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Abstract—Imitation learning is an efficient method for many
robots to acquire complex skills. Some recent approaches to
imitation learning provide strong theoretical performance guar-
antees. However, there remain crucial practical issues, especially
during the training phase, where the training strategy may
require execution of control policies that are possibly harmful
to the robot or its environment. Moreover, these algorithms
often require more demonstrations than necessary to achieve
good performance in practice. This paper introduces a new
approach called Maximum-Mean-Discrepancy imitation learning
that uses fewer demonstrations and safer exploration policy than
existing methods, while preserving strong theoretical guarantees
on performance. We demonstrate empirical performance of this
method for effective navigation control of a social robot in
a populated environment, where safety and efficiency during
learning are primary considerations.

I. INTRODUCTION

Imitation learning is a class of algorithms for efficiently
optimizing the behaviour of an agent using demonstrations
from an expert (or oracle). It is particularly advantageous in
complex robotics tasks, where it can be difficult to specify,
or directly learn, a model of the dynamics of the robot and
its environment. Imitation learning has been used successfully
in recent years for a large number of robotic tasks, includ-
ing helicopter manoeuvring [1], car parking [2], autonomous
navigation [14], and robotic surgery [7].

There are several different methods for imitation learn-
ing [4]. The most common approach is to use supervised
learning to match the actions of the expert, by explicitly
minimizing loss with respect to the demonstration data. How-
ever, one important difference between imitation learning and
standard supervised learning is that in imitation learning,
the assumption that the data is independent and identically
distributed (IID) is generally violated, due to the fact that the
state distribution induced by the learned policy is different
from that of the oracle. Ignoring this fact means that typical
supervised approaches to imitation learning may suffer a
quadratic loss in the task horizon T [16], rather than having
a loss linear in T as in standard supervised learning tasks.

Recently, an imitation learning algorithm known as Dataset
Aggregation (DAgger) [17] was proposed, and this work
stands out among other imitation learning algorithms for two
reasons. First, the authors showed a reduction from imitation
learning to online learning, thereby opening the door to this
rich literature. The second major contribution was to show that

DAgger has strong theoretical guarantee, and is in fact able to
achieve a loss linear in T .

Despite its important insights, DAgger has some drawbacks
that can limit its usefulness in some robotic application.
First, we note that in DAgger, as in other imitation learn-
ing approaches, the expert’s actions are stored and used for
computation, but they are not directly executed by the robot.
The actions carried-out in the environment are always from
the robot’s own (partially optimized) policy, and the oracle is
not allowed to intervene. Unfortunately this poses unnecessary
risk, as the robot could use an exploration policy that is not be
safe, carrying out actions that are dangerous, either to itself or
its environment. This is particularly problematic in the early
phases of training, and of particular concern for tasks with
high-risk states, for example in robot-assisted surgery [7].
The second drawback of DAgger for practical deployment
is its naive data aggregation strategy. Since it queries the
oracle at every time step and treats each query equally, it
can require large amounts of oracle demonstrations to learn
to recover from the mistakes of early policies. Requiring ex-
cessive demonstrations from an oracle can be quite expensive,
especially if the queries involves highly skilled personnel as
in helicopter tasks [1].

The primary contribution of our paper is to propose a
new practical imitation learning algorithm to achieve safe and
efficient learning in challenging robotic domains. Like DAg-
ger, our algorithm iteratively train policies. Unlike DAgger,
however, we propose a query metric that depends on how
close an encountered state is from the distribution of data
gathered so far, and query the oracle only if this metric is
above some threshold. To recover faster from mistakes of
policies of previous iterations, we aggregate a data point if it is
distributed differently than the datasets gathered so far, and if
the current policy has made a mistake, and then train a separate
policy for each distribution of a dataset. As a result, we learn
multiple policies, each specializing in particular regions of
the state space where previous policies made mistakes, while
focusing on one particular distribution of data. At a run time,
we check which one of the policies is trained with the dataset
that is most closely distributed with the encountered state. The
distribution discrepancy metric that we employ is Maximum
Mean Discrepancy (MMD) [10], a criterion that was originally
proposed to determine whether two sets of data are from the
same or different probability distributions.



