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Abstract
Interesting real-world datasets often exhibit nonlinear, noisy, continuous-valued
states that are unexplorable, are poorly described by first principles, and are only
partially observable. If partial observability can be overcome, these constraints
suggest the use of model-based reinforcement learning. We experiment with man-
ifold embeddings to reconstruct the observable state-space in the context of off-
line, model-based reinforcement learning. We demonstrate that the embedding of
a system can change as a result of learning, and we argue that the best performing
embeddings well-represent the dynamics of both the uncontrolled and adaptively
controlled system. We apply this approach to learn a neurostimulation policy that
suppresses epileptic seizures on animal brain slices.

1 Introduction
The accessibility of large quantities of off-line discrete-time dynamic data—state-action sequences
drawn from real-world domains—represents an untapped opportunity for widespread adoption of
reinforcement learning. By real-world we imply domains that are characterized by continuous state,
noise, and partial observability. Barriers to making use of this data include: 1) goals (rewards) are
not well-defined, 2) exploration is expensive (or not permissible), and 3) the data does not preserve
the Markov property. If we assume that the reward function is part of the problem description, then
to learn from this data we must ensure the Markov property is preserved before we approximate the
optimal policy with respect to the reward function in a model-free or model-based way.

For many domains, particularly those governed by differential equations, we may leverage the in-
ductive bias of locality during function approximation to satisfy the Markov property. When ap-
plied to model-free reinforcement learning, function approximation typically assumes that the value
function maps nearby states to similar expectations of future reward. As part of model-based rein-
forcement learning, function approximation additionally assumes that similar actions map to nearby
future states from nearby current states [10]. Impressive performance and scalability of local model-
based approaches [1, 2] and global model-free approaches [6, 17] have been achieved by exploiting
the locality of dynamics in fully observable state-space representations of challenging real-world
problems.

In partially observable systems, however, locality is not preserved without additional context. First
principle models offer some guidance in defining local dynamics, but the existence of known first
principles cannot always be assumed. Rather, we desire a general framework for reconstructing
state-spaces of partially observable systems which guarantees the preservation of locality. Nonlinear
dynamic analysis has long used manifold embeddings to reconstruct locally Euclidean state-spaces
of unforced, partially observable systems [24, 18] and has identified ways of finding these embed-
dings non-parametrically [7, 12]. Dynamicists have also used embeddings as generative models of
partially observable unforced systems [16] by numerically integrating over the resultant embedding.
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Recent advances have extended the theory of manifold embeddings to encompass deterministically
and stochastically forced systems [21, 22].

A natural next step is to apply these latest theoretical tools to reconstruct and control partially ob-
servable forced systems. We do this by first identifying an appropriate embedding for the system
of interest and then leveraging the resultant locality to perform reinforcement learning in a model-
based way. We believe it may be more practical to address reinforcement learning under partial
observability in a model-based way because it facilitates reasoning about domain knowledge and
off-line validation of the embedding parameters.

The primary contribution of this paper is to formally combine and empirically evaluate these ex-
isting, but not well-known, methods by incorporating them in off-line, model-based reinforcement
learning of two domains. First, we study the use of embeddings to learn control policies in a par-
tially observable variant of the well-known Mountain Car domain. Second, we demonstrate the
embedding-driven, model-based technique to learn an effective and efficient neurostimulation pol-
icy for the treatment of epilepsy. The neurostimulation example is important because it resides
among the hardest classes of learning domain—a continuous-valued state-space that is nonlinear,
partially observable, prohibitively expensive to explore, noisy, and governed by dynamics that are
currently not well-described by mathematical models drawn from first principles.

2 Methods
In this section we combine reinforcement learning, partial observability, and manifold embeddings
into a single mathematical formalism. We then describe non-parametric means of identifying the
manifold embedding of a system and how the resultant embedding may be used as a local model.

2.1 Reinforcement Learning
Reinforcement learning (RL) is a class of problems in which an agent learns an optimal solution to
a multi-step decision task by interacting with its environment [23]. Many RL algorithms exist, but
we will focus on the Q-learning algorithm.

