourhood K
c

(b) is
defined as: K

c

(b) = {ˆb 2 R|dK(b,ˆb)  c}, to favor belief
states that have fewer neighbours. A similar belief expansion
strategy is adopted by PBVI, except that instead of L1 dis-
tance, the algorithm uses the relaxed K-distance dK defined
based on K-partitioning (Eqn 6):

dK(b, b
0
) =

X

m2M

������

X

s2K(m)

b(s)�
X

s2K(m)

b0(s)

������
, (9)

which measures the differences of probability for partitions
rather than single states. We also store the estimate of current
state in each node. Then a new belief state is generated by
the subgoal oriented macro-action and the estimate of cur-
rent state is updated to be the subgoal state. To control the
total number of belief states inserted in the tree, we calculate
the K-distance from the new belief state to the belief set R

�
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to decide whether we will exploit this subgoal or not. If we
decide to exploit, we continue to do exploitation. The new
belief states are inserted in the tree, and an ↵-backup is done
for each of the belief states along the path back to the root.
The corresponding estimate of current state is also stored
in each belief node so that if we choose to sample new be-
liefs from that node later, we could start immediately from
the estimate of current state. This strategy enables sampling
deeper belief points without maintaining a belief tree that is
too large. After the value of the initial belief state is not im-
proved for some number of rounds, new states are sampled
and added to M, and a new GM is constructed accordingly.

Algorithm 2 IGRES
Input: b0, GM, �
Output: V(b0)
TR  {u

b0}, R�

 {b0};
while number of rounds V(b0) not improving < limit do

Sample node u
b

2 TR probability / 1
|Kc(b)| ;

if b = b0 then
Sample u

b

.state according to b(s);
end if
Current estimate of state s u

b

.state;
Generate subgoal oriented macro-action for b with state es-

timate s, which gives updated belief b0 and s0;
if min

b̂2R�
dK(b

0,ˆb) > � then
BackUpAtLeaf(b0,s0,TR,u

b

); . Algorithm 3.
R

�

 R
�

[ {b0};
Generate exploitation macro-action for b0 with state es-

timate s0, which gives updated belief b00 and s00;
BackupAtLeaf(b00,s00,TR,u

b

0 ); . Algorithm 3.
end if

end while

Algorithm 3 BackupAtLeaf(b,s,TR,uparent)
Create a node u

b

;
u
b

.state s;
Insert u

b

to TR as a child of node uparent;
Backup for each belief inducing each node along the path from
u
b

back to root u
b0 ; . Algorithm 1.

Analysis of K-Distance Threshold The K-distance
threshold � is used to control the number of belief states as-
sociated with subgoals for backup operations.
Theorem 1. If dK(b, b

0
)  �, then |V⇤

(b) � V⇤
(b0)| 

1
1��

(�R
max

� 2l
max

R
min

), 8b, b0 2 B,

where l
max

is the maximal number of states traversed
along the path from any state to the subgoal in the same
partition, which is less than the number of states in that par-
tition. This theorem is derived from Theorem 1 in (Kurni-
awati et al. 2011) by relating the error to the size of each
partition, which implies that V⇤

(b0) can be approximated by
V⇤

(b) with a small error controlled by the K-distance thresh-
old � and an extra error depends on the number of states in
each partition (details in tech report).

Complexity Reduced by Macro-actions Consider con-
structing a belief tree T

R

for a set of belief points R sampled

from the reachable space R(b0), then we have ⇥((|A||⌦|)h)
beliefs for a planning horizon h. Let l be the minimum
length of a macro-action generated by IGRES, then the size
of T

R

is reduced to O((d|⌦|l)h
l
= O(d

h
l |⌦|h). The maxi-

mum branching number d is the maximum degree of all sub-
goals in GM.

Completeness of Planning In the case where � = 0,
IGRES inserts every sampled belief state. Then consider the
fact that GM is updated by adding without replacement new
subgoals sampled from a finite S . We can show that eventu-
ally, all states would be sampled as subgoals. As new edges
are inserted to GM, all possible edges between each pair of
states would finally be included in GM. For p

ex

> 0, self-
loop action sequences of any length could also be generated.
Thus IGRES is planning in a complete policy space. Local
exploration ensures completeness over the belief space.

Experiments
We first consider classic POMDP benchmark problems of
various sizes and types, and then present results for a real-
world challenge domain.

