
Point-based approximations for fast POMDP solving

Joelle Pineau jpineau@cs.mcgill.ca

School of Computer Science, McGill University, Montréal QC, H3A 2A7 CANADA

Geoffrey Gordon ggordon@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh PA, 15232 USA

Sebastian Thrun thrun@stanford.edu

Computer Science Department, Stanford University, Stanford CA, 94305 USA

Abstract

The Partially Observable Markov Decision Process has long been recognized as a rich
framework for real-world planning and control problems, especially in robotics. However
exact solutions in this framework are typically computationally intractable for all but the
smallest problems. Furthermore, until recently, the efficient approximations that were avail-
able offered few theoretical guarantees regarding their performance. This paper describes a
new class of approximate POMDP algorithms, called Point-Based Value Iteration (PBVI),
which feature both good empirical performance (in simulation and robotic tasks), as well
as solid theoretical guarantees.

1. Introduction

The concept of planning has a long tradition in the AI literature (Fikes & Nilsson, 1971;
Chapman, 1987; McAllester & Roseblitt, 1991; Penberthy & Weld, 1992; Blum & Furst,
1997). Classical planning is generally concerned with agents which operate in environments
that are fully observable, deterministic, finite, static, and discrete. While these techniques
are able to solve increasingly large state-space problems, the basic assumptions of classical
planning—full observability, static environment, deterministic actions—make these unsuit-
able for most robotic applications.

Planning under uncertainty aims to improve robustness by explicitly reasoning about
the type of uncertainty that can arise. The Partially Observable Markov Decision Process
(POMDP) (Ästrom, 1965; Sondik, 1971; Monahan, 1982; White, 1991; Lovejoy, 1991b;
Kaelbling, Littman, & Cassandra, 1998; Boutilier, Dean, & Hanks, 1999) has emerged as
possibly the most general representation for (single-agent) planning under uncertainty. The
POMDP supersedes other frameworks in terms of representational power simply because it
combines the most essential features for planning under uncertainty.

First, POMDPs handle uncertainty in both action effects and state observability, whereas
many other frameworks handle neither of these, and some handle only stochastic action ef-
fects. To handle partial state observability, plans are expressed over information states,
instead of world states, since the latter ones are not directly observable. The space of in-
formation states is the space of all beliefs a system might have regarding the world state.
Information states are easily calculated from the measurements of noisy and imperfect sen-
sors. In POMDPs, information states are typically represented by probability distributions
over world states.

1

Second, many POMDP algorithms form plans by optimizing a value function. This
is a powerful approach to plan optimization, since it allows one to numerically trade-off
between alternative ways to satisfy a goal, compare actions with different costs/rewards,
as well as plan for multiple interacting goals. While value function optimization is used
in other planning approaches—for example Markov Decision Processes (MDPs) (Bellman,
1957)—POMDPs are unique in expressing the value function over information states, rather
than world states.

Finally, whereas classical and conditional planners produce a sequence of actions, POMDPs
produce a full policy for action selection, which prescribes the choice of action for any pos-
sible information state. By producing a universal plan, POMDPs alleviate the need for
re-planning, and allow fast execution. Naturally, the main drawback of optimizing a uni-
versal plan is the computational complexity of doing so. This is precisely what we seek to
alleviate with the work described in this paper

POMDPs offer a rich framework to optimize a control strategy. However, computa-
tional considerations limit the usefulness of POMDPs in large domains. Known algorithms
for exact planning in POMDPs operate by optimizing the value function over all possible
information states (also known as beliefs). These algorithms can run into the well-known
curse of dimensionality, where the dimensionality of planning problem is directly related to
the number of states. But they can also suffer from the lesser known curse of history, where
the number of belief-contingent plans increases exponentially with the planning horizon.
In fact, exact POMDP planning is known to be PSPACE-complete, whereas propositional
planning is only NP-complete (Littman, 1996). As a result, many POMDP domains with
only a few states, actions and sensor observations are computationally intractable.

This paper describes a new class of POMDP approximations known as Point-Based
Value Iteration (PBVI) algorithms which specifically target the curse of history, in an
attempt to overcome complexity issues in POMDP planning. Whereas exact POMDP
algorithms attempt to optimize a value function for all information states, PBVI-type
algorithms select a small set of representative belief points, and iteratively apply value
updates to those points only. The point-based update is significantly more efficient than an
exact update (quadratic vs. exponential). And while the number of points can grow quickly,
our empirical results show good performance with very few belief points (sometimes less
than the number of states).

From a high-level stand-point, PBVI-class solutions share many similarities with earlier
grid-based methods (Brafman, 1997; Zhou & Hansen, 2001). However there are a few key
differences. When performing value backups, PBVI algorithms update both the value and
value gradient ; this choice provides better generalization to unexplored beliefs. Another
important aspect is the strategy employed to select belief points. Rather than picking
points randomly, or according to a fixed grid, PBVI algorithms generally use exploratory
stochastic trajectories to focus on reachable regions of the belief, thus reducing the number
of belief points necessary to find a good solution compared to earlier approaches.

This paper discusses many instances of PBVI-class algorithms. These range from a
naive version that combines point-based value updates with random belief point selection,
to a sophisticated algorithm that combines the standard point-based value update with an
estimate of the error bound between the approximate and exact solutions to select belief
points.

2

The PBVI class of algorithms has a number of important properties, which are discussed
at greater length in the paper:

• Theoretical guarantees. There is a known bound on the error of our value function
approximation, with respect to the exact solution. To the best of our knowledge, no
previous approximations exist for which similar bounds have been proven.

• Scalability. We are able to handle problems on the order of 103 states, which is an
order of magnitude larger than problems typically used to test scalability of POMDP
algorithms. The empirical performance is evaluated extensively in realistic robot
tasks, including a search-for-missing-person scenario.

• Wide applicability. The approach makes few assumptions about the nature or
structure of the domain. The PBVI framework does assume known discrete state/
action/observation spaces and a known model (i. e. state-to-state transitions, obser-
vation probabilities, costs/rewards), but no additional specific structure (e. g. con-
strained policy class).

• Anytime performance. An anytime solution can be achieved by gradually alter-
nating phases of belief point selection and phases of point-based value updates. This
allows for an effective trade-off between planning time and solution quality.

This paper expands on these ideas. Section 2 begins by exposing the basic concepts in
POMDP solving, including representation, inference, and exact planning. Section 3 presents
the general anytime PBVI algorithm and its theoretical properties, as well as discussing a
range of strategies to select good belief points. Section 4 presents an empirical evaluation of
PBVI-type algorithms using standard simulation problems. Section 5 pursues the empirical
evaluation by tackling complex robot domains. Finally, Section 6 surveys a number of
existing POMDP approaches that are closely related to PBVI.

2. Review of POMDPs

Partially Observable Markov Decision Processes provide a general planning and decision-
making framework for acting optimally in partially observable domains. They are well-
suited to a great number of real-world problems where decision-making is required despite
prevalent uncertainty. They generally assume a complete and correct world model, with
stochastic state transitions, imperfect state tracking, and a reward structure. Given this
information, the goal is to find an action strategy which maximizes expected reward gains.
This section first establishes the basic terminology and essential concepts pertaining to
POMDPs, and then reviews optimal techniques for POMDP planning.

2.1 Basic POMDP Terminology

Formally, a POMDP is defined by seven distinct quantities, denoted {S,A,Z, b0, T,O,R}.
The first three of these are:

• States. The state of the world is denoted s, with the finite set of all states denoted by
S = {s0, s1, . . .}. The state at time t is denoted st, where t is a discrete time index.

3

The state is not directly observable in POMDPs, where an agent can only compute a
belief over the state space S.

• Observations. To infer a belief regarding the world’s state s, the agent can take
sensor measurements. The set of all measurements, or observations, is denoted Z =
{z0, z1, . . .}. The observation at time t is denoted zt. Observation zt is usually an
incomplete projection of the world state st, contaminated by sensor noise.

• Actions. To act in the world, the agent is given a finite set of actions, denoted
A = {a0, a1, . . .}. Actions stochastically affect the state of the world. Choosing the
right action as a function of history is the core problem in POMDPs.

Throughout this paper, we assume that states, actions and observations are discrete and
finite. It is commonly assumed that actions and observations are alternated over time. This
assumption does not restrict the general expressiveness of the approach, but is adopted
throughout for notational convenience.

To fully define a POMDP, we have to specify the probabilistic laws that describe state
transitions and observations. These laws are given by the following distributions:

• The initial state probability distribution,

b0(s) := Pr(s0 = s), (1)

is the probability that the domain is in state s at time t = 0. This distribution is
defined over all states in S.

• The state transition probability distribution,

T (s, a, s′) := Pr(st = s′ | st−1 = s, at−1 = a) ∀t, (2)

is the probability of transitioning to state s′, given that the agent is in state s and
selects action a, for any (s, a, s′). Since T is a conditional probability distribution,
we have

∑

s′∈S T (s, a, s′) = 1,∀(s, a). As our notation suggests, T is time-invariant,
that is, the stochastic matrix T does not change over time. For time-variant state
transition probabilities, the state s must include a time-related variable.

• The observation probability distribution,

O(s, a, z) := Pr(zt = z | st−1 = s, at−1 = a) ∀t, (3)

is the probability that the agent will perceive observation z upon executing action a
in state s. This conditional probability is defined for all (s, a, z) triplets, for which
∑

z∈Z O(s, a, z) = 1,∀(s, a).

Finally, the objective of POMDP planning is to optimize action selection, so the agent
is given a reward function describing its performance:

• The reward function. R(s, a) : S × A −→ <, assigns a numerical value quantifying
the utility of performing action a when in state s. We assume the reward is bounded,

4

Rmin < R < Rmax. The goal of the agent is to maximize the sum of its reward over
time. Mathematically, this is commonly defined by a sum of the form:

E[
T

∑

t=t0

γt−t0rt], (4)

where rt is the reward at time t, E[] is the mathematical expectation, and γ where
0 ≤ γ < 1 is a discount factor, which ensures that the sum in Equation 4 is finite.

These items together, the states S, actions A, observations Z, reward R, and the three
probability distributions T , O, and b0, define the probabilistic world model that underlies
each POMDP.

2.2 Belief Computation

POMDPs are instances of Markov processes, which implies that the current world state,
st, is sufficient to predict the future, independent of the past {s0, s1, ..., st−1}. The key
characteristic that sets POMDPs apart from many other probabilistic models (like MDPs)
is the fact that the state st is not directly observable. Instead, the agent can only perceive
observations {z1, . . . , zt}, which convey incomplete information about the world’s state.