Consider an environment (i.e. forced system) having a state vector, s ∈ RM , which evolves ac-
cording to a nonlinear differential equation but is discretized in time and integrated numerically
according to the map, f . Consider an agent that interacts with the environment by selecting action,
a, according to a policy function, π. Consider also that there exists a reward function, g, which in-
forms the agent of the scalar goodness of taking an action with respect to the goal of some multi-step
decision task. Thus, for each time, t,

a(t) = π(s(t)), (1)
s(t + 1) = f(s(t), a(t)), and (2)
r(t + 1) = g(s(t), a(t)). (3)

RL is the process of learning the optimal policy function, π∗, that maximizes the expected sum of
future rewards, termed the optimal action-value function or Q-function, Q∗, such that,

Q∗(s(t), a(t)) = r(t + 1) + γ max
a

Q∗(s(t + 1), a), (4)

where γ is the discount factor on [0, 1). Equation 4 assumes that Q∗ is known. Without a priori
knowledge of Q∗ an approximation, Q, must be constructed iteratively. Assume the current Q-
function estimate, Q, of the optimal, Q∗, contains error, δ,

δ(t) = r(t + 1) + γ max
a

Q (s(t + 1), a) − Q (s(t), a(t)) ,

where δ(t) is termed the temporal difference error or TD-error. The TD-error can be used to improve
the approximation of Q by

Q (s(t), a(t)) = Q (s(t), a(t)) + αδ(t), (5)

where α is the learning rate. By selecting action a that maximizes the current estimate of Q, Q-
learning specifies that over many applications of Equation 5, Q approaches Q∗.
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2.2 Manifold Embeddings for Reinforcement Learning Under Partial Observability
Q-learning relies on complete state observability to identify the optimal policy. Nonlinear dynamic
systems theory provides a means of reconstructing complete state observability from incomplete
state via the method of delayed embeddings, formalized by Takens’ Theorem [24]. Here we present
the key points of Takens’ Theorem utilizing the notation of Huke [8] in a deterministically forced
system.

Assume s is anM -dimensional, real-valued, bounded vector space and a is a real-valued action input
to the environment. Assuming that the state update f and the policy π are deterministic functions,
Equation 1 may be substituted into Equation 2 to compose a new function, φ,

s(t + 1) = f (s(t),π(s(t))) ,

= φ(s(t)), (6)

which specifies the discrete time evolution of the agent acting on the environment. If φ is a smooth
map φ : RM → RM and this system is observed via function, y, such that

s̃(t) = y(s(t)), (7)

where y : RM → R, then if φ is invertible, φ−1 exists, and φ, φ−1, and y are continuously differen-
tiable we may apply Takens’ Theorem [24] to reconstruct the complete state-space of the observed
system. Thus, for each s̃(t), we can construct a vector sE(t),

sE(t) = [s̃(t), s̃(t − 1), ..., s̃(t − (E − 1))], E > 2M, (8)

such that sE lies on a subset of RE which is an embedding of s. Because embeddings preserve the
connectivity of the original vector-space, in the context of RL the mapping ψ,

sE(t + 1) = ψ(sE(t)), (9)

may be substituted for f (Eqn. 6) and vectors sE(t) may be substituted for corresponding vectors
s(t) in Equations 1–5 without loss of generality.

2.3 Non-parametric Identification of Manifold Embeddings
Takens’ Theorem does not define how to compute the embedding dimension of arbitrary sequences
of observations, nor does it provide a test to determine if the theorem is applicable. In general.
the intrinsic dimension, M , of a system is unknown. Finding high-quality embedding parameters
of challenging domains, such as chaotic and noise-corrupted nonlinear signals, occupy much of
the fields of subspace identification and nonlinear dynamic analysis. Numerous methods of note
exist, drawn from both disciplines. We employ a spectral approach [7]. This method, premised by
the singular value decomposition (SVD), is non-parametric, computationally efficient, and robust
to additive noise—all of which are useful in practical application. As will be seen in succeeding
sections, this method finds embeddings which are both accurate in theoretical tests and useful in
practice.

We summarize the spectral parameter selection algorithm as follows. Given a sequence of state ob-
servations s̃ of length S̃, we choose a sufficiently large fixed embedding dimension, Ê. Sufficiently
large refers to a cardinality of dimension which is certain to be greater than twice the dimension
in which the actual state-space resides. For each embedding window size, T̂min ∈ {Ê, ..., S̃}, we:
1) define a matrix SÊ having row vectors, sÊ(t), t ∈ {T̂min, ..., S̃}, constructed according to the
rule,

sÊ(t) = [s̃(t), s̃(t − τ), ..., s̃(t − (Ê − 1)τ)], (10)