The other contributions of our paper are to show that our
approach, Maximum Mean Discrepancy Imitation Learning
(MMD-IL), has similar theoretical guarantees as DAgger, as
well as having better empirical performance. We investigate
empirical performance of MMD-IL on two contrasting do-
mains, one a simulated car driving domain, where we can
extensively characterize the performance in terms of efficiency,
safety and loss. The second set of experiments is performed
using a mobile robot intended for personal assistance where
we confirm that MMD-IL can efficiently learn to imitate how
an expert drives the robot through a crowd, using significantly
fewer demonstrations than DAgger.

A noteworthy caveat is that the improved safety and data
efficiency observed with MMD-IL is obtained by trading-off
data efficiency with computational efficiency. Indeed, there
is an extra O(m) computational cost (m = # data points)
for computing the MMD criteria necessary to choose the
agent’s policy1. Therefore the method is particularly intended
for domains where data is more expensive than computation,
which is often the case for imitation learning applications.

II. TECHNICAL BACKGROUND

We denote a state space as S, an action space as A, and a
policy space as Π. Given a task horizon T , the agent follows
a policy π : S → A and suffers an immediate loss L(s, a),
which we assume bounded in [0, 1]. After taking an action the
agent reaches another state s′ with a particular probability.
We denote dtπ the state distribution at time t after executing
π from time 1 to t − 1, and dπt = 1

T

∑T
t=1 d

t
π the average

distribution of states over T steps. The expected loss in these
T steps is denoted by J(π) =

∑T
t=1 Es∼dtπ [L(s, π(s)] =

TEs∼dπ [L(s, π(s))]. The demonstration data is defined by the
tuple < s, a >, and a trajectory is a sequence of demonstration
data. The goal in imitation learning is to find a policy π ∈ Π
such that the policy minimizes J(π). We assume that Π is a
closed, bounded and non-empty convex set in Euclidean space.

A. Imitation via Supervised Learning

The standard approach in imitation learning is to use
demonstration data as supervised learning data, and learn a
policy via regression techniques to map states to actions [4].
During a time step t, we collect a training example from the
oracle (st, π

∗(st)) where π∗(st) denote action of the oracle at
state st. Since we do not have access to the true loss L(s, a) in
imitation learning, we denote l(st, π, π∗) as the surrogate loss
of executing policy π at state st with respect to π∗. This can
be any convex loss function, such as squared or hinge loss.
We learn a policy by solving:

π̂ = argminπ∈ΠEs∼dπ∗ [l(s, π, π∗)] (1)

One drawback of this simple approach is that it ignores
the fact that the state distributions of the oracle and the
learner are different. This occurs because when the learner
makes a mistake, the wrong action choice will change the

1This could likely be reduced to a constant by keeping only a fixed set of
points, or else reduced to a log factor by using appropriate data structures.

following state distribution such that the states induced are not
necessarily distributed from same distribution as the oracle’s
training data. Ross and Bagnell [16] proved that this could lead
to a quadratic loss in task horizon, compared to the linear loss
that is observed in standard supervised learning with IID data.

B. Dataset Aggregation

Dataset Aggregation (DAgger) tackles the non-IID problem
by iteratively learning a policy [17]. In its simplest form,
it proceeds as follows. Let sπ denote a state visited by
executing π, π∗ the oracle’s policy, and πi the policy learned
at iteration i. Initially, the learner is given an oracle dataset
D0 = {(sπ∗ , π∗(sπ∗))}, and learns a policy π0 by any
supervised learning method which minimizes the loss of π0

with respect to π∗ at sπ∗ in D0. We execute π0 and collect
data from oracle, D1 = {(sπ0

, π∗(sπ0
))}. Policy π1 is learned

from the aggregated dataset, D0 ∪D1. This iterative process
of policy execution, data aggregation, and policy optimization
continues for N iterations. The purpose of iterative learning
is to recover from mistakes of the previous policy. Since the
state distribution is not IID, the learned policy is likely to
make mistakes in regions of the state space that are unfamiliar.
Hence by aggregating the oracle’s demonstrations at states
encountered by the previous policy, the hope is that the agent
will learn to recover from those mistakes.

Let Qπ
′

t (s, π) denote the t-step loss of executing π in the
initial state and then executing π′. We state here an important
theorem from Ross and Bagnell [17].

Theorem 1 (from [17]): Let π be such that
Es∼dπ [l(s, π, π∗)] = ε. If Qπ

∗

T−t+1(s, π)−Qπ∗T−t+1(s, π∗) ≤ u
for all action a,t ∈ {1, 2, ..., T}, then J(π) ≤ J(π∗) + uTε.