Given that the state is not directly observable, the agent can instead maintain a complete
trace of all observations and all actions it ever executed, and use this to select its actions.
The action/observation trace is known as a history. We formally define

ht := {a0, z1, . . . , zt−1, at−1, zt} (5)

to be the history at time t.
This history trace can get very long as time goes on. A well-known fact is that this

history does not need to be represented explicitly, but can instead be summarized via a
belief distribution (Ästrom, 1965), which is the following posterior probability distribution:

bt(s) := Pr(st = s | zt, at−1, zt−1, . . . , a0). (6)

Because the belief distribution bt is a sufficient statistic for the history, it suffices to condition
the selection of actions on bt, instead of on the ever-growing sequence of past observations
and actions. Furthermore, the belief bt at time t is calculated recursively, using only the
belief one time step earlier, bt−1, along with the most recent action at−1 and observation zt:

bt(s) = τ(bt−1, at−1, zt)

=

∑

s′

O(s′, at−1, zt) T (s, at−1, s
′) bt−1(s

′)

Pr(zt|bt−1, at−1)
(7)

where the denominator is a normalizing constant.
This equation is equivalent to the decades-old Bayes filter (Jazwinski, 1970), and is

commonly applied in the context of hidden Markov models (Rabiner, 1989), where it is
known as the forward algorithm. Its continuous generalization forms the basis of Kalman
filters (Kalman, 1960).

5

It is interesting to consider the nature of belief distributions. For finite state spaces,
which will be assumed throughout this paper, the belief is a continuous quantity. It is
defined over a simplex describing the space of all distributions over the state space S.
For very large state spaces, calculating the belief update (Eqn 7) can be computationally
challenging. Recent research has led to efficient techniques for belief state computation that
exploit structure of the domain (Dean & Kanazawa, 1988; Boyen & Koller, 1998; Poupart
& Boutilier, 2000; Thrun, Fox, Burgard, & Dellaert, 2000). However, by far the most
complex aspect of POMDP planning is the generation of a policy for action selection, which
is described next. For example in robotics, calculating beliefs over state spaces with 106

states is easily done in real-time (Burgard et al., 1999). In contrast, calculating optimal
action selection policies exactly appears to be infeasible for environments with more than
a few dozen states (Kaelbling et al., 1998), not directly because of the size of the state
space, but because of the complexity of the optimal policies. Hence we assume throughout
this paper that the belief can be computed accurately, and instead focus on the problem of
finding good approximations to the optimal policy.

2.3 Optimal Policy Computation

The central objective of the POMDP perspective is to compute a policy for selecting actions.
A policy is of the form:

π(b) −→ a, (8)

where b is a belief distribution and a is the action chosen by the policy π.
Of particular interest is the notion of optimal policy, which is a policy that maximizes

the expected future discounted cumulative reward:

π∗(bt) = argmax
π

Eπ

T
∑

t=t0

γt−t0rt | bt

 . (9)

There are two distinct but interdependent reasons why computing an optimal policy is
challenging.

The more widely-known reason is the so-called curse of dimensionality: in a problem
with n physical states, π is defined over all belief states in an (n−1)-dimensional continuous
space.

The less-well-known reason is the curse of history: POMDP solving is in many ways
like a search through the space of possible POMDP histories. It starts by searching over
short histories (through which it can select the best short policies), and gradually considers
increasingly long histories. Unfortunately the number of distinct possible action-observation
histories grows exponentially with the planning horizon.

The two curses—dimensionality and history—are related: the higher the dimension of a
belief space, the more room it has for distinct histories. But, they often act independently:
planning complexity can grow exponentially with horizon even in problems with only a few
states, and problems with a large number of physical states may still only have a small
number of relevant histories.

To see how these curses work, we consider the most straightforward approach to finding
optimal policies, as described by Sondik (1971). The overall idea is to apply multiple

6

iterations of dynamic programming, to compute increasingly more accurate values for each
belief state b. Let V be a value function that maps belief states to values in <. Beginning
with the initial value function:

V0(b) = max
a

∑

s∈S

R(s, a)b(s), (10)

then the t-th value function is constructed from the (t − 1)-th by the following recursive
equation:

Vt(b) = max
a

[

∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

Pr(z | a, b)Vt−1(τ(b, a, z))

]

, (11)

where τ(b, a, z) is the belief updating function defined in Equation 7. This value function
update maximizes the expected sum of all (possibly discounted) future pay-offs the agent
receives in the next t time steps, for any belief state b. Thus, it produces a policy that is
optimal under the planning horizon t. The optimal policy can also be directly extracted
from the previous-step value function:

π∗
t (b) = argmax

a

[

∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

Pr(z | a, b)Vt−1(τ(b, a, z))

]

. (12)

Sondik (1971) showed that the value function at any finite horizon t can be expressed
by a set of vectors: Γt = {α0, α1, . . . , αm}. Each α-vector represents an |S|-dimensional
hyper-plane, and defines the value function over a bounded region of the belief:

Vt(b) = max
α∈Γt

∑

s∈S

α(s)b(s). (13)

In addition, each α-vector is associated with an action, defining the best immediate policy
assuming optimal behavior for the following (t − 1) steps (as defined respectively by the
sets {Vt−1, ..., V0}).

The t-horizon solution set, Γt, can be computed as follows. First, we rewrite Equation 11
as:

Vt(b) = max
a∈A

∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

max
α∈Γt−1

∑

s∈S

∑

s′∈S

T (s, a, s′)O(s′, a, z)α(s′)b(s)

 . (14)

The value Vt(b) cannot be computed directly for each belief b ∈ B (since there are
infinitely many beliefs), but the corresponding set Γt can be generated through a sequence
of operations on the set Γt−1.

The first operation is to generate intermediate sets Γa,∗
t and Γa,z

t ,∀a ∈ A,∀z ∈ Z (Step
1):

Γa,∗
t ← αa,∗(s) = R(s, a) (15)

Γa,z
t ← αa,z

i (s) = γ
∑

s′∈S

T (s, a, s′)O(s′, a, z)αi(s
′),∀αi ∈ Γt−1

7

where each αa,∗ and αa,z
i is once again an |S|-dimensional hyper-plane.

Next we create Γa
t (∀a ∈ A), the cross-sum1 over observations, which includes one αa,z

from each Γa,z
t (Step 2):

Γa
t = Γa,∗

t + Γa,z1

t ⊕ Γa,z2

t ⊕ . . . (16)

Finally we take the union of Γa
t sets (Step 3):

Γt = ∪a∈A Γa
t . (17)

This forms the pieces of the backup solution at horizon t. The actual value function Vt is
extracted from the set Γt as described in Equation 13.

Using this approach, bounded-time POMDP problems with finite state, action, and
observation spaces can be solved exactly given a choice of the horizon T . If the environment
is such that the agent might not be able to bound the planning horizon in advance, the
policy π∗

t (b) is an approximation to the optimal one whose quality improves in expectation
with the planning horizon t (assuming 0 ≤ γ < 1).

As mentioned above, the value function Vt can be extracted directly from the set Γt.
An important aspect of this algorithm (and of all optimal finite-horizon POMDP solutions)
is that the value function is guaranteed to be a piecewise linear, convex, and continuous
function of the belief (Sondik, 1971). The piecewise-linearity and continuous properties
are a direct result of the fact that Vt is composed of finitely many linear α-vectors. The
convexity property is a result of the maximization operator (Eqn 13). It is worth pointing
out that the intermediate sets Γa,z

t , Γa,∗
t and Γa

t are also composed entirely of segments that
are linear in the belief. This property holds for the intermediate representations because
they incorporate the expectation over observation probabilities (Eqn 15).

In the worst case, the exact value update procedure described could require time doubly
exponential in the planning horizon T (Kaelbling et al., 1998). To better understand the
complexity of the exact update, let |S| be the number of states, |A| the number of actions,
|Z| the number of observations, and |Γt−1| the number of α-vectors in the previous solution
set. Then Step 1 creates |A| |Z| |Γt−1| projections and Step 2 generates |A| |Γt−1|

|Z| cross-
sums. So, in the worst case, the new solution requires:

|Γt| = O(|A||Γt−1|
|Z|) (18)

α-vectors to represent the value function at horizon t; these can be computed in time
O(|S|2|A| |Γt−1|

|Z|).
It is often the case that a vector in Γt will be completely dominated by another vector

over the entire belief simplex:
αi · b < αj · b, ∀b. (19)

Similarly, a vector may be fully dominated by a set of other vectors (e. g. α2 in Fig. 1). This
vector can then be pruned away without affecting the solution. Finding dominated vectors
can be expensive. Checking whether a single vector is dominated requires solving a linear

1. The symbol ⊕ denotes the cross-sum operator. A cross-sum operation is defined over two sets, A =
{a1, a2, . . . , am} and B = {b1, b2, . . . , bn}, and produces a third set, C = {a1 + b1, a1 + b2, . . . , a1 +
bn, a2 + b1, a2 + b2, . . . , . . . , am + bn}.

8

program with |S| variables and |Γt| constraints. Nonetheless it can be time-effective to apply
pruning after each iteration to prevent an explosion of the solution size. In practice, |Γt|
often appears to grow singly exponentially in t, even given clever mechanisms for pruning
unnecessary linear functions. This enormous computational complexity has long been a key
impediment toward applying POMDPs to practical problems.

α 0V={ ,α 1 ,α 2 ,α 3}

Figure 1: POMDP value function representation

2.4 Point-Based Value Backup

Exact POMDP solving, as outlined above, optimizes the value function over all beliefs.
Many approximate POMDP solutions, including the PBVI approach proposed in this paper,
gain computational advantage by applying value updates at specific (and few) belief points,
rather than over all beliefs (Cheng, 1988; Zhang & Zhang, 2001; Poon, 2001). These
approaches differ significantly (and to great consequence) in how they select the belief points,
but once a set of points is selected, the procedure for updating their value is standard. We
now describe the procedure for updating the value function at a set of known belief points.