where τ = T̂min/(Ê − 1), 2) compute the SVD of the matrix SÊ , and 3) record the vector of
singular values, σ(T̂min). Embedding parameters of s̃ are found by analysis of the second singular
values, σ2(T̂min), T̂min ∈ {Ê, ..., S̃}. The T̂min value of the first local maxima of this sequence
is the approximate embedding window, Tmin, of s̃. The approximate embedding dimension, E, is
the number of non-trivial singular values of σ(Tmin) where we define non-trivial as a value greater
than the long-term trend of σÊ with respect to T̂min. Embedding s̃ according to Equation 10 via
parameters E and Tmin yields the matrix SE of row vectors, sE(t), t ∈ {Tmin, ..., S̃}.
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2.4 Generative Local Models from Embeddings
The preservation of locality and dynamics afforded by the embedding allows an approximation of
the underlying dynamic system. To model this space we assume that the derivative of the Voronoi
region surrounding each embedded point is well-approximated by the derivative at the point itself,
a nearest-neighbors derivative [16]. Using this, we simulate trajectories as iterative numerical inte-
gration of the local state and gradient. We define the model and integration process formally.

Consider a dataset D as a set of temporally aligned sequences of state observations s̃(t), action
observations a(t), and reward observations r(t), t ∈ {1, ..., S̃}. Applying the spectral embedding
method to D yields a sequence of vectors sE(t) in RE indexed by t ∈ {Tmin, ..., S̃}. A local model
M of D is the set of 3-tuples, m(t) = {sE(t), a(t), r(t)}, t ∈ {Tmin, ..., S̃}, as well as operations
on these tuples, A(m(t)) ≡ a(t), S(m(t)) ≡ sE(t), Z(m(t)) ≡ z(t) where z(t) = [s(t), a(t)],
and U(M, a) ≡ Ma whereMa is the subset of tuples inM containing action a.

Consider a state vector x(i) in RE indexed by simulation time, i. To numerically integrate this
state we define the gradient according to our definition of locality, namely the nearest neighbor.
This step is defined differently for models having discrete and continuous actions. The model’s
nearest neighbor of x(i) when taking action a(i) is defined in the case of a discrete set of actions,
A, according to Equation 11 and in the continuous case it is defined by Equation 12,

m(tx(i)) = argmin
m(t)∈U(M,a(i))

‖S(m(t)) − x(i)‖, a ∈ A, (11)

m(tx(i)) = argmin
m(t)∈M

‖Z(m(t)) − [x(i),ωa(i)] ‖, a ∈ R. (12)

where ω is a scaling parameter on the action space. The model gradient and numerical integration
are defined, respectively, as,

∇x(i) = S(m(tx(i) + 1)) − S(m(tx(i))) and (13)
x(i + 1) = x(i) + ∆i

(

∇x(i) + η
)

, (14)
where η is a vector of noise and∆i is the integration step-size. Applying Equations 11–14 iteratively
simulates a trajectory of the underlying system, termed a surrogate trajectory. Surrogate trajectories
are initialized from state x(0). Equation 14 assumes that datasetD contains noise. This noise biases
the derivative estimate in RE , via the embedding rule (Eqn. 10). In practice, a small amount of
additive noise facilitates generalization.

2.5 Summary of Approach
Our approach is to combine the practices of dynamic analysis and RL to construct useful policies in
partially observable, real-world domains via off-line learning. Our meta-level approach is divided
into two phases: the modeling phase and the learning phase.

We perform the modeling phase in steps: 1) record a partially observable system (and its rewards)
under the control of a random policy or some other policy or set of policies that include observations
of high reward value; 2) identify good candidate parameters for the embedding via the spectral
embedding method; and 3) construct the embedding vectors and define the local model of the system.

During the learning phase, we identify the optimal policy on the local model with respect to the
rewards, R(m(t)) ≡ r(t), via batch Q-learning. In this work we consider strictly local function
approximation of the model and Q-function, thus, we define the Q-function as a set of values, Q,
indexed by the model elements, Q(m),m ∈ M. For a state vector x(i) in RE at simulation time
i, and an associated action, a(i), the reward and Q-value of this state can be indexed by either
Equation 11 or 12, depending on whether the action is discrete or continuous. Note, our technique
does not preclude the use of non-local function approximation, but here we assume a sufficient
density of data exists to reconstruct the embedded state-space with minimal bias.

3 Case Study: Mountain Car
The Mountain Car problem is a second-order, nonlinear dynamic system with low-dimensional,
continuous-valued state and action spaces. This domain is perhaps the most studied continuous-
valued RL domain in the literature, but, surprisingly, there is little study of the problem in the case
where the velocity component of state is unobserved. While not a real-world domain as imagined in
the introduction, Mountain Car provides a familiar benchmark to evaluate our approach.