This theorem basically that if π has expected loss of ε
in state distribution induced by π, differs from π∗ by one
action at time step t, and if the cumulative cost is bounded
by u, then the task cost with respect to π∗ is O(uT ).

One of the major contributions of DAgger is its reduction
of imitation learning to online learning. In an online learning
problem, the algorithm executes a policy and suffers a loss
li(πi) at iteration i. The algorithm then modifies its policy
to produce a new policy, πi+1, suffers loss li+1(πi+1), and so
on. A class of online algorithms known as no-regret algorithms
guarantees the following:

1

N

N∑
i=1

li(πi)−minπ∈Π
1

N

N∑
i=1

li(π) ≤ δN (2)

where limN→∞δN = 0. If we assume a strongly convex loss
function, then Follow-The-Leader is a no-regret algorithm
where in each iteration, it uses the policy that works the best
so far: πi+1 = argminπ∈Π

∑i
j=1 lj(π) [13]. DAgger can be

seen as a variant of a Follow-The-Leader algorithm in that
it chooses the policy that minimizes the surrogate loss on
data gathered so far. In the reduction of imitation learning
to online learning, we let li(s, π, π∗) = Es∼dπi [l(s, πi, π

∗)],



N be the number of training iterations in DAgger, and
εN = minπ∈Π

1
N

∑N
i=1 li(s, π, π

∗) be the minimum loss
we can achieve in the policy space Π in hindsight. Assume
l(s, π, π∗) is strongly convex and denote π1:N the sequence
of learned policies. Then DAgger guarantees the following if
infinite samples per iteration are available:

Theorem 2 (from [17]): For DAgger, if N is O(uT logT )
and Qπ

′

T−t+1(s, π) − Qπ′T−t+1(s, π∗) ≤ u then there exists a
policy π ∈ π1:N such that J(π) ≤ J(π∗) + uTεN .

The important result here is that DAgger guarantees
linear loss in terms of the task horizon T .

III. MAX MEAN DISCREPANCY IMITATION LEARNING

The first step towards reducing unsafe and unnecessary ex-
ploration is to query the oracle and execute the oracle’s action
(i.e. oracle intervention) in cases where the state encountered
is distributed differently from data gathered so far, and the
learner is about to make a mistake. We formally define a
mistake as the discrepancy between the policy of oracle and
that of the agent:

||π(s)− π∗(s)||1 > γ (3)

where γ is a pre-defined parameter. Note that in the case
of discrete actions, the metric needs to be defined. This also
reduces the problem of unnecessary exploration in states that
are not reachable in reality, because the oracle is able to direct
the learner to states that are reachable in reality. We explain
below how this is computed and used in our algorithm.

We now introduce the criterion known as Maximum Mean
Discrepancy, which is used as a distance metric to determine
when to query the expert for demonstration, and which of the
policies to follow out of multiple policies learned so far.

A. Maximum Mean Discrepancy

Given two sets of data, X := {x1, ..., xm} and
Y := {y1, ..., yn} drawn IID from p and q respectively,
Maximum Mean Discrepancy criterion determines whether
p = q or p 6= q in reproducing kernel Hilbert space (RKHS).

Definition 1 (from [10]): Let F be a class of functions
f : X → R and let p, q,X, Y be defined as above. Then
MMD and its empirical estimate are defined as:

MMD[F , p, q] := supf∈F (E[f(x)]− E[f(y)])

MMD[F , X, Y ] := supf∈F (
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi))

MMD comes with important theorem which we restate here.

Theorem 3 (from [10]): Let F be a unit ball in reproducing
kernel Hilbert space H, defined on compact metric space X ,
with associated kernel k(·, ·). Then MMD[F , p, q] = 0 if
and only if p = q.

Algorithm 1 MMD Imitation Learning
Initialize D0 ← D∗

Train π̂0 = Train(D0)
for i = 0 to N − 1 do
Di+1 = ∅
for j = 1 to T do
π̂

(i)
MMD(sj) = argminπ̂0:iMMD[F , sj , D0:i]

if min MMD[F , sj , D0:i] > α then
π∗(sj) = Query the oracle
if |π∗(sj)− π̂(i)

MMD(sj)| > γ then
Execute π∗(sj)
Collect data: Di+1 = Di+1 ∪ (s, π

∗(sj))
else

Execute π̂(i)
MMD(sj)

end if
else

Execute π̂(i)
MMD(sj)

end if
end for
Train π̂i+1 = Train(Di+1)

end for

Intuitively, we can expect MMD[F , X, Y ] to be small if
p = q, and the quantity to be large if distributions are far apart.
Note that H is an RKHS endowed with common kernels, such
as Gaussian kernel (for more choices of kernels, see [10]).