Benchmark Problems
POMDP as a model for planning differs largely from MDP
due to the uncertainty of state information. Thus algorithms
that sample belief states by using pure state information to
generate macro-actions (e.g. MiGS) might not work well on
some problems because they fail to take advantages of ob-
servation information to identify subgoals and sample more
focused beliefs. On the other hand, algorithms that adapt cer-
tain heuristics to gather information (e.g. SARSOP) might
improve very slowly when they maintain a large set of sam-
pled beliefs or they might even get stuck locally on some
problems because they fail to sample deeper belief points.
IGRES constructs macro-actions considering both informa-
tive observations and rewarding actions, and gathers infor-
mation and exploits subgoals in a probabilistic manner with-
out making assumptions about the domain. Thus, IGRES has
the potential to provide good solutions to problems which re-
quire either information gathering to compute good policies
or long sequences of actions to exploit delayed rewards. To
demonstrate this, we carried out experiments on both types
of benchmark problems.

Tiger (Cassandra, Kaelbling, and Littman 1994) is the
most classic POMDP problem. Noisy-tiger (He, Brunskill,
and Roy 2010) is a modified version of Tiger problem where
the noise of the listen action is increased to make the in-
formation gathering more difficult. RockSample (Smith and
Simmons 2004) is another classic information gathering
problem. Hallway2 introduced in (Littman, Cassandra, and
Kaelbling 1995) is a robot navigation problem in a grid map
of maze. Tag is a domain introduced in (Pineau, Gordon,
and Thrun 2003) where a robot searches for a moving op-
ponent. Underwater Navigation (Kurniawati, Hsu, and Lee
2008) models an autonomous underwater vehicle (AUV)
navigating in a grid map. Homecare (Kurniawati, Hsu, and
Lee 2008) is a domain similar to Tag but with much more
complex dynamic, which models a robot tracking an elderly
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person. 3D-Navigation (Kurniawati et al. 2011) models an
unmanned aerial vehicle (UAV) navigating in an 3D-indoor
environment, which requires the vehicle localizing at spe-
cific landmarks to avoid dangerous areas before heading for
the goal states.

We compared performance of IGRES to existing POMDP
solvers RTDP-Bel (Bonet and Geffner 2009), HSVI2 (Smith
and Simmons 2005), FSVI (Shani, Brafman, and Shi-
mony 2007), SARSOP (Kurniawati, Hsu, and Lee 2008)
and MiGS (Kurniawati et al. 2011) on all benchmark do-
mains introduced above: RTDP-Bel is an adaptation of real
time dynamic programming to POMDPs, and has demon-
strated strong performance on several POMDP domains; and
the rest are four point-based algorithms aiming at various
POMDP domains respectively which we have mentioned in
the second section of this paper. We performed these exper-
iments on a computer with a 2.50GHz Intel Core i5-2450M
processor and 6GB of memory. We ran the probabilistic
solvers, MiGS and IGRES, 30 times each to compute poli-
cies on Homecare and 3D-Navigation, and 100 times each
for the other domains. We ran each of the four other algo-
rithms once for each domain until convergence or achiev-
ing good level of estimated values. Then we ran sufficient
number of simulations to evaluate each policy computed by
these four algorithms. The average reward with the 95% con-
fidence intervals and the corresponding computation times
are reported in Table 1.

The number of subgoals for IGRES is randomly picked
roughly according to the size of each domain. We will ad-
dress the effect of varying the size of subgoals in the later
set of experiments. For the Tiger domains, we observe that
while RTDP-Bel, HSVI2, SARSOP and IGRES show good
performance, MiGS fails even though both problems are ex-
tremely simple. The reason is that MiGS fails to produce
policies that take actions changing the probability distri-
bution within state dimensions. MiGS performs poorly on
RockSample for the similar reasons. We notice that for both
RockSample problems there exist small gaps between the
results of IGRES and the best solutions in the same amount
of time. This class of problems only require performing
single-step information-gathering actions at specific loca-
tions with fully observable movement actions, which the al-
gorithms adapting certain deterministic heuristics might be
able to take advantage of. On the other hand, IGRES gener-
ates macro-actions in a probabilistic manner. So the param-
eters of generating macro-actions should be tuned to match
this pattern in order to reach the optimal performance. For
example on RockSample(4,4) with 20 subgoals, IGRES re-
turns 17.91 ± 0.12 in 10 seconds of computation time. For
the Hallway2 domain, SARSOP and IGRES achieve best so-
lutions due to their strong ability to gather useful informa-
tion. For the Tag problem, RTDP-Bel and HSVI2 are not
able to compute a good solution, while the other four algo-
rithms achieve high rewards in short computation time. For
Underwater Navigation task, IGRES is substantially faster
than RTDP-Bel to compute the best solution. For the Home-
care problem, IGRES is able to achieve the best rewards
given same amount of computation time. For 3D-Navigation
task, RTDP-Bel, HSVI2 and SARSOP are unable to achieve