4



50000

50000

0 100000

100000

1500002.5

150000

2000005.0

200000

−1.07.5 10.0 −0.5 0.0 0.5

10
00

10
00

10
0

10
0

0

−1
.0

5
10

−0
.5

Training Samples

15

0.
0

Pa
th
−t

o−
go

al
 L

en
gt

h
Pa

th
−t

o−
go

al
 L

en
gt

h

20

0.
5

x(t)Tmin (sec)

x(t)Tmin (sec)

τ
)

x(
t−

τ
)

x(
t−

Si
ng

ul
ar

 V
al

ue
s

Si
ng

ul
ar

 V
al

ue
s

−1.0 −0.5 0.0 0.50 2.5 5.0

−1
.0

7.5 10.0

−0
.5

0.
0

0.
5

0
5

10

Learned Policy(d)

15

(a) Embedding Performance, E=2(b)Random Policy

Embedding Performance, E=3(c)

Training Samples

σ5

σ2

σ1

σ3

σ1

σ2

σ5

0.20
0.70
1.20
1.70
2.20

Tmin

Best
Max

Random

0.20
0.70
1.20
1.70
2.20

Tmin

Best
Max

Random

Figure 1: Learning experiments on Mountain Car under partial observability. (a) Embedding spec-
trum and accompanying trajectory (E = 3, Tmin = 0.70 sec.) under random policy. (b) Learning
performance as a function of embedding parameters and quantity of training data. (c) Embedding
spectrum and accompanying trajectory (E = 3, Tmin = 0.70 sec.) for the learned policy.

We use the Mountain Car dynamics and boundaries of Sutton and Barto [23]. We fix the initial state
for all experiments (and resets) to be the lowest point of the mountain domain with zero velocity,
which requires the longest path-to-goal in the optimal policy. Only the position element of the
state is observable. During the modeling phase, we record this domain under a random control
policy for 10,000 time-steps (∆t = 0.05 seconds), where the action is changed every ∆t = 0.20
seconds. We then compute the spectral embedding of the observations (Tmin = [0.20, 9.95] sec.,
∆Tmin = 0.25 sec., and Ê = 5). The resulting spectrum is presented in Figure 1(a). We conclude
that the embedding of Mountain Car under the random policy requires dimension E = 3 with a
maximum embedding window of Tmin = 1.70 seconds.

To evaluate learning phase outcomes with respect to modeling phase outcomes, we perform an ex-
periment where we model the randomly collected observations using embedding parameters drawn
from the product of the sets Tmin = {0.20, 0.70, 1.20, 1.70, 2.20} seconds and E = {2, 3}. While
we fix the size of the local model to 10,000 elements we vary the total amount of training samples
observed from 10,000 to 200,000 at intervals of 10,000. We use batch Q-learning to identify the
optimal policy in a model-based way—in Equation 5 the transition between state-action pair and
the resulting state-reward pair is drawn from the model (η = 0.001). After learning converges, we
execute the learned policy on the real system for 10,000 time-steps, recording the mean path-to-goal
length over all goals reached. Each configuration is executed 30 times.

We summarize the results of these experiments by log-scale plots, Figures 1(b) and (c), for embed-
dings of dimension two and three, respectively. We compare learning performance against three
measures: the maximum performing policy achievable given the dynamics of the system (path-to-
goal = 63 steps), the best (99th percentile) learned policy for each quantity of training data for each
embedding dimension, and the random policy. Learned performance is plotted as linear regression
fits of the data.

Policy performance results of Figures 1(b) and (c) may be summarized by the following obser-
vations. Performance positively relates to the quantity of off-line training data for all embedding
parameters. Except for the configuration (E = 2, Tmin = 0.20), influence of Tmin on learning
performance relative to E is small. Learning performance of 3-dimensional embeddings dominate
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all but the shortest 2-dimensional embeddings. These observations indicate that the parameters of
the embedding ultimately determine the effectiveness of RL under partial observability. This is not
surprising. What is surprising is that the best performing parameter configurations are linked to
dynamic characteristics of the system under both a random policy and the learned policy.