As in Section 2.3, the value function update is implemented as a sequence of operations
on a set of α-vectors. If we assume that we are only interested in updating the value function
at a fixed set of belief points, B = {b0, b1, ..., bq}, then it follows that the value function
will contain at most one α-vector for each belief point. The point-based value function is
therefore represented by the corresponding set {α0, α1, . . . , αq}

Given a solution set Γt−1, we simply modify the exact backup operator (Eqn 14) such
that only one α-vector per belief point is maintained. This is the key idea behind all
algorithms presented in this paper, and the reason for the large computational savings
associated with this class of algorithms.

To obtain solution set Γt from the previous set Γt−1, we begin once again by generating
intermediate sets Γa,∗

t and Γa,z
t ,∀a ∈ A,∀z ∈ Z (exactly as in Eqn 15) (Step 1):

Γa,∗
t ← αa,∗(s) = R(s, a) (20)

Γa,z
t ← αa,z

i (s) = γ
∑

s′∈S

T (s, a, s′)O(s′, a, z)αi(s
′),∀αi ∈ Γt−1.

Next, whereas performing an exact value update requires a cross-sum operation (Eqn 16), by
operating over a finite set of points, we can instead use a simple summation. We construct
Γa

t ,∀a ∈ A (Step 2):

Γa
t ← αa

b = Γa,∗
t +

∑

z∈Z

argmax
α∈Γa,z

t

(
∑

s∈S

α(s)b(s)),∀b ∈ B. (21)

9

Finally, we find the best action for each belief point (Step 3):

αb = argmax
Γa

t ,∀a∈A

(
∑

s∈S

Γa
t (s)b(s)), ∀b ∈ B. (22)

Γt = ∪b∈B αb (23)

While these operations preserve only the best α-vector at each belief point b ∈ B, an
estimate of the value function at any belief in the simplex (including b /∈ B) can be extracted
from the set Γt just as before:

Vt(b) = max
α∈Γt

∑

s∈S

α(s)b(s). (24)

To better understand the complexity of updating the value of a set of points B, let |S|
be the number of states, |A| the number of actions, |Z| the number of observations, and
|Γt−1| the number of α-vectors in the previous solution set. As with an exact update, Step 1
creates |A| |Z| |Γt−1| projections (in time |S|2 |A| |Z| |Γt−1|). Steps 2 and 3 then reduce this
set to at most |B| components (in time |S| |A| |Γt−1| |Z| |B|). Thus, a full point-based value
update takes only polynomial time, and even more crucially, the size of the solution set Γt

remains constant at every iteration. The point-based value backup algorithm is summarized
in Table 1.

Γt=BACKUP(B, Γt−1) 1
For each action a ∈ A 2

For each observation z ∈ Z 3
For each solution vector αi ∈ Γt−1 4

αa,z
i (s) = γ

∑

s′∈S T (s, a, s′)O(s′, a, z)αi(s
′),∀s ∈ S 5

End 6
Γa,z

t = ∪i αa,z
i 7

End 8
End 9
Γt = ∅ 10
For each belief point b ∈ B 11

αb = argmaxa∈A

[

∑

s∈S R(s, a)b(s) +
∑

z∈Z maxα∈Γa,z
t

[
∑

s∈S α(s)b(s)]
]

12

If(αb /∈ Γt) 13
Γt = Γt ∪ αb 14

End 15
Return Γt 16

Table 1: Point-based value backup

Note that the algorithm as outlined in Table 1 includes a trivial pruning step (lines 12-
13), whereby we refrain from adding to Γt any vector already included in it. As a result, it is
often the case that |Γt| ≤ |B|. This situation arises whenever multiple nearby belief points
support the same vector. This pruning step can be computed rapidly (without solving linear
programs) and is clearly advantageous in terms of reducing the set Γt.

10

The point-based value backup is found in many POMDP solvers, and in general serves to
improve estimates of the value function. It is also an integral part of the PBVI framework.

3. Point-Based Value Iteration

In this section, we describe a new class of fast approximate POMDP algorithms known as
Point-Based Value Iteration (PBVI). The algorithms in this class combine point-based value
updates with various belief-point selection strategies to produce an anytime, approximate
solution with bounded error, for any discrete POMDP domain.

We begin by discussing the general PBVI approach, including how value updates and
belief-point selection can be interleaved, as well as the theoretical properties of this class
of algorithms. We then proceed to discuss the various approaches to belief-point selection,
which differentiates the multiple incarnations of PBVI-class algorithms.

3.1 Anytime PBVI Planning

PBVI-class algorithms offer an anytime solution to large-scale discrete POMDP domains.
The key to achieving an anytime solution is to interleave two main components: the point-
based update described in Table 1, with steps of belief set expansion.

PBVI-type algorithms start with a (small) initial set of belief points to which it applies
a first series of backup operations. The set of belief points is then grown, a new series
of backup operations are applied to all belief points (old and new), and so on, until a
satisfactory solution is obtained. By interleaving value backup iterations with expansions
of the belief set, PBVI offers a range of solutions, gradually trading off computation time
and solution quality.

The full algorithm is presented in Table 2. The algorithm accepts as input an initial
belief point set (BInit), an initial value (Γ0), the number of desired expansions (N), and the
planning horizon (T). A common choice for BInit is simply the initial belief b0; alternately,
a larger set could be used, especially in cases where sample trajectories are available. The
initial value, Γ0, is typically set to be purposefully low (e. g. α0(s) = Rmin

1−γ
,∀s ∈ S). When

we do this, we can prove that the point-based solution will always be a lower-bound on the
exact solution (Lovejoy, 1991a).

For problems with a finite horizon, we run T value backups between each expansion of
the belief set. In infinite-horizon problems, we select the horizon T so that

γT [Rmax −Rmin] < ε, (25)

where Rmax = maxs,a R(s, a) and Rmin = mins,a R(s, a).

The complete algorithm terminates once a fixed number of expansions (N) have been
completed. Alternately, the algorithm could terminate once the value function approxima-
tion reaches a given performance criterion. This is discussed further in Section 3.2.

The algorithm uses the BACKUP routine described in Table 1. We can assume for the
moment that the EXPAND subroutine (line 8) selects belief points at random, uniformly
distributed over the belief simplex. This performs reasonably well for small problems where
it is easy to achieve good coverage of the entire belief simplex. However it scales very poorly
to larger domains. More sophisticated approaches to selecting belief points are presented

11

in Section 3.3. Overall, the PBVI framework described here offers a simple yet flexible
approach to solving large-scale POMDPs.

Γ=PBVI-MAIN(BInit, Γ0, N , T) 1
B=BInit 2
Γ = Γ0 3
For N expansions 4

For T iterations 5
Γ =BACKUP(B,Γ) 6

End 7
Bnew =EXPAND(B,Γ) 8
B = B ∪Bnew 9

End 10
Return Γ 11

Table 2: Algorithm for Point-Based Value Iteration (PBVI)

3.2 Convergence and Error Bounds

We know that for any belief set B and horizon t, PBVI can produce an estimate of the
value function, denoted V B

t . We now show that the error between V B
t and the optimal

value function V ∗ is bounded.

The bound depends on how densely B samples the belief simplex ∆; with denser sam-
pling, V B

t converges to V ∗. Cutting off the PBVI iterations at any sufficiently large horizon,
we can show that the difference between V B

t and the optimal infinite-horizon V ∗ is not too
large. The overall error in PBVI, ||V B

t − V ∗||∞, is bounded (according to the triangle
inequality) by:

‖V B
t − V ∗

t ‖∞ + ‖V ∗
t − V ∗‖∞. (26)

The second term is bounded by γt‖V ∗
0 −V ∗‖ (Bertsekas & Tsitsiklis, 1996). The remainder

of this section states and proves a bound on the first term.

We begin by defining the density δB of a set of belief points B to be the maximum
distance from any belief in the simplex ∆, to a belief in set B. More precisely:

δB = max
b′∈∆

min
b∈B
‖b− b′‖1. (27)

Then, we can prove the following lemma:

Lemma 1. The error introduced in PBVI when performing one iteration of value backup
over B, instead of over ∆, is bounded by

ε ≤
(Rmax −Rmin)δB

1− γ

12

Proof: Let b′ ∈ ∆ be the point where PBVI makes its worst error in value update, and
b ∈ B be the closest (1-norm) sampled belief to b′. Let α be the vector that is maximal at
b, and α′ be the vector that would be maximal at b′. By failing to include α′ in its solution
set, PBVI makes an error of at most α′ · b′ − α · b′. On the other hand, since α is maximal
at b, then α′ · b ≤ α · b. So,

ε ≤ α′ · b′ − α · b′

= α′ · b′ − α · b′ + (α′ · b− α′ · b) add zero

≤ α′ · b′ − α · b′ + α · b− α′ · b α optimal at b

= (α′ − α) · (b′ − b) collect terms

≤ ‖α′ − α‖∞‖b
′ − b‖1 Hölder inequality

≤ ‖α′ − α‖∞δB definition of δB

≤ (Rmax−Rmin)δB

1−γ
see text

The last inequality holds because each α-vector represents the reward achievable starting
from some state and following some sequence of actions and observations. Therefore the
sum of rewards must fall between Rmin

1−γ
and Rmax

1−γ
. Of course this holds only for domains

where the reward is bounded.
Lemma 1 states a bound on the approximation error introduced by one iteration of

point-based value updates within the PBVI framework. We now look at the bound over
multiple value updates.

Theorem 3.1. For any belief set B and any horizon t, the error of the PBVI algorithm
εt = ‖V B

t − V ∗
t ‖∞ is bounded by

εt ≤
(Rmax −Rmin)δB

(1− γ)2

Proof:

εt = ||V B
t − V ∗

t ||∞
= ||H̃V B

t−1 −HV ∗
t−1||∞ H̃ denotes PBVI backup,

and H denotes exact backup

≤ ||H̃V B
t−1 −HV B

t−1||∞ + ||HV B
t−1 −HV ∗

t−1||∞ triangle inequality

≤ ε + ||HV B
t−1 −HV ∗

t−1||∞ definition of ε

≤ ε + γ||V B
t−1 − V ∗

t−1||∞ contraction

= ε + γεt−1 definition of εt−1

≤ (Rmax−Rmin)δB

1−γ
+ γεt−1 lemma 1

≤ (Rmax−Rmin)δB

(1−γ)2 series sum

The bound described in this section depends on how densely B samples the belief simplex
∆. In the case where not all beliefs are reachable, PBVI does not need to sample all of ∆
densely, but can replace ∆ by the set of reachable beliefs ∆̄ (Fig. 2). The error bounds and
convergence results hold on ∆̄.