B. MMD-IL Algorithm

The MMD-IL algorithm (Algorithm 1) is an iterative proce-
dure that train multiple policies. Initially, the oracle provides
D∗, a demonstration of the given task. We use this data to
train the first policy, π̂0. The agent then goes into successive
rounds during which it executes one of the learned policies
over trajectories of length T , aggregating new data points to
train a new policy if they satisfy conditions we discuss below.

During a policy execution, the agent must decide at ev-
ery time step whether to apply one of the learned policies,
{π̂0, . . . , π̂i}, or to query the oracle for a demonstration. Let
MMD[F , s,D0:i] be the set of MMDs evaluated between s
and each of {D1, .., Di}, evaluated according to Equation 4,
the empirical MMD for state s and dataset Di, in RKHS
endowed with kernel k(·, ·):

MMD[F , s,Di] (4)

= supf∈F (f(s)− 1

n

∑
s′∈Di

f(s′))

=
[
k(s, s)− 2

n

∑
s′∈Di

k(s, s′) +
1

n2

∑
s′,s′′∈Di

k(s′, s′′)
] 1

2

The MMD criterion is first used to determine which of the
available policies, {π̂0, . . . , π̂i}, is trained with data that has
minimum MMD value with the current state. The idea is to use
the policy that is trained with the dataset whose distribution
is closest to the current state. Then, if the minimum MMD
between current state and datasets gathered so far is larger
than α, the agent queries the oracle for a demonstration,
π∗(s). This action gets compared with π

(i)
MMD(s) using the



threshold γ, to decide whether to execute π∗(s) or π(i)
MMD(s).

If the encountered state has discrepancy bigger than α and the
current policy makes a mistake, MMD-IL aggregates the data
point, (s, π∗(s)). This allows the agent to learn new policies
specifically targeting unexplored states that are reachable from
current policy and the previous learned policies are still
making mistakes, while controlling the frequency of queries.

The MMD-IL algorithm comes with two pre-defined param-
eters. The first, γ as introduced above, controls the frequency
of usage of oracle actions. If γ is set to a small value, the
oracle’s queried action will be executed and its demonstration
will be aggregated even for small mistakes. The parameter
γ can be set using domain knowledge. Note that we do not
execute the oracle’s action even after it is queried, if the
current policy is not making a mistake. This allows the agent
to explore states that it will encounter during an execution of
its policy, as long as the policy does not differ from that of the
oracle’s. The parameter α, on the other hand, allows the user
to control how much the oracle monitoring (i.e. frequency of
queries to the oracle) is necessary. For instance, if the robot is
learning a risk sensitive task, α can be set to 0 in which case
the oracle will provide an action at every step, and the agent
uses oracle’s action if the current policy is making a mistake.
If α is set to a high value, we only query the oracle when the
encountered state is significantly far away from distributions
of data gathered so far. This is more suitable for cases where
the oracle demonstration data is expensive, and the oracle is
not present with the robot in every step of the policy execution.
C. Space and Time Complexities

Assume MMD-IL trained N policies, {π̂1, . . . , π̂N}, from
datasets {D1, .., DN}. In calculating the MMD value between
each dataset and the given state, the third term in Eqn 4 is most
expensive to compute, requiring O(m2) time (where m is the
number of points in a given dataset Di). But this term can be
pre-computed once Di is fully collected, and so at run time we
only evaluate the second term, which is O(m). Thus, for each
query, our algorithm takes O(mN) time, which corresponds
to the total number of datapoints gathered so far. We also
need a O(mN) space to store the data. In practice, this may
be reduced in a number of ways, for instance, by imposing a
stopping criterion for the number of iterations based on MMD
values evaluated with new states, or limiting the number of
data points by discarding (near-)duplicate data points.
D. Theoretical Consequences

In order to prove that our policy is robust, we require a
guarantee that our policy achieves a loss linear in T as N gets
large, like supervised learning algorithms[16]. We first assume
that for ith iteration, the oracle interventions have bounded
effect on total variation distance by some constant Ci ≤ 2:

||d(i)
πMMD − d

(i)
π̂MMD

||1 ≤ Ci

Here, d(i)
πMMD denotes the average empirical distribution of

states when the oracle intervened at least once, and d
(i)
π̂MMD

denotes the average empirical distribution of states when the
MMD policy (π̂(i)

MMD) is used throughout the task horizon.