To support this claim we collected 1,000 sample observations of the best policy (E = 3, Tmin =
0.70 sec., Ntrain = 200, 000) during control of the real Mountain Car domain (path-to-goal = 79
steps). We computed and plotted the embedding spectrum and first two dimensions of the embedding
in Figure 1(d). We compare these results to similar plots for the random policy in Figure 1(a).
We observe that the spectrum of the learned system has shifted such that the optimal embedding
parameters require a shorter embedding window, Tmin = 0.70–1.20 sec. and a lower embedding
dimension E = 2 (i.e., σ3 peaks at Tmin = 0.70–1.20 and σ3 falls below the trend of σ5 at this
window length). We confirm this by observing the embedding directly, Figure 1(d). Unlike the
random policy, which includes both an unstable spiral fixed point and limit cycle structure and
requires a 3-dimensional embedding to preserve locality, the learned policy exhibits a 2-dimensional
unstable spiral fixed point. Thus, the fixed-point structure (embedding structure) of the combined
policy-environment system changes during learning.

To reinforce this claim, we consider the difference between a 2-dimensional and 3-dimensional em-
bedding. An agent may learn to project into a 2-dimensional plane of the 3-dimensional space, thus
decreasing its embedding dimension if the training data supports a 2-dimensional policy. We believe
it is no accident that (E = 3, Tmin = 0.70) is the best performing configuration across all quantities
of training data. This configuration can represent both 3-dimensional and 2-dimensional policies,
depending on the amount of training data available. It can also select between 2-dimensional em-
beddings having window sizes of Tmin = {0.35, 0.70} sec., depending on whether the second or
third dimension is projected out. One resulting parameter configuration (E = 2, Tmin = 0.35) is
near the optimal 2-dimensional configuration of Figure 1(b).

4 Case Study: Neurostimulation Treatment of Epilepsy

Epilepsy is a common neurological disorder which manifests itself, electrophysiologically, in the
form of intermittent seizures—intense, synchronized firing of neural populations. Researchers now
recognize seizures as artifacts of abnormal neural dynamics and rely heavily on the nonlinear dy-
namic systems analysis and control literature to understand and treat seizures [4]. Promising tech-
niques have emerged from this union. For example, fixed frequency electrical stimulation of slices
of the rat hippocampus under artificially induced epilepsy have been demonstrated to suppress the
frequency, duration, or amplitude of seizures [9, 5]. Next generation epilepsy treatments, derived
from machine learning, promise maximal seizure suppression via minimal electrical stimulation by
adapting control policies to patients’ unique neural dynamics. Barriers to constructing these treat-
ments arise from a lack of first principles understanding of epilepsy. Without first principles, neu-
roscientists have only vague notions of what effective neurostimulation treatments should look like.
Even if effective policies could be envisioned, exploration of the vast space of policy parameters is
impractical without computational models.

Our specific control problem is defined as follows. Given labeled field potential recordings of brain
slices under fixed-frequency electrical stimulation policies of 0.5, 1.0, and 2.0 Hz, as well as unstim-
ulated control data, similar to the time-series depicted in Figure 2(a), we desire to learn a stimulation
policy that suppresses seizures of a real, previously unseen, brain slice with an effective mean fre-
quency (number of stimulations divided by the time the policy is active) of less than 1.0 Hz (1.0 Hz
is currently known to be the most robust suppression policy for the brain slice model we use [9, 5]).
As a further complication, on-line exploration is extremely expensive because the brain slices are
experimentally viable for periods of less than 2 hours.

Again, we approach this problem as separate modeling and learning phases. We first compute the
embedding spectrum of our dataset assuming Ê = 15, presented in Figure 2(b). Using our knowl-
edge of the interaction between embedding parameters and learning we select the embedding di-
mension E = 3 and embedding window Tmin = 1.05 seconds. Note, the strong maxima of σ2 at
Tmin = 110 seconds is the result of periodicity of seizures in our small training dataset. Periodicity
of spontaneous seizure formation, however, varies substantially between slices. We select a shorter
embedding window and rely on integration of the local model to unmask long-term dynamics.
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Figure 2: Graphical summary of the modeling phase of our adaptive neurostimulation study.
(a) Sample observations from the fixed-frequency stimulation dataset. Seizures are labeled with
horizontal lines. (b) The embedding spectrum of the fixed-frequency stimulation dataset. The large
maximum of σ2 at approximately 100 sec. is an artifact of the periodicity of seizures in the dataset.
*Detail of the embedding spectrum for Tmin = [0.05, 2.0] depicting a maximum of σ2 at the time-
scale of individual stimulation events. (c) The resultant neurostimulation model constructed from
embedding the dataset with parameters (E = 3, Tmin = 1.05 sec.). Note, the model has been
desampled 5× in the plot.