As a side note, it is worth pointing out that because PBVI makes no assumption regard-
ing the initial value function V B

0 , the point-based solution V B is not guaranteed to improve

13

with the addition of belief points. Nonetheless, the theorem presented in this section shows
that the bound on the error between V B

t (the point-based solution) and V ∗ (the optimal
solution) is guaranteed to decrease (or stay the same) with the addition of belief points. In
cases where V B

t is initialized pessimistically (e. g. V B
0 (s) = Rmin

1−γ
,∀s ∈ S, as suggested in

Sec. 3.1), then V B
t will improve (or stay the same) with each value backup and addition of

belief points.

This section has thus far skirted the issue of belief point selection, however the bound
presented in this section clearly argues in favor of dense sampling over the belief simplex.
While randomly selecting points according to a uniform distribution may eventually accom-
plish this, it is generally inefficient, in particular for high dimensional cases. Furthermore,
it does not take advantage of the fact that the error bound holds for dense sampling over
reachable beliefs. Thus we seek more efficient ways to generate belief points than at random
over the entire simplex. This is the issue explored in the next section.

3.3 Belief Point Set Expansion

In section 3.1, we outlined the prototypical PBVI algorithm, while conveniently avoiding
the question of how belief points should be selected. There is a clear trade-off between
including fewer beliefs (which would favor fast planning over good performance), versus
including many beliefs (which would slow down planning, but ensure in expectation better
performance). This brings up the question of how many belief points should be included.
However the number of points is not the only consideration. It is likely that some collections
of belief points (e. g. those frequently encountered) are more likely to produce a good value
function than others. This brings up the question of which beliefs should be included.

This section looks at five strategies for selecting belief points, from the very fast and
naive (e. g. uniform random over the belief simplex), to an approach that selects points
that are likely to have the largest impact in reducing the error bound (Theorem 3.1). Most
of the strategies focus on selecting reachable beliefs, rather than getting uniform coverage
over the entire belief simplex. Therefore it is useful to begin this discussing by looking at
how reachability is assessed.

While some exact POMDP value iteration solutions are optimal for any initial belief,
PBVI (and other related techniques) assume a known initial belief b0. As shown in Figure 2,
we can use the initial belief to build a tree of reachable beliefs. In this representation, each
path through the tree corresponds to a sequence in belief space, and increasing depth
corresponds to an increasing plan horizon. When selecting a set of belief points for PBVI,
including all reachable beliefs would guarantee optimal performance (conditioned on the
initial belief), but at the expense of computational tractability, since the set of reachable
beliefs, ∆̄, grows exponentially with the planning horizon. Therefore, it is best to select
a subset B ⊂ ∆̄, which is sufficiently small for computational tractability, but sufficiently
large for good value function approximation.2

2. All strategies discussed below assume that the belief point set, B, approximately doubles in size on each
belief expansion. Each strategy could be used (with very little modification) to add a fixed number of
new belief points. However since value iteration is much more expensive than belief computation, it
seems appropriate to double the size of B at each expansion.

14

b
1 0a z b

1 1a z b
1 qa z

b
p 0a z b

p 1a z b
p qa z

b
0

b
0 0 0 0a z a z

b
0 0 p qa z a z b

0 1 0 0a z a z b
0 1 p qa z a z

b
0 0a z b

0 1a z b
0 qa z

...

... ...

...

...

...
...

Figure 2: The set of reachable beliefs

We now discuss five strategies for selecting belief points, each of which can be used
within the PBVI framework to perform expansion of the belief set.

3.3.1 Random Belief Selection (RA)

The first strategy is also the simplest. It consists of sampling belief points from a uniform
distribution over the entire belief simplex. To sample over the simplex, we cannot simply
sample each b(s) as a random number over [0, 1] (this would violate the constraint that
∑

s b(s) = 1). Instead, we use the efficient algorithm described in Table 3.

Bnew=EXPANDRA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

S := number of states 4
V = [0 1 ... S] 5
For i = 1 : S − 1 6

V[i]=randuniopen() 7

End 8
Sort V [] in ascending order 9
For i = 1 : S − 1 10

bnew[i]=V [i + 1]− V [i] 11
End 12
Bnew = Bnew ∪ bnew 13

End 14
Return Bnew 15

Table 3: Algorithm for belief expansion with random action selection

This random point selection strategy, unlike the other strategies presented below, does
not focus on reachable beliefs. For this reason, we do not necessarily advocate this ap-

15

proach. However we include it because it is an obvious choice, it is by far the simplest to
implement, and it has been used in related work by Hauskrecht (2000) and Poon (2001).
In smaller domains (e. g. <20 states), it performs reasonably well, since the belief simplex
is relatively low-dimensional. In large domains (e. .g. 100+ states), it cannot provide good
coverage of the belief simplex with a reasonable number of points, and therefore exhibits
poor performance. This is demonstrated in the experimental results presented in Section 4.

All of the remaining belief selection strategies make use of the belief tree (Figure 2) to
focus on reachable beliefs, rather than trying to cover the entire belief simplex.

3.3.2 Stochastic Simulation with Random Action (SSRA)

To generate points along the belief tree, we use a technique called stochastic simulation. It
involves running single-step forward trajectories from belief points already in B. Simulating
a single-step forward trajectory for a given b ∈ B requires selecting an action and observation
pair (a, z), and then computing the new belief τ(b, a, z) using the Bayesian update rule
(Eqn 7). In the case of Stochastic Simulation with Random Action (SSRA), the action
selected for forward simulation is picked (uniformly) at random from the full action set.
Table 4 summarizes the belief expansion procedure for SSRA. First, a state s is drawn
from the belief distribution b. Second, an action a is drawn at random from the full action
set. Next, a posterior state s′ is drawn from the transition model T (s, a, s′). Finally, an
observation z is drawn from the observation model O(s′, a, z). Using the triple (b, a, z), we
can calculate the new belief bnew = τ(b, a, z) (according to Equation 7), and add to the set
of belief points Bnew.

Bnew=EXPANDSSRA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

s=randmultinomial(b) 4
a=randuniform(A) 5
s′=randmultinomial(T (s, a, ·)) 6
z=randmultinomial(O(s′, a, ·)) 7
bnew = τ(b, a, z) (see Eqn 7) 8
Bnew = Bnew ∪ bnew 9

End 10
Return Bnew 11

Table 4: Algorithm for belief expansion with random action selection

This strategy is better than picking points at random (as described above), because it
restricts Bnew to the belief tree (Fig. 2). However this belief tree is still very large, especially
when the branching factor is high, due to large numbers of actions/observations. By being
more selective about which paths in the belief tree are explored, one can hope to effectively
restrict the belief set further.

16

3.3.3 Stochastic Simulation with Greedy Action (SSGA)

The procedure for generating points using Stochastic Simulation with Greedy Action (SSGA)
is based on the well-known epsilon-greedy exploration strategy used in reinforcement learn-
ing (Sutton & Barto, 1998). This strategy is very similar to the SSRA procedure, except
that rather than choosing an action randomly, SSEA will choose the greedy action (i. e. the
current best action at the given belief b) with probability 1 − ε, and will chose a random
action with probability ε (we use ε = 0.1). Once the action is selected, we perform a single-
step forward simulation as in SSRA to yield a new belief point. Table 5 summarizes the
belief expansion procedure for SSGA.

Bnew=EXPANDSSGA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

s=randmultinomial(b) 4
If randuniform[0, 1] < ε 5

a=randuniform(A) 6
Else 7

a=argmaxα∈Γ

∑

s∈S α(s)b(s) 8
End 9
s′=randmultinomial(T (s, a, ·)) 10
z=randmultinomial(O(s′, a, ·)) 11
bnew = τ(b, a, z) (see Eqn 7) 12
Bnew = Bnew ∪ bnew 13

End 14
Return Bnew 15

Table 5: Algorithm for belief expansion with greedy action selection

3.3.4 Stochastic Simulation with Exploratory Action (SSEA)

The error bound in Section 3.2 suggests that PBVI performs best when its belief set is
uniformly dense in the set of reachable beliefs. The belief point strategies proposed thus far
ignore this information. The next approach we propose gradually expands B by greedily
choosing new reachable beliefs that improve the worst-case density.

Unlike SSRA and SSGA which select a single action to simulate the forward trajectory
for a given b ∈ B, Stochastic Sampling with Exploratory Action (SSEA) does a one step
forward simulation with each action, thus producing new beliefs {ba0

, ba1
, ...}. However it

does not accept all new beliefs {ba0
, ba1

, ...}, but rather calculates the L1 distance between
each ba and its closest neighbor in B. We then keep only that point ba that is farthest
away from any point already in B. We use the L1 norm to calculate distance between belief
points to be consistent with the error bound in Theorem 3.1. Table 6 summarizes the SSEA
expansion procedure.

17

Bnew=EXPANDSSEA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

Foreach a ∈ A 4
s=randmultinomial(b) 5
s′=randmultinomial(T (s, a, ·)) 6
z=randmultinomial(O(s′, a, ·)) 7
ba=τ(b, a, z) (see Eqn 7) 8

End 9
bnew = maxa∈A minb′∈Bnew

∑

s∈S |ba(s)− b′(s)| 10
Bnew = Bnew ∪ bnew (see Eqn 7) 11

End 12
Return Bnew 13

Table 6: Algorithm for belief expansion with exploratory action selection

3.3.5 Greedy Error Reduction (GER)

While the SSEA strategy above is able to improve the worst-case density of reachable
beliefs, it does not directly minimize the expected error. And while we would like to
directly minimize the error, all we can measure is a bound on the error (Section 3.2). We
therefore propose a final strategy which greedily adds the candidate beliefs that will most
effectively reduce this error bound. Our empirical results, as presented below, show that
this strategy is the most successful one discovered thus far.

To understand how we expand the belief set in the GER strategy, it is useful to re-
consider the belief tree, which we reproduce in Figure 3. Each node in the tree corresponds
to a specific belief. We can divide these nodes into three sets. Set 1 includes those belief
points already in B, in this case b0 and ba0,z0

. Set 2 contains those belief points that are
descendants of the points in B (i. e. the nodes in the grey zone). These are the candidates
from which we will select the new points to be added to B. We call this set the envelope
(denoted B̄). Set 3 contains all other reachable beliefs.