We assume that Ci reaches zero as N approaches infinity (i.e.
the oracle intervenes less as the number of iterations grows),
and the policy at the latest iteration achieves minimum
expected loss out of all the policies learned so far. Denote
lmax the upper bound on loss.

Theorem 4 For MMD policy π̂MMD,

Es∼dπ̂MMD [l(s, π̂MMD)] ≤ εn + δN +
lmax
N

N∑
i=1

Ci,

for δN the average regret of π̂MMD (as defined in Eqn 2).
Proof

E
s∼d(N)

π̂MMD

[l(s, π̂
(N)
MMD, π

∗)]

≤ min
π̂∈π̂(1:N)

MMD

Es∼dπ̂ [l(s, π̂, π∗)]

≤ 1

N

N∑
i=1

[E
s∼d(i)π̂MMD

(l(s, π̂
(i)
MMD, π

∗))]

≤ 1

N

N∑
i=1

[E
s∼d(i)πMMD

(l(s, π̂
(i)
MMD, π

∗)) + lmaxCi]

≤ δN +minπ∈Π
1

N

N∑
i=1

li(π) +

N∑
i=1

lmax
Ci
N

= δN + εN +
lmax
N

N∑
i=1

Ci

The first two lines follow from simple algebra. The third
line follows from our first assumption above, and using the
definition of expectation. The fourth line follows from Eqn 2.
The last line follows from the definition of εN (Thm 2).
Applying Theorem 1, we can see that the MMD policy will
yield a bound linear in the task horizon T as well.

IV. EXPERIMENTS

A. Car Brake Control Simulation

We applied MMD-IL for the vehicle brake control simu-
lation introduced in Hester and Stone [11]. The task here
is to go from an initial velocity to the target velocity, and
maintain the target velocity. The robot can either press the
acceleration pedal or the brake pedal, but cannot press both of
them at the same time. The difference between the experiment
in [11] and ours is that we pose it as a regression problem,
where the action of the robot can be any positive positions of
pedals pressed rather than discretizing the position of pedals.
A state is represented as four continuous valued features:
target velocity, current velocity, current positions of brake and
acceleration pedals. Given the state, the robot has to predict
a two-dimensional action: position of acceleration pedal and
brake pedal. The reward is calculated as -10 times the error
in velocity in m/s. The initial velocity is set to 2m/s, and the
target velocity is set to 7m/s.

The oracle was implemented using the dynamics between
the amount of pedals pressed and output velocity from which
it can calculate the optimal velocity at the current state. The



robot has no knowledge of these dynamics, and receives only
the demonstrations from the oracle. We used a mean-squared
loss based decision tree regressor for learning policies, as
implemented in the Scikit-learn machine learning library [15].
A Gaussian kernel was used for computing the MMD, γ
was set to 0.1, and α was set to various values. During
the test phase (from which we computed the results in the
plots below), we added random noise to the dynamics to
simulate a more realistic scenario where the output velocity
is governed by other factors such as friction and wind. We
repeated each iteration’s policy 15 times, gathering mean and
standard deviation of each iteration’s result.
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Fig. 1: Cumulative reward of DAgger and MMD-IL.
M{0.1, 0.3, 0.5} indicates MMD-IL with α = 0.1, 0.3, 0.5.

Figure 1 shows the average cumulative reward after execu-
tion over the task horizon, T = 100. As can be seen from the
plot, MMD-IL learns to recover from necessary mistakes after
the first iteration. The cumulative reward after the first iteration
stays about the same, even though there are few mistakes
observed. In essence, we could have stopped training MMD-IL
after the first iteration, because its reward is very close to that
of oracle’s. DAgger, on the other hand, struggles to learn from
mistakes and struggles to gain reward comparable to MMD-IL.
This is due to two reasons. First, as mentioned above, DAgger
explores many states that are not likely to occur in reality. For
instance, we observed that it was exploring parts of the state
space where the velocity of the robot is above 16m/s, when
the target was 7m/s. Second, it is possible that the function
space for our regressor is not rich enough to represent a good
enough function for the entire task; recall that DAgger uses a
single policy, whereas MMD-IL uses a collection of policies.
This is investigated further below.