In this complex domain we apply the spectral method differently than described in Section 2. Rather
than building the model directly from the embedding (E = 3, Tmin = 1.05), we perform a change
of basis on the embedding (Ê = 15, Tmin = 1.05), using the first three columns of the right sin-
gular vectors, analogous to projecting onto the principal components. This embedding is plotted in
Figure 2(c). Also, unlike the previous case study, we convert stimulation events in the training data
from discrete frequencies to a continuous scale of time-elapsed-since-stimulation. This allows us to
combine all of the data into a single state-action space and then simulate any arbitrary frequency.
Based on exhaustive closed-loop simulations of fixed-frequency suppression efficacy across a spec-
trum of [0.001, 2.0] Hz, we constrain the model’s action set to discrete frequencies a = {2.0, 0.25}
Hz in the hopes of easing the learning problem. We then perform batch Q-learning over the model
(∆t = 0.05, ω = 0.1, and η = 0.00001), using discount factor γ = 0.9. We structure the reward
function to penalize each electrical stimulation by −1 and each visited seizure state by −20.

Without stimulation, seizure states comprise 25.6% of simulation states. Under a 1.0 Hz fixed-
frequency policy, stimulation events comprise 5.0% and seizures comprise 6.8% of the simulation
states. The policy learned by the agent also reduces the percent of seizure states to 5.2% of sim-
ulation states while stimulating only 3.1% of the time (effective frequency equals 0.62 Hz). In
simulation, therefore, the learned policy achieves the goal.

We then deployed the learned policy on real brain slices to test on-line seizure suppression perfor-
mance. The policy was tested over four trials on two unique brain slices extracted from the same
animal. The effective frequencies of these four trials were {0.65, 0.64, 0.66, 0.65} Hz. In all trials
seizures were effectively suppressed after a short transient period, during which the policy and slice
achieved equilibrium. (Note: seizures occurring at the onset of stimulation are common artifacts
of neurostimulation). Figure 3 displays two of these trials spaced over four sequential phases: (a)
a control (no stimulation) phase used to determine baseline seizure activity, (b) a learned policy
trial lasting 1,860 seconds, (c) a recovery phase to ensure slice viability after stimulation and to
recompute baseline seizure activity, and (d) a learned policy trial lasting 2,130 seconds.
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Figure 3: Field potential trace of a real seizure suppression experiment using a policy learned from
simulation. Seizures are labeled as horizontal lines above the traces. Stimulation events are marked
by vertical bars below the traces. (a) A control phase used to determine baseline seizure activity.
(b) The initial application of the learned policy. (c) A recovery phase to ensure slice viability after
stimulation and recompute baseline seizure activity. (d) The second application of the learned policy.
*10 minutes of trace are omitted while the algorithm was reset.

5 Discussion and Related Work
The RL community has long studied low-dimensional representations to capture complex domains.
Approaches for efficient function approximation, basis function construction, and discovery of em-
beddings has been the topic of significant investigations [3, 11, 20, 15, 13]. Most of this work has
been limited to the fully observable (MDP) case and has not been extended to partially observable
environments. The question of state space representation in partially observable domains was tack-
led under the POMDP framework [14] and recently in the PSR framework [19]. These methods
address a similar problem but have been limited primarily to discrete action and observation spaces.
The PSR framework was extended to continuous (nonlinear) domains [25]. This method is signifi-
cantly different from our work, both in terms of the class of representations it considers and in the
criteria used to select the appropriate representation. Furthermore, it has not yet been applied to
real-world domains. An empirical comparison with our approach is left for future consideration.

The contribution of our work is to integrate embeddings with model-based RL to solve real-world
problems. We do this by leveraging locality preserving qualities of embeddings to construct dynamic
models of the system to be controlled. While not improving the quality of off-line learning that
is possible, these models permit embedding validation and reasoning over the domain, either to
constrain the learning problem or to anticipate the effects of the learned policy on the dynamics of the
controlled system. To demonstrate our approach, we applied it to learn a neurostimulation treatment
of epilepsy, a challenging real-world domain. We showed that the policy learned off-line from an
embedding-based, local model can be successfully transferred on-line. This is a promising step
toward widespread application of RL in real-world domains. Looking to the future, we anticipate
the ability to adjust the embedding a priori using a non-parametric policy gradient approach over
the local model. An empirical investigation into the benefits of this extension are also left for future
consideration.
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