We need to decide which belief b should be removed from the envelope B̄ and added to
the set of active belief points B. Every point that is added to B will improve our estimate
of the value function. The new point will reduce the error bounds (as defined in Section 3.2)
for points that were already in B; however, the error bound for the new point itself might be
quite large. That means that the largest error bound for points in B will not monotonically
decrease; however, for a particular point in B (such as the initial belief b0) the error bound
will be decreasing.

To find the point which will most reduce our error bound, we can look at the analysis
of Lemma 1. Lemma 1 bounds the amount of additional error that a single point-based
backup introduces. Write b′ for the new belief which we are considering adding, and write
b for some belief which is already in B. Write α for the value hyperplane at b, and write α ′

18

b
1 0a z b

1 1a z b
1 qa z

b
p 0a z b

p 1a z b
p qa z

b
0

b
0 0 0 0a z a z

b
0 0 p qa z a z

b
0 0a z b

0 1a z b
0 qa z...

...

... ...

...

...

...

Figure 3: The set of reachable beliefs

for b′. As the lemma points out, we have

ε ≤ (α′ − α) · (b′ − b)

Since we don’t know what α′ will be until we have done some backups at b′, we will be
conservative by choosing the worst-case value of α′. This worst-case value is the α′ ∈
[Rmin/(1− γ), Rmax/(1− γ)]|S| which maximizes the bound. Performing the maximization,
we have

ε(b′) ≤
∑

i

{

(Rmax

1−γ
− αi)(b

′
i − bi) b′i ≥ bi

(Rmin

1−γ
− αi)(b

′
i − bi) b′i < bi

(28)

Rather than directly picking the candidate b′ ∈ B̄ with the largest error bound, ε(b′), we
instead try to minimize the error over reachable beliefs. We note that the error at any given
belief point b in the tree can be evaluated from the error of its immediate descendants:

ε(b) = max
a∈A

∑

z∈Z

O(b, a, z) ε(τ(b, a, z)) (29)

= max
a∈A

∑

z∈Z

∑

s∈S

∑

s′∈S

T (s, a, s′)O(s′, a, z)b(s)

 ε(τ(b, a, z)),

where τ(b, a, z) is the belief update operation defined in Equation 7, and ε(τ(b, a, z)) is
evaluated according to Equation 28, unless τ(b, a, z) ∈ B, in which case ε(τ(b, a, z)) = 0.

Using Equation 29, we find the existing point b ∈ B with the largest error bound. We
can now directly reduce its error by adding to our set one of its descendants. We select the
next-step belief τ(b, a, z) which maximizes error bound reduction:

B = B ∪ τ(b̃, ã, z̃), (30)

where b̃, ã := argmax
b∈B,a∈A

∑

z∈Z

O(b, a, z) ε(τ(b, a, z)) (31)

z̃ := argmax
z∈Z

O(b̃, ã, z) ε(τ(b̃, ã, z)) (32)

19

Bnew=EXPANDGER(B, Γ) 1
Bnew= B 2
N=|B| 3
For i = 1 : N 4

b̃, ã := argmaxb∈B,a∈A

∑

z∈Z O(b, a, z) ε(τ(b, a, z)) 5

z̃ := argmaxz∈Z O(b̃, ã, z) ε(τ(b̃, ã, z)) 6

bnew = τ(b̃, ã, z̃) 7
Bnew = Bnew ∪ bnew 8

End 9
Return Bnew 10

Table 7: Algorithm for belief expansion

Table 7 summarizes this approach to belief point selection.

This concludes our presentation of belief selection techniques for the PBVI framework.
In summary, there are three factors to consider when picking a belief point: (1) how likely
is it to occur? (2) how far is it from other belief points already selected? (3) what is the
current approximate value for that point? The simplest heuristic (RA) accounts for none
of these, where as some of the others (SSRA, SSGA, SSEA) account for one or two of these
factors. The last technique, GER, offers a more theoretically sound approach for selecting
belief points which incorporates all three factors.

3.3.6 Belief Expansion Example

We consider a simple example, shown in Figure 4, to illustrate the difference between the
various belief expansion techniques outlined above. The 1D POMDP (Littman, 1996) has
four states, one of which is the goal (indicated by the star). The two actions, left and
right, have the expected (deterministic) effect. The goal state is fully observable (observa-
tion=goal), while the other three states are aliased (observation=none). A reward of +1
is received for being in the goal state, otherwise the reward is zero. We assume a discount
factor of γ = 0.75. The initial distribution is uniform over non-goal states, and the system
resets to that distribution whenever the goal is reached.

Figure 4: 1D POMDP

The belief set B is always initialized to contain the initial belief b0. Figure 5 shows part
of the belief tree, including the original belief set (top node), and its envelope (leaf nodes).
We now consider what each belief expansion method might do.

20

b2=[0 0 1 0] b4=[0 0 1 0]b3=[0 0.5 0 0.5]b1=[1 0 0 0]

b0=[1/ 3 1/ 3 0 1/ 3]

a=righta=left

[2/ 3 0 1/ 3 0] [0 1/ 3 1/ 3 1/ 3]

Pr(z=none)=2/3 Pr(z=none)=2/3 Pr(z=goal) = 1/3Pr(z=goal) = 1/3

Figure 5: 1D POMDP belief tree

The Random heuristic can pick any belief point (with equal probability) from the
entire belief simplex. It does not directly expand any branches of the belief tree, but it will
eventually put samples nearby.

The Stochastic Simulation with Random Action has a 50% chance of picking
each action. Then, regardless of which action was picked, there’s a 2/3 chance of seeing
observation none, and a 1/3 chance of seeing observation goal. As a result, the SSRA
will select: Pr(bnew = b1) = 0.5 ∗ 2

3 , Pr(bnew = b2) = 0.5 ∗ 1
3 , Pr(bnew = b3) = 0.5 ∗ 2

3 ,
Pr(bnew = b4) = 0.5 ∗ 1

3 .
The Stochastic Simulation with Greedy Action first needs to know the policy at

b0. A few iterations of point-based updates (Section 2.4) applied to this initial (single point)
belief set reveal that π(b0) = left3. As a result, expansion of the belief will greedily select
action left with probability 1− ε+ ε

|A| = 0.95 (assuming ε = 0.1 and |A| = 2). Action right

will be selected for belief expansion with probability ε
|A| = 0.05. Combining this along with

the observation probabilities, we can tell that SSGA will expand as follows: Pr(bnew =
b1) = 0.95∗ 2

3 , Pr(bnew = b2) = 0.95∗ 1
3 , Pr(bnew = b3) = 0.05∗ 2

3 , Pr(bnew = b4) = 0.05∗ 1
3 .

Predicting the choice of Stochastic Simulation with Exploratory Action is slightly
more complicated. Four cases can occur, depending on the outcomes of random forward
simulation from b0:

1. If action left goes to b1 (Pr = 2/3) and action right goes to b3 (Pr = 2/3), then b1

will be selected because ||b0 − b1||1 = 4/3 whereas ||b0 − b3||1 = 2/3. This case will
occur with Pr = 4/9.

2. If action left goes to b1 (Pr = 2/3) and action right goes to b4 (Pr = 1/3), then b4

will be selected because ||b0 − b4||1 = 2. This case will occur with Pr = 2/9.

3. If action left goes to b2 (Pr = 1/3) and action right goes to b3 (Pr = 2/3), then b2

will be selected because ||b0 − b2||1 = 2. This case will occur with Pr = 2/9.

3. This may not be obvious to the reader, but it follows directly from the repeated application of equa-
tions 20-23

21

4. If action left goes to b2 (Pr = 1/3) and action right goes to b4 (Pr = 1/3), then either
can be selected (since they are equi-distant to b0). In this case each b2 and b4 has
Pr = 1/18 of being selected.

All told, Pr(bnew = b1) = 4/9, Pr(bnew = b2) = 5/18, Pr(bnew = b3) = 0, Pr(bnew = b4) =
5/18.

Now looking at belief expansion using Greedy Error Reduction, we need to compute
the error ε(τ(b0, a, z)),∀a, z. We consider Equation 28: since B has only one point, b0, then
necessarily b = b0. To estimate α, we apply multiple steps of value backup at b0 and obtain
α = [0.94 0.94 0.92 1.74]. Using b and α as such, we can now estimate the error at each
candidate belief: ε(b1) = 2.93, ε(b2) = 4.28, ε(b3) = 1.20, ε(b4) = 4.28. Note that because
B has only one point, the dominating factor is their distance to b0. Next, we factor in the
observation probabilities, as in Eqns 31-32, which allows us to determine that ã = left and
z̃ = none, and therefore we should select bnew = b1.

In summary, we note that SSGA, SSEA and GER all favor selecting b1, whereas SSRA
picks each option with equal probability (considering that b2 and b4 are actually the same).
In general, for a problem of this size, it is reasonable to expand the entire belief tree. Any
of the techniques discussed here will be do this very quickly, except RA which will not pick
the exact nodes in the belief tree, but will select equally good nearby beliefs. This example
is provided simply to illustrate the different choices made by each strategy.

4. Experimental Evaluation

This section looks at a variety of simulated POMDP domains to evaluate the empirical
performance of PBVI. The first three domains—Tiger-grid, Hallway, Hallway2—are ex-
tracted from the established POMDP literature (Cassandra, 1999). The fourth—Tag—was
introduced in some of our earlier work as a new challenge for POMDP algorithms.

The main goal of these experiments is to establish the scalability of the PBVI framework,
this is accomplished by showing that PBVI-type algorithms can successfully solve problems
in excess of 800 states. We also demonstrate, in the course of these experiments, that PBVI
algorithms compare favorably to alternative approximate value iteration methods. Finally,
following on the example of Section 3.3.6, we study at a larger scale the impact of the belief
selection strategy, which confirms the superior performance of the GER strategy.

4.1 Maze Problems

There exists a set of benchmark problems commonly used to evaluate POMDP planning
algorithms (Cassandra, 1999). This section presents results demonstrating the performance
of PBVI-class algorithms on some of those problems. While these benchmark problems
are relatively small (at most 92 states, 5 actions, and 17 observations) compared to most
robotics planning domains, they are useful from an analysis point of view and for comparison
to previous work.

The initial performance analysis focuses on three well-known problems from the POMDP
literature: Tiger-grid (also known as Maze33), Hallway, and Hallway2. All three are maze
navigation problems of various sizes. The problems are fully described by Littman, Cas-
sandra, and Kaelbling (1995a); parameterization is available from Cassandra (1999).