Next, in Figure 2 we consider the number of oracle demon-
strations used by both methods at each iteration. As expected,
the number of oracle demonstrations required by DAgger in-
creases linearly in the task horizon, whereas MMD-IL requires
much less. MMD-IL is shown to perform much better than
DAgger even using only around 200 oracle demonstration
actions (one iteration), whereas DAgger needed at least 800
data points (eight iterations) to achieve near competitive per-
formance. We also show results for various settings of the
parameter α, and as expected, as α gets larger, MMD-IL is
more conservative in querying the oracle.

Finally, we investigated the complexity of regression func-
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Fig. 2: Number of demonstration data required at each iteration
for DAgger and MMD-IL. M{0.1, 0.3, 0.5} indicates MMD-IL
with α = 0.1, 0.3, 0.5.

tion space required by MMD-IL. Here we fixed the number
of iterations at five, α at 0.3, and changed the maximum
depth of decision trees, to determine how complex the fitted
function should be. As seen in Figure 3, at around a tree
depth of seven, DAgger begins to receive consistent cumulative
rewards (suggesting appropriate function complexity has been
reached), which is still less than what MMD-IL achieves with
a tree of depth 3. We do note again that MMD-IL uses
multiple decision trees, instead of one like in DAgger. We
conjecture that the better performance of MMD-IL here can be
explained via the notion of weak learnability, which suggests
that training weak policies such that they focus on mistakes
of other weak policies could lead to a stronger final policy
if the final policy is an aggregation of these weak policies
[18]. This may be particularly noteworthy for tackling more
complex robotics tasks, where a single regressor could be
computationally infeasible.
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Fig. 3: Depth of tree vs Cumulative Rewards

B. Robot Navigation Task

In a second set of experiments, we compared MMD-IL
and DAgger for real robot navigation in static and dynamic
environments. The navigation tasks considered focus on sit-
uations where unsafe exploration may be a severe issue, for
example where there is a risk that the robot will collide with
pedestrians or static obstacles. To avoid major accidents in this
early phase of development, we do restrict our experiments to
a controlled laboratory environment. We begin with a first set
of experiments involving only static (but unmapped) obstacles,
and then move to a second set of experiments involving



dynamic obstacles, in the form of moving pedestrians. In this
case, the robot needs to not only avoid the pedestrians, but
also maintain a socially acceptable distance, therefore the use
of imitation learning is particularly appropriate since notions
such as socially acceptable movement are difficult to define
using a standard cost function.

The robot used for these experiments is a robotic wheelchair
equipped with an RGB-D (Kinect) sensor [6], as shown in
Figure 4. Unlike the previous set of experiments, the state of
the system here is not known precisely, and must be inferred
in real-time from the sensor data. The camera provides a
point cloud containing 3D coordinates of the surrounding
obstacles, as well as RGB information for each point in the
cloud. For the static environment experiment, we set up a

Fig. 4: Picture of the robotic wheelchair equipped with Kinect

track that is approximately 3m wide and 15m long, in which
three static obstacles were placed. The distance from the goal
and the initial position of the robot was approximately 13m.
While getting to the goal, the robot had to avoid all three
obstacles and stay inside the track. The dynamic environment
experiment was also conducted in the same track, but the
environment involved a static obstacle and a pedestrian that
is trying to reach the robot’s initial position from robot’s goal
(i.e. they need to exchange positions in a narrow hallway). The
robot therefore has to simultaneously avoid the static obstacle
and the moving pedestrian, while staying inside the track and
getting to its goal.

The action space is a continuous two dimensional vector
space representing angular and linear velocities of the robot.
The state space is defined by environmental features such
as obstacle densities and velocities extracted from the point
cloud. We used 3×7 grid cells, each grid cell being 1m by
1m, to represent the environmental feature information in each
cell. To compute density of a cell, we counted the number
of points in the cloud belonging to that cell. Computing the
velocity in a cell involved several steps. First, we used 2D
optical flow algorithm [12] on two consecutive RGB images
provided by Kinect, which gives us correspondence from each
pixel of RGB image at time t− 1 to a pixel of RGB image at
time t. The correspondence information between two frames
was then transferred to 3D space by mapping each pixel to a
point in the point cloud at t− 1 and t accordingly. Then, the
velocity of a point was calculated by simply subtracting the

3D coordinate of a point in t−1 from corresponding point in t.
Finally, velocity of each cell was calculated by averaging the
velocity of each point in that cell. For dynamic environment
experiment, this gave us a 63 continuous dimensional state
space (3×7 grid cells * 3 environmental features(density, and
2 horizontal velocities). For the static environment, we did not
use the velocity information (=21 dimensional state space).