Return Time(s)

Tiger
|S| = 2, |A| = 3, |⌦| = 2

RTDP-Bel 19.42 ± 0.59 0.30
HSVI2 19.31 ± 0.09 <1
FSVI* N/A
SARSOP 18.59 ± 0.61 0.09
MiGS �19.88 ± 0 100
IGRES (# subgoals: 1) 19.41 ± 0.59 1

Noisy-tiger
|S| = 2, |A| = 3, |⌦| = 2

RTDP-Bel �13.67 ± 0.28 1.22
HSVI2 �13.69 ± 0.04 <1
FSVI* N/A
SARSOP �13.66 ± 0.18 0.18
MiGS �19.88 ± 0 100
IGRES (# subgoals: 1) �13.67 ± 0.18 1

RockSample(4,4)
|S| = 257, |A| = 9, |⌦| = 2

RTDP-Bel 17.94 ± 0.12 10.7
HSVI2 17.92 ± 0.01 <1
FSVI 17.85 ± 0.18 1
SARSOP 17.75 ± 0.12 0.7
MiGS 8.57 ± 0 100
IGRES (# subgoals: 4) 17.30 ± 0.12 10

RockSample(7,8)
|S| = 12545, |A| = 13, |⌦| = 2

RTDP-Bel 20.55 ± 0.13 103
HSVI2 21.09 ± 0.10 100
FSVI 20.08 ± 0.20 102
SARSOP 21.35 ± 0.13 100
MiGS 7.35 ± 0 100
IGRES (# subgoals: 8) 19.54 ± 0.12 100

Hallway2
|S| = 92, |A| = 5, |⌦| = 17

RTDP-Bel 0.237 ± 0.006 1004
HSVI2 0.507 ± 0.001 250
FSVI 0.494 ± 0.007 280
SARSOP 0.530 ± 0.008 200
MiGs 0.522 ± 0.008 200
IGRES (# subgoals: 20) 0.530 ± 0.008 200

Tag
|S| = 870, |A| = 5, |⌦| = 30

RTDP-Bel �6.32 ± 0.12 372
HSVI2 �6.46 ± 0.09 400
FSVI �6.11 ± 0.11 35
SARSOP �6.08 ± 0.12 30
MiGS �6.00 ± 0.12 30
IGRES (# subgoals: 20) �6.12 ± 0.12 30

Underwater Navigation
|S| = 2653, |A| = 6, |⌦| = 103

RTDP-Bel 750.07 ± 0.28 338
HSVI2 718.37 ± 0.60 400
FSVI 725.88 ± 5.91 414
SARSOP 731.33 ± 1.14 150
MiGS 715.50 ± 1.37 400
IGRES (# subgoals: 20) 749.94 ± 0.30 50

Homecare
|S| = 5408, |A| = 9, |⌦| = 928

RTDP-Bel** N/A
HSVI2 15.07 ± 0.37 2000
FSVI*** N/A
SARSOP 16.64 ± 0.82 1000
MiGS 16.70 ± 0.85 1600
IGRES (# subgoals: 30) 17.32 ± 0.85 1000

3D-Navigation
|S| = 16969, |A| = 5, |⌦| = 14

RTDP-Bel �93.03 ± 0.01 2115
HSVI2 �91.98 ± 0 2000
FSVI** N/A
SARSOP �99.97 ± 0 800
MiGS (2.977 ± 0.512) ⇥ 104 150
IGRES (# subgoals: 163) (3.272 ± 0.193) ⇥ 104 150

1 For RTDP-Bel, FSVI and MiGS, we use the software packages provided by the
authors of the papers. For HSVI2, we use the latest ZMDP version 1.1.7 (http:
//longhorizon.org/trey/zmdp/). For SARSOP, we use the latest APPL version 0.95
(http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.Download).

* ArrayIndexOutOfBoundsException is thrown.
** Solver is not able to compute a solution given large amount of computation time.
*** OutOfMemoryError is thrown.

Table 1: Results of benchmark problems.1
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a good solution because they fail to sample belief points that
are far away from the existing set, and thus get trapped in
the local area, whereas MiGS and IGRES easily overcome
the effect of long planning horizon in this task. We conclude
from these results that IGRES is able to successfully tackle
both problems requiring information gathering, and prob-
lems with long planning horizons.