22

Figure 6a presents results for the Tiger-grid domain. Replicating earlier experiments (Braf-
man, 1997), test runs terminate after 500 steps (there’s an automatic reset every time the
goal is reached) and results are averaged over 151 runs.

Figures 6b and 6c present results for the Hallway and Hallway2 domains, respectively.
In this case, test runs are terminated when the goal is reached or after 251 steps (whichever
occurs first), and the results are averaged over 251 runs. This is consistent with earlier
experiments (Littman, Cassandra, & Kaelbling, 1995b).

All three figures compare the performance of three different algorithms:

1. PBVI with Greedy Error Reduction (GER) belief point selection (Section 3.3.5).

2. QMDP (Littman et al., 1995b),

3. Incremental Pruning (Cassandra, Littman, & Zhang, 1997),

The QMDP heuristic (Littman et al., 1995b) takes into account partial observability at
the current step, but assumes full observability on subsequent steps:

πQMDP (b) = argmax
a∈A

∑

s∈S

b(s)QMDP (s, a). (33)

The resulting policy has some ability to resolve uncertainty, but cannot benefit from long-
term information gathering, or compare actions with different information potential. QMDP
can be seen as providing a good performance baseline. For the three problems considered,
it finds a policy extremely quickly, but the policy is clearly sub-optimal.

At the other end of the spectrum, the Incremental Pruning algorithm (Zhang & Liu,
1996; Cassandra et al., 1997) is a direct extension of the enumeration algorithm we described
above. The principal insight is that the pruning of dominated α-vectors (Eqn 19) can be
interleaved directly with the cross-sum operator (Eqn 16). The resulting value function is
the same, but the algorithm is more efficient because it discards unnecessary vectors earlier
on. While Incremental Pruning algorithm can theoretically find an optimal policy, for the
three problems considered here it would take far too long. In fact, only a few iterations of
exact value backups were completed in reasonable time. In all three problems, the resulting
short-horizon policy was worse than the corresponding PBVI policy.

As shown in Figure 6, PBVI+GER provides a much better time/performance trade-
off. The policies it finds are better than those obtained with QMDP, and it does so in a
matter of seconds, thereby demonstrating that it does not suffer from the same paralyzing
complexity as Incremental Pruning.

While those who take a closer look at these results may be surprised to see that the
performance of PBVI actually decreases at some points (e.g. the “dip” in Fig. 6c), this is
not unexpected. It is important to remember that the theoretical properties of PBVI only
guarantee a bound on the estimate of the value function, but as shown here, this does not
necessarily imply that the policy needs to improve monotonically. Nonetheless, as the value
function converges, so will the policy (albeit at a slower rate).

23

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

TIME (secs)

R
E

W
A

R
D

PBVI+GER
QMDP
IncPrune

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

TIME (secs)

R
E

W
A

R
D

PBVI+GER
QMDP
IncPrune

(a) Tiger-grid

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TIME (secs)

R
E

W
A

R
D

PBVI+GER
QMDP
IncPrune

(b) Hallway

10
−2

10
−1

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

TIME (secs)

R
E

W
A

R
D

PBVI+GER
QMDP
IncPrune

(c) Hallway2

Figure 6: PBVI performance on well-known POMDP problems

24

4.2 Tag Problem

While the previous section establishes the good performance of PBVI on some well-known
simulation problems, these are quite small and do not fully demonstrate the scalability of the
algorithm. To provide a better understanding of PBVI’s effectiveness for large problems,
this section presents results obtained when applying PBVI to the Tag problem, a robot
version of the popular game of lasertag. In this problem, the agent must navigate its
environment with the goal of searching for, and tagging, a moving target (Rosencrantz,
Gordon, & Thrun, 2003). Real-world versions of this problem can take many forms, and
in Section 5 we present a similar problem domain where an interactive service robot must
find an elderly patient roaming the corridors of a nursing home. This scenario is an order
of magnitude larger (870 states) than most other POMDP problems considered thus far
in the literature (Cassandra, 1999), and was recently proposed as a new challenge for fast,
scalable, POMDP algorithms (Pineau, Gordon, & Thrun, 2003b; Roy, 2003).

This scenario can be formulated as a POMDP problem, where the robot learns a policy
optimized to quickly find the person. Meanwhile the person is assumed to move stochasti-
cally according to a fixed policy. The spatial configuration of the environment used through-
out this experiment is illustrated in Figure 7.

7

17

4

15

26 27

252423

20 21 22

28

5 8

18 19

9

16

6

1413

3

12

2

11

10

10

Figure 7: Spatial configuration of the domain

The state space is described by the cross-product of two position features, Robot =
{s0, . . . , s29} and Person = {s0, . . . , s29, sfound}. Both start in independently-selected ran-
dom positions, and the scenario finishes when Person = sfound. The robot can select from
five actions: {North, South, East, West, Tag}. A reward of −1 is imposed for each motion
action; the Tag action results in a +10 reward if the robot and person are in the same cell,
or −10 otherwise. Throughout the scenario, the Robot’s position is fully observable, and a
Move action has the predictable deterministic effect, e. g.:

Pr(Robot = s10 | Robot = s0, North) = 1,

and so on for each adjacent cell and direction.
The position of the person, on the other hand, is completely unobservable unless both

agents are in the same cell. Meanwhile at each step, the person (with omniscient knowledge)
moves away from the robot with Pr = 0.8 and stays in place with Pr = 0.2, e. g.:

Pr(Person = s16 | Person = s15&Robot = s0) = 0.4

25

Pr(Person = s20 | Person = s15&Robot = s0) = 0.4

Pr(Person = s15 | Person = s15&Robot = s0) = 0.2.

Figure 8 shows the performance of PBVI with Greedy Error Reduction on the Tag do-
main. Results are averaged over 1000 runs, using different (randomly chosen) start positions
for each run. The QMDP approximation is also tested to provide a baseline comparison.
The results show a gradual improvement in PBVI’s performance as samples are added (each
shown data point represents a new expansion of the belief set with value backups). It also
confirms that computation time is directly related to the number of belief points. PBVI
requires fewer than 100 belief points to overcome QMDP, and the performance keeps on
improving as more points are added. Performance appears to be converging with approx-
imately 250 belief points. These results show that a PBVI-class algorithm can effectively
tackle a problem with 870 states.

10
0

10
1

10
2

10
3

10
4

10
5

−20

−18

−16

−14

−12

−10

−8

−6

TIME (secs)

R
E

W
A

R
D

PBVI+GER
QMDP

Figure 8: PBVI performance on Tag problem

This problem is far beyond the reach of the Incremental Pruning algorithm. A single
iteration of optimal value iteration on a problem of this size could produce over 1020 α-
vectors before pruning. Therefore, it was not applied.

This section describes one version of the Tag problem, which was used for simulation
purposes in our work and that of others (Braziunas & Boutilier, 2004; Poupart & Boutilier,
2004; Smith & Simmons, 2004; Vlassis & Spaan, 2004). In fact, the problem can be re-
formulated in a variety of ways to accommodate different environments, person motion
models, and observation models. Section 5 discusses variations on this problem using more
realistic robot and person models, and presents results validated onboard an independently
developed robot simulator.

4.3 Empirical comparison of PBVI-class algorithms

Having establish the good performance of PBVI+GER on a number of problems, we now
consider empirical results for the different PBVI-class algorithms. This allows us to compare
the effects of the various belief expansion heuristics. We repeat the experiments on the

26

Tiger-grid, Hallway, Hallyway2 and Tag domains, as outlined above, but in this case we
compare the performance of five different PBVI-class algorithms:

1. PBVI+RA: PBVI with belief points selected randomly from belief simplex (Sec-
tion 3.3.1).

2. PBVI+SSRA: PBVI with belief points selected using stochastic simulation with ran-
dom action (Section 3.3.2).

3. PBVI+SSGA: PBVI with belief points selected using stochastic simulation with greedy
action (Section 3.3.3).

4. PBVI+SSEA: PBVI with belief points selected using stochastic simulation with ex-
ploratory action (Section 3.3.4).

5. PBVI+GER: PBVI with belief points selected using greedy error reduction (Sec-
tion 3.3.5).

All PBVI-class algorithms can converge to the optimal value function given a sufficiently
large set of belief points. But the rate at which they converge, depends on their ability to
generally pick useful points, and leave out the points containing less information. Since
the computation time is directly proportional to the number of belief points, the algorithm
with the best performance is generally the one which can find a good solution with the least
number of belief points.

Figure 9 shows a comparison between the performance of each of the five PBVI-class
algorithms enumerated above on each of the four problem domains. In Tiger-grid and
Hallway, PBVI+GER reaches near-optimal performance somewhat sooner than the other
algorithms. In Hallway2, it is unclear which of the five algorithms is best, though GER
sseems to converge earlier.

In the larger Tag domain, the situation is different. The PBVI+GER combination is
clearly superior to the others. There is reason to believe that PBVI+SSEA could match its
performance, but would require on the order of twice as many points to do so. Nonetheless,
PBVI+SSEA performs better than either PBVI+SSRA or PBVI+SSGA. These results
suggest that the choice of belief points is crucial when dealing with large problems. GER—
and SSEA to a lesser degree—seem more effective than the other heuristics at getting good
coverage over the large dimensional beliefs featured in this domain. With the random
heuristic (PBVI+RA), the reward did not improve regardless of how many belief points
were added (4000+), and therefore we do not include it in the results.

As a side note, we were surprised by SSGA’s poor performance (in comparison with
SSRA) on the Tiger-grid and Tag domains. This could be due to a poorly tuned greedy
bias ε, which did not investigate at length. Future investigations using problems with a
larger number of actions may shed better light on this issue.

In terms of computational requirement, GER is the most expensive to compute, followed
by SSEA. However in all cases, the time to perform the belief expansion step is generally
negligible (< 1%), compared to the cost of the value update steps. Therefore it seems best
to use the more effective (though more expensive) heuristic.

27

10
−2

10
0

10
2

10
4

0

0.5

1

1.5

2

2.5

TIME (secs)

R
E

W
A

R
D

RA
SSRA
SSGA
SSEA
GER

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

TIME (secs)

R
E

W
A

R
D

RA
SSRA
SSGA
SSEA
GER

(a) Tiger-grid

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TIME (secs)

R
E

W
A

R
D

RA
SSRA
SSGA
SSEA
GER

(b) Hallway

10
−2

10
−1

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

TIME (secs)

R
E

W
A

R
D

RA
SSRA
SSGA
SSEA
GER

(c) Hallway2

10
0

10
1

10
2

10
3

10
4

10
5

−20

−18

−16

−14

−12

−10

−8

−6

TIME (secs)

R
E

W
A

R
D

SSRA
SSGA
SSEA
GER

(d) Tag

Figure 9: Belief expansion results

The PBVI framework can accommodate a wide variety of strategies, past what is de-
scribed in this paper. For example, one could extract belief points directly from sampled
experimental traces. This will be the subject of future investigations.