To train the robot, we followed Algorithm 1 and DAgger.
In the initial iteration, both MMD-IL and DAgger were given
a demonstration trajectory of how to avoid static and dynamic
obstacles and get to the goal by a human pilot (oracle)
who tele-operated the robot. For MMD-IL, we allowed the
maximum oracle monitoring (i.e. α = 0) as the collision with
dynamic obstacles needed to be prevented (for the safety of
the pedestrian). At each iteration, we executed the previous
iteration’s policy while applying π∗ if it is different from the
robot’s policy by γ, that we set using domain knolwedge2.
As a result, the oracle was able to guide the robot when it
was about to go out of the track or collide with an obstacle.
For DAgger, the policy was executed and the oracle provided
actions, but did not intervene (as per the algorithm’s definition)
until a collision was imminent, at which point the exploration
was manually terminated by the operator and the dataset was
aggregated.

To test each iteration’s policy πi, we stopped gathering data
and executed the policy. If the policy was going to make a
mistake (i.e. hit one of the obstacles or go outside of the
track), the oracle intervened and corrected its mistake so that
the robot could get to the goal. The purpose of the oracle
intervention in the test phase was to be able to numerically
compare the policies throughout the whole task horizon T .
Otherwise, as these policies have not finished training, it is
hard to numerically compare their performances throughout
the task horizon as they tend to collide with obstacles and
go out of the track. To compare two algorithms, we used the
oracle intervention ratio calculated by |S

∗|
T , where S∗ is the

set of states in which the oracle intervened. We repeated the
navigation task using each iteration’s policy four times, to get
the mean and standard deviation of the ratio. Note that this
ratio is analogous to classification error, because S∗ is the set
of mistakes of the policy and T is the total number of test set.

1) Static Environment: Figure 6 shows the trajectory results
of MMD-IL and DAgger. We observe that MMD-IL almost
never makes the same mistake twice. For instance, in the first
iteration it made mistakes close to the goal, but in second
iteration there are no mistakes at this region. Likewise, in the
second iteration it makes mistakes when avoiding the third
obstacle, but in the third iteration this is prevented. In the
final iteration, it successfully avoids all three obstacles and
reaches the goal, behaving very similarly to the oracle.

In contrast, DAgger struggles to learn to recover from
mistakes. For instance, in the first iteration it started making

2The linear and angular velocities of the robot are mapped to 0 to 1.0 scale.
We set γ to 0.2.



Fig. 6: Example trajectories executed by policies in iterations 1 to 4, left to right, for MMD-IL(top) and for iterations 1,3,5
and 8 DAgger (bottom). Initial human demonstration, D∗ (black - this is the same in all panels), each iteration’s policy (dotted
blue), and oracle’s interventions during the execution of the policy (red). Obstacles (pink squares), and track(pink lines). The
initial position of the robot is at the right and the goal position is at the left.

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of iterations

O
ra

c
le

 I
n

te
rv

e
n

ti
o

n
 R

a
ti
o

 

 

MMD−IL

DAgger

Fig. 5: Oracle intervention ratio during the execution of each
iteration’s policy for static environment.

mistakes near the second obstacle until the end. The mistakes
at these regions persisted until iteration three. We would also
like to note that for DAgger, it was harder for the oracle to
provide the optimal demonstration than MMD-IL because the
oracle’s input actions were not executed. For instance, when
the robot was getting closer to an obstacle, it was hard for the
oracle to know how much to turn because the oracle controls
the robot not only by how close the robot is to the obstacle,
but also by direction and speed of the robot. Since the robot
was not executing the oracle’s actions, these factors were hard
to consider and the oracle ended up giving suboptimal policy.
This lead to a suboptimal final policy for DAgger as shown
in the bottom right-most panel of Figure 6, which features
“wiggling” motions.

Figure 5 shows how often the oracle had to intervene during
the navigation to make the robot get to the goal. As the plot
shows, MMD-IL learns to navigate by itself after iteration 3,
compared to iteration 7 for DAgger. This again supports our
claim that MMD-IL requires much less oracle demonstrations.