The Ecological Adaptive Management Problem
Next, we apply IGRES to a class of ecological adaptive man-
agement problems (Nicol et al. 2013) that was presented as
an IJCAI 2013 data challenge problem to the POMDP com-
munity. To the best of our knowledge, there has not been any
published work on this challenge so far. The POMDPs in this
domain represent networks for migratory routes by different
shorebird species utilizing the East Asian-Australasian fly-
way, under uncertainty about the rate of sea level rise and
its effect on shorebird populations. The goal is to select one
node to perform protection action against a fixed amount of
sea level rise in a weighted directed graph representing the
flyway. The state space is a factored representation by the
cross product of one fully observable population variable,
the fully observable protection variable for each node in the
graph, and one variable for sea level rise which is not ob-
servable. Five different bird species are considered (charac-
terized by different POMDP sizes and parameterizations).

To solve this problem, we ran IGRES 30 times for each
task to compute policies, and then ran 100 simulations to
test each computed policy. Our results are generated on a
2.67GHz Intel Xeon W3520 computer with 8GB of mem-
ory. We also present results of the benchmark solutions com-
puted by the original authors of the dataset using symbolic
Perseus (Poupart 2005) on a more powerful computer (Nicol
et al. 2013).

We observe in Table 2 that IGRES outperforms the bench-
mark solutions by achieving higher rewards for all species.
Even though IGRES is not specially designed for solving
the problem and does not directly exploit the factored state
structure, it computes good solutions that yield high rewards
in reasonable computation times for all these tasks.

We further experiment with IGRES on one of the tasks,
varying parameters to demonstrate its behaviour as the num-
ber of subgoals changes. Figure 1 shows the behaviour of
IGRES with different number of subgoals used given in-
creasing computation time on Grey-tailed Tattler task. Given
reasonable number of subgoals, IGRES is able to take ad-
vantage of subgoals that help sampling useful belief points.
However, if the number of subgoals gets too large, a much
larger set of beliefs would be sampled before the algorithm
plans deep enough to compute a good solution, thus degrad-
ing the performance. On the other hand, if the number of
subgoals is too small, some important states might be omit-
ted from the set of subgoals, which also degrades the perfor-
mance. Recall that the baseline performance for symbolic
Perseus (as shown in Table 1) with 378 seconds of planning
yielded a return of just 4520, well under the results shown
in Figure 1. Thus, the performance indicates that IGRES is
robust against changes in the number of subgoals for this

Return Time(s)

Lesser sand plover
|S| = 108, |A| = 3, |⌦| = 36
symbolic Perseus* 4675 10
IGRES (# subgoals: 18) 5037.72 ± 8.82 10

Bar-tailed godwit b.
|S| = 972, |A| = 5, |⌦| = 324
symbolic Perseus* 18217 48
IGRES (# subgoals: 36) 19572.41 ± 39.35 60

Terek sandpiper
|S| = 2916, |A| = 6, |⌦| = 972
symbolic Perseus* 7263 48
IGRES (# subgoals: 72) 7867.95 ± 2.44 60

Bar-tailed godwit m.
|S| = 2916, |A| = 6, |⌦| = 972
symbolic Perseus* 24583 58
IGRES (# subgoals: 72) 26654.06 ± 38.60 60

Grey-tailed tattler
|S| = 2916, |A| = 6, |⌦| = 972
symbolic Perseus* 4520 378
IGRES (# subgoals: 72) 4860.91 ± 38.47 60
IGRES (# subgoals: 72) 4927.17 ± 38.14 300

* Results from (Nicol et al. 2013).

Table 2: Results of adaptive management of migratory birds.

type of problems and consistently samples important sub-
goal states to compute good solutions.

Figure 1: Performance of IGRES on Grey-tailed Tattler.

Conclusion

In this paper, we present a new multi-purpose POMDP plan-
ning algorithm, IGRES, which exploits state information
to identify subgoals that are essential for computing good
policies, and automatically generates macro-actions to im-
prove computational efficiency while maintaining good per-
formance. Despite the simplicity of macro-actions genera-
tion, IGRES computes better solution at up to 10 times faster
speed for some problems, and successfully generalizes to a
wide set of POMDP tasks. We also present improved empir-
ical performance for a set of real-world challenge tasks in
ecological management, with significant potential impact.
These promising results suggest that the notion of gather-
ing information for exploitation of subgoals with macro-
actions provides a new perspective to view POMDP prob-
lems, which advances application of POMDP planning for
complex tasks in practice. Our code will be publicly released
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to help future efforts.1
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