4.4 Comparative analysis

While the results outlined above show that PBVI-type algorithms are able to handle a wide
spectrum of large-scale POMDP domains, it is not sufficient to compare the performance of
PBVI only to QMDP and Incremental Pruning—the two ends of the spectrum—as done in
Section 4.1. In fact there has been significant activity in recent years in the development of
fast approximate POMDP algorithms, and so it is worthwhile to spend some time comparing
the PBVI framework to these alternative approaches. This is made easy by the fact that
many of these have been validated using the same set of problems as described above.

28

Table 8 summarizes the performance of a large number of recent POMDP approximation
algorithms, including PBVI, on the four target domains: Tiger-grid, Hallway, Hallway2, and
Tag. The algorithms listed were selected based on the availability of comparable published
results or available code, or in some cases because the algorithm could be re-implemented
easily.

We compare their empirical performance, in terms of execution performance versus
planning, on a set of simulation domains. However as is often the case, these results show
that there is not a single algorithm that is best for solving all problems. We therefore also
compile a summary of the attributes and characteristics of each algorithm, in an attempt to
tell which algorithm may be best for what types of problems. Table 8 includes (whenever
possible) the goal completion rates, sum of rewards, policy computation time, number of
required belief points, and policy size (number of α-vectors, or number of nodes in finite
state controllers).

The results marked [*] were computed by us on a 3GHz Pentium 4; other results were
likely computed on different platforms, and therefore time comparisons may be approximate
at best. Nonetheless the number of samples and the size of the final policy are both useful
indicators of computation time. The results reported for PBVI correspond to the earliest
data point from Figures 6 and 8 where PBVI+GER achieves top performance.

Algorithms are listed in order of performance, starting with the algorithm(s) achiev-
ing the highest reward. All results assume a standard (not lookahead) controller (see
Hauskrecht (2000) for definition).

Overall, the results indicate that some of the algorithms achieve sub-par performance in
terms of expected reward. In the case of QMDP, this is because of fundamental limitations
in the algorithm. While Incremental Pruning and the exact value-directed compression can
theoretically reach optimal performance, they would require longer computation time to do
so. The grid method (see Tiger-grid results), BPI (see Tiger-grid, Hallway and Tag results)
and PBUA (see Tag results) suffer from a similar problem, but offer much more graceful
performance degradation. It is worth noting that none of these approaches assumes a known
initial belief, so in effect they are solving harder problems. The results for BBSLS are not
sufficiently extensive to comment at length, but it appears to be able to find reasonable
policies with very small controllers (see Tag results).

The remaining algorithms—HSVI, Perseus, and our own PBVI+GER—all offer compa-
rable performance on these relatively large POMDP domains. HSVI seems to offer good con-
trol performance on the full range of tasks, but requires bigger controllers, and is therefore
probably slower, especially on domains with high stochasticity (e. g. Tiger-grid, Hallway,
Hallway2). The trade-offs between Perseus and PBVI+GER are less clear: the planning
time, controller size and performance quality are quite comparable, and in fact the two
approaches are very similar. Perseus uses the same point-based backups as in PBVI (see
Section 2.4), but it differs in both how the core set of belief points is selected (Perseus
uses a non-incremental version of the SSRA heuristic), and the order in which the value
at those points is updated (this is randomized). The effect of these differences is hard to
narrow, but the results certainly suggest that the randomization of value updates may be
an effective strategy to accelerate planning. We did experiment with similar random value
updates in the context of PBVI, but did not achieve any significant speed-up; it is possible

29

that the performance gain from randomized updates is simply not the same when dealing
with smaller belief sets.

30

Method Goal% Reward ± Conf.Int. Time(s) |B| |π|
Tiger-Grid (Maze33)
HSVI (Smith & Simmons, 2004) n.a. 2.35 10341 n.v. 4860
Perseus (Vlassis & Spaan, 2004) n.a. 2.34 104 10000 134
PBUA (Poon, 2001) n.a. 2.30 12116 660 n.v.
PBVI+GER[*] n.a. 2.27 ± 0.13 397 512 508
BPI (Poupart & Boutilier, 2004) n.a. 1.81 163420 n.a. 1500
Grid (Brafman, 1997) n.a. 0.94 n.v. 174 n.a.
QMDP (Littman et al., 1995b)[*] n.a. 0.276 0.02 n.a. 5
IncPrune (Cassandra et al., 1997)[*] n.a. 0.0 24hrs+ n.a. n.v.
Exact VDC (Poupart & Boutilier, 2003)[*] n.a. 0.0 24hrs+ n.a. n.v.

Hallway
PBUA (Poon, 2001) 100 0.53 450 300 n.v.
HSVI (Smith & Simmons, 2004) 100 0.52 10836 n.v. 1341
PBVI+GER[*] 100 0.51 ± 0.03 19 64 64
Perseus (Vlassis & Spaan, 2004) n.v. 0.51 35 10000 55
BPI (Poupart & Boutilier, 2004) n.v. 0.51 249730 n.a. 1500
QMDP (Littman et al., 1995b)[*] 51 0.265 0.03 n.a. 5
Exact VDC (Poupart & Boutilier, 2003)[*] 39 0.161 24hrs+ n.a. n.v.
IncPrune (Cassandra et al., 1997)[*] 39 0.161 24hrs+ n.a. n.v.

Hallway2
PBVI+GER[*] 100 0.37 ± 0.04 6 32 31
Perseus (Vlassis & Spaan, 2004) n.v. 0.35 10 10000 56
HSVI (Smith & Simmons, 2004) 100 0.35 10010 n.v. 1571
PBUA (Poon, 2001) 100 0.35 27898 1840 n.v.
BPI (Poupart & Boutilier, 2004) n.v. 0.28 274280 n.a. 1500
Grid (Brafman, 1997) 98 n.v. n.v. 337 n.a.
QMDP (Littman et al., 1995b)[*] 22 0.109 1.44 n.a. 5
Exact VDC (Poupart & Boutilier, 2003)[*] 48 0.137 24hrs+ n.a. n.v.
IncPrune (Cassandra et al., 1997)[*] 48 0.137 24hrs+ n.a. n.v.

Tag
HSVI (Smith & Simmons, 2004) 100 -6.37 10113 n.v. 1657
PBVI+GER[*] 100 -6.75 ± 0.39 8946 256 203
Perseus (Vlassis & Spaan, 2004) n.v. -6.85 3076 10000 205
BBSLS (Braziunas & Boutilier, 2004) n.v. -8.31 100054 n.a. 30
BPI (Poupart & Boutilier, 2004) n.v. -9.18 59772 n.a. 940
QMDP (Littman et al., 1995b)[*] 19 -16.62 1.33 n.a. 5
PBUA (Poon, 2001)[*] 0 -19.9 24hrs+ 4096 n.v.
IncPrune (Cassandra et al., 1997)[*] 0 -19.9 24hrs+ n.a. n.v.

n.a.=not applicable n.v.=not available [*]=results computed by us

Table 8: Results of PBVI for standard POMDP domains

31

4.5 Error estimates

The results presented thus far suggest that the PBVI framework performs best when using
the Greedy Error Reduction (GER) technique for selecting belief points. Under this scheme,
to decide which belief points will be included, we estimate an error bound at a set of
candidate points and then pick the one with the largest error estimate. The error bound is
estimated as described in Equation 28. We now consider the question of how this estimate
evolves as more and more points are added. The natural intuition is that with the first few
points, error estimates will be very large, but as the density of the belief set increases, the
error estimates will become much smaller.

Figure 10 reconsiders the four target domains: Tiger-grid, Hallway, Hallway2 and Tag.
In each case, we present both the reward performance as a function of the number of belief
points (top row graphs), and the error estimate of each point selected according the order in
which points were picked (bottom row graphs). Because new belief points are only selected
from the envelope of reachable beliefs, it is not surprising to occasionally see large jumps
in the graphs. Overall, it seems that there is reasonably good correspondence between an
improvement in performance and a decrease in the error estimates.

We note that the error profiles for the Hallway2 and Tag domains exhibit a few large
jumps in the later stages. These could point towards an improvement to GER, for example
by maintaining a deeper envelope of candidate belief points. Currently the envelope contains
those points that are 1-step forward simulations from the points already selected. It may
be useful to consider points 2-3 steps ahead. We predict this would reduce the jaggedness
seen in Figure 10, and more importantly, also reduce the number of points necessary for
good performance. Of course, the tradeoff between the time spent selecting points and the
time spent planning would have to be re-evaluated under this light.

We can conclude from this figure and the performance results in Figure 6 that in fact
the PBVI error bound is quite informative in guiding exploration of the belief simplex.

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

belief points

R
ew

ar
d

Tiger−grid

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

belief points

E
rr

or

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

belief points

Hallway

10
0

10
1

10
2

10
3

2

4

6

8

10

12

14

16

belief points

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

belief points

Hallway2

10
0

10
1

10
2

10
3

6

8

10

12

14

16

belief points

10
0

10
1

10
2

10
3

−20

−18

−16

−14

−12

−10

−8

−6

belief points

Tag

10
0

10
1

10
2

10
3

0

100

200

300

400

500

belief points

Figure 10: Estimate of the bound on the error for selected belief points

32

5. Robotic applications

The overall motivation behind the work described in this paper is the desire to provide high-
quality robust planning for real-world autonomous systems, and in particular for robots.
On the practical side, our search for a robust robot controller has been in large part guided
by the Nursebot project (Pineau, Montermerlo, Pollack, Roy, & Thrun, 2003c). The overall
goal of the project is to develop personalized robotic technology that can play an active
role in providing improved care and services to non-institutionalized elderly people. Pearl,
shown in Figure 11, is the main robotic platform used for this project.