2) Dynamic Environment: This experiment involved a
pedestrian that interfered with the robot’s trajectory. The
pedestrian was asked to navigate freely to get to its goal,
except to move towards the static obstacle. While the pedes-
trian showed irregular trajectories, the general trajectories were
either moving to the right to avoid the robot, or moving
forward and then slightly to the right. It all depended on who
moved first; if the pedestrian moved first, it was usually the
case that the pedestrian moved to the right to avoid the robot.
If the robot moved first to the right to avoid the static obstacle
and pedestrian, the pedestrian simply moved forward.

In the initial oracle demonstration step, the pedestrian
happened to move forward so the oracle turned to the right in
an attempt to avoid both approaching pedestrian and the static
obstacle on the left. Due to this reason, the policy learned have
a tendency to move towards right first, but learns to stop this
motion and go straight if the pedestrian is moving towards the
right. The final policies’ trajectories are shown in Figure 7.

Fig. 7: Left: Case where the pedestrian moved forward. Right:
Case where the pedestrian moved to the right. Oracle’s initial
trajectory (black), final policy of MMD-IL (dotted blue) , and
final policy of DAgger (red) are shown. The green arrows are
the approximate pedestrian trajectories (manually annotated).

As the figure shows, MMD-IL showed a trajectory that is
much more socially adaptive when trying to avoid the pedes-
trian, by imitating the oracle almost perfectly at these situa-
tions. Once both pedestrian and static obstacles are avoided, it
deviates from the oracle’s trajectory but this is unimportant as
there are no more obstacles. In contrary, DAgger’s final policy
involved moving towards the static obstacle, and waiting until
the pedestrian passed. This is a less efficient policy, and is
a direct result of the fact that when the oracle’s policies are
not being executed, the oracle cannot keep the demonstrations
within the distribution of the optimal policy. This policy is not
only suboptimal but also socially ineffective, in that it strayed
too close to the pedestrian.

Figure 8 shows the oracle intervention ratio plot. Again,
MMD-IL learned to navigate in this environment with less
demonstration data than DAgger. Note that the high variance
was caused by the irregular trajectories of the pedestrian.

V. RELATED WORK

There are other supervised imitation learning algorithms
which query the oracle incrementally, besides DAgger. In [8],
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Fig. 8: Oracle intervention ratio during the execution of each
iteration’s policy for dynamic environment.

a confidence-based imitation learning is proposed. The idea is
to employ a Gaussian Mixture Model per action label, and then
use certainty of a classification output to determine when to
query the oracle. The limitation of this work is that the query
metric restricts the choice of classifier to a probabilistic one.
In [9], this work was extended to use other metrics such as
distance to the closest point in a training dataset and distance
to the decision boundary. Another line of work is feedback
based imitation learning, in which the agent receives feedback
from the oracle as to correct the behaviour of the current policy
[3, 5]. The idea is to use an Markov Decision Process, in which
rewards are specified by the oracle feedback, and to correct
the current policy such that it maximizes the return. Our
intuition behind MMD-IL is that these additional queries and
feedbacks are required because state distribution is different
when policy changes. The key difference between MMD-IL
and these works is that it queries the oracle only when there is
a significant discrepancy in state distributions, as measured via
MMD, and corrects the policy only when the current policy
makes a mistake. Moreover, MMD-IL provides theoretical
guarantee using the reduction from imitation learning to no-
regret online learning.

VI. CONCLUSION

In this work we proposed MMD-IL, an imitation learning
algorithm that is more data efficient and safer to use in practice
than the state-of-art imitation learning method DAgger, albeit
at the cost of some extra computation. We also showed that
MMD-IL guarantees a loss linear in terms of the task horizon,
as in standard supervised learning tasks. Moreover, MMD-IL
comes with pre-defined parameters, through which the user
can control how much demonstration data is collected, and
when the oracle’s policy should be used. MMD-IL showed
good empirical performance in a variety of tasks, including
navigating in the presence of unmodeled static and dynamic
obstacles using standard sensing technology. MMD-IL out-
performed DAgger in all tasks considered, mainly due to its
ability to learn to quickly recover from mistakes by using the
oracle to guide the learning, though limiting interventions to
key areas by using the MMD criterion. The improvement in
performance, however, was achieved at a extra computational
cost of O(m). In future, we hope to integrate imitation learning
with learning by trial-and-error, or reinforcement learning, as

to consider the case where we only have small number of
oracle data, or when the oracle is sub-optimal.
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