Figure 11: Pearl the Nursebot, interacting with elderly people at a nursing facility

From the many services a nursing-assistant robot could provide (Engelberger, 1999;
Lacey & Dawson-Howe, 1998), much of the work to date has focused on providing timely
cognitive reminders (e. g. medications to take, appointments to attend, etc.) to elderly
subjects (Pollack, 2002). An important component of this task is finding the patient when-
ever it is time to issue a reminder. This task shares many similarities with the Tag problem
presented in Section 4.2. In this case, however, a robot-generated map of a real physical
environment is used as the basis for the spatial configuration of the domain. This map is
shown in Figure 12. The white areas correspond to free space, the black lines indicate walls
(or other obstacles) and the dark gray areas are not visible or accessible to the robot. One
can easily imagine the patient’s room and physiotherapy unit lying at either end of the
corridor, with a common area shown in the upper-middle section.

The overall goal is for the robot to traverse the domain in order to find the missing
patient and then deliver a message. The robot must systematically explore the environment,
reasoning about both spatial coverage and human motion patterns, in order to find the
person.

5.1 POMDP Modeling

The problem domain is represented jointly by two state features: RobotPosition, Person-
Position. Each feature is expressed through a discretization of the environment. Most of

33

Figure 12: Map of the environment

the experiments below assume a discretization of 2 meters, which means 26 discrete cells
for each feature, for a total of 676 states.

It is assumed that the person and robot can move freely throughout this space. The
robot’s motion is deterministically controlled by the choice of action (North, South, East,
West). The robot has a fifth action (DeliverMessage), which concludes the scenario when
used appropriately (i. e. when the robot and person are in the same location).

The person’s motion is stochastic and falls in one of two modes. Part of the time, the
person moves according to Brownian motion (e. g. moves in each cardinal direction with
Pr = 0.1, otherwise stays put). At other times, the person moves directly away from the
robot. The Tag domain of Section 4.2 assumes that the person always moves always moves
away the robot. This is not realistic when the person cannot see the robot. The current
experiment instead assumes that the person moves according to Brownian motion when the
robot is far away, and moves away from the robot when it is closer (e. g. < 4m). The person
policy was designed this way to encourage the robot to find a robust policy.

In terms of state observability, there are two components: what the robot can sense
about its own position, and what it can sense about the person’s position. In the first case,
the assumption is that the robot knows its own position at all times. While this may seem
like a generous (or optimistic) assumption, substantial experience with domains of this size
and maps of this quality have demonstrated very robust localization abilities (Thrun et al.,
2000). This is especially true when planning operates at relatively coarse resolution (2
meters) compared to the localization precision (10 cm). While exact position information
is assumed for planning in this domain, the execution phase (during which we actually
measure performance) does update the belief using full localization information, which
includes positional uncertainty whenever appropriate.

Regarding the detection of the person, the assumption is that the robot has no knowledge
of the person’s position unless s/he is within a range of 2 meters. This is plausible given
the robot’s sensors. However, even in short-range, there is a small probability (Pr = 0.01)
that the robot will miss the person and therefore return a false negative.

In general, one could make sensible assumptions about the person’s likely position (e. g.
based on a knowledge of their daily activities), however we currently have no such infor-
mation and therefore assume a uniform distribution over all initial positions. The person’s
subsequent movements are expressed through the motion model described above (i. e. mix
of Brownian motion and purposeful avoidance).

34

The reward function is straightforward: R = −1 for any motion action, R = 10 when the
robot decides to DeliverMessage and it is in the same cell as the person, and R = −100 when
the robot decides to DeliverMessage in the person’s absence. The task terminates when the
robot successfully delivers the message (i. e. a = DeliverMessage and srobot = sperson).
We assume a discount factor of 0.95.

The initial map (Fig. 12) of the domain was collected by a mobile robot, and slightly
cleaned up by hand to remove artifacts (e.g. people walking by). We then assumed the
model parameters described here, and applied PBVI planning to the problem as such.
Finally, the resulting control policy was then implemented and tested onboard the publically
available CARMEN robot simulator (Montemerlo, Roy, & Thrun, 2003). These results are
described in the next section.

5.2 Experimental Results

The subtask described here, with its 626 states, is beyond the capabilities of exact POMDP
solvers. Furthermore, as will be demonstrated below, MDP-type approximations are not
equipped to handle uncertainty of the type exhibited in this task. The main purpose of
this section is therefore to evaluate the effectiveness of the PBVI approach described in this
paper to address this problem. While the results on the Tag domain (Section 4.2) hint at
the fact that PBVI may be able to handle this task, the more realistic map and modified
motion model provide new challenges.

PBVI is applied to the problem as stated above, alternating value updates and belief
point expansions until (in simulation) the policy is able to find the person on > 90% of
trials (trials were terminated when the person is found or after 100 execution steps). The
planning phase required 40000 seconds (approx. 11 hours) on a 1.2 GHz Pentium II.

The resulting policy is illustrated in Figure 13. This figure shows six snapshots obtained
from a single run. In this particular scenario, the person starts at the far end of the left
corridor. The person’s location is not shown in any of the figures since it is not observable
by the robot. The figure instead shows the belief over person positions, represented by
a distribution of point samples (grey dots in Fig. 13). Each point represents a plausible
hypothesis about the person’s position. The figure shows the robot starting at the far right
end of the corridor (Fig. 13a). The robot moves toward the left until the room’s entrance
(Fig. 13b). It then proceeds to check the entire room (Fig. 13c). Once relatively certain
that the person is nowhere to be found, it exits the room (Fig. 13d), and moves down the
left branch of the corridor, where it finally finds the person at the very end of the corridor
(Fig. 13e).

This policy is optimized for any start positions (for both the person and the robot). The
scenario shown in Figure 13 is one of the longer execution traces since the robot ends up
searching the entire environment before finding the person. It is interesting to compare the
choice of action between snapshots (b) and (d). The robot position in both is practically
identical. Yet in (b) the robot chooses to go up into the room, whereas in (d) the robot
chooses to move toward the left. This is a direct result of planning over beliefs, rather than
over states. The belief distribution over person positions is clearly different between those
two cases, and therefore the policy specifies a very different course of action.

35

The sequence illustrated in Figure 13 is the result of planning with over 3000 belief
points. It is interesting to consider what happens with fewer belief points. Figure 14 shows
such a case. The scenario is the same, namely the person starts at the far left end of the
corridor and the robot start at the far right end (Fig. 14a). The robot then navigates its
way to the doorway (Fig. 14b). It enters the room and looks for the person in a portion
of the room (Fig. 14c). Unfortunately an incomplete plan forces it into a corner (Fig. 14d)
where it stays until the scenario is forcibly terminated. Using this policy (and assuming
uniform random start positions for both robot and person), the person is only found in 40%
of trials, compared to 90% using the policy shown in Figure 13. Planning in this case was
done with 443 belief points, and required approximately 5000 seconds.

Figure 15 looks at the policy obtained when solving this same problem using the QMDP
heuristic. Once again, six snapshots are offered from different stages of a specific scenario,
assuming the person started on the far left side and the robot on the far right side (Fig. 15a).
After proceeding to the room entrance (Fig. 15b), the robot continues down the corridor
until it almost reaches the end (Fig. 15c). It then turns around and comes back toward the
room entrance, where it stations itself (Fig. 15d) until the scenario is forcibly terminated.
As a result, the robot cannot find the person when s/he is at the left edge of the corridor.
What’s more, because of the running-away behavior adopted by the subject, even when the
person starts elsewhere in the corridor, as the robot approaches the person will gradually
retreat to the left and similarly escape from the robot. Planning with the QMDP heuristic
required 200 seconds.

Even though QMDP does not explicitly plan over beliefs, it can generate different policy
actions for cases where the state is identical but the belief is different. This is seen when
comparing Figure 15 (b) and (d). In both of these, the robot is identically located, however
the belief over person positions is different. In (b), most of the probability mass is to
the left of the robot, therefore it travels in that direction. In (d), the probability mass is
distributed evenly between the three branches (left corridor, room, right corridor). The
robot is equally pulled in all directions and therefore stops there. This scenario illustrates
some of the strength of QMDP. Namely, there are many cases where it is not necessary to
explicitly reduce uncertainty. However, it also shows that more sophisticated approaches
are needed to handle some cases.

These results show that PBVI can perform outside the bounds of simple maze do-
mains, and is able to handle realistic problem domains. In particular, throughout these
experiments, the robot simulator was in no way constrained to behave as described in our
POMDP model (Sec. 5.1). This means that the robot’s actions often had stochastic ef-
fects, the robot’s position was not always fully observable, and that belief tracking had to
be performed asynchronously (i. e. not always a straightforward ordering of actions and
observations). Despite this misalignment between the model assumed for planning, and the
execution environment, the control policy optimized by PBVI could successfully be used to
complete the task.

36

(a) t=1

(b) t=7

(c) t=12

(d) t=17

(e) t=29

Figure 13: Example of a PBVI policy successfully finding the person (using 3000+ belief
points)

37

(a) t=1

(b) t=7

(c) t=10

(d) t=12

Figure 14: Example of a PBVI policy failing to find the person (using 443 belief points)

38

(a) t=1

(b) t=7

(c) t=17

(d) t=27

Figure 15: Example of a QMDP policy failing to find the person

39

6. Related Work

This paper describes a new class of point-based algorithms for POMDP solving. There
is a large body work in approximate POMDP solving which shares similarities with this
research.

Grid-based methods generally optimize an approximate value function by iteratively
updating the values of discrete belief points. These methods differ in how they partition
the belief space into a grid, and in how they update the value function. Some methods
update only the value at each point (Brafman, 1997; Zhou & Hansen, 2001), and use an
interpolation-type rule to estimate the value at other points..

More similar to the PBVI-class of algorithms are those approaches that update both the
value and gradient at each grid point (Lovejoy, 1991a; Hauskrecht, 2000; Poon, 2001). These
methods are able to preserve the piecewise linearity and convexity of the value function, and
define a value function over the entire belief simplex. The actual point-based value update
is essentially the same as in PBVI. However the overall algorithms differ in other aspects,
in particular in how points are selected. Many earlier algorithms used random beliefs, or
required the inclusion of a large number of fixed beliefs such as the corners of the probability
simplex. In contrast, most PBVI-class algorithms (the only exception is PBVI+RA) select
only reachable beliefs, and in particular those belief points that improve the error bounds as
quickly as possible. While earlier approaches (Hauskrecht, 2000; Poon, 2001) did consider
using stochastic simulation to generate new points, neither found simulation to be superior
to random point placements. We hypothesize this may be due to the smaller size of their
test domains. Our empirical results clearly show that with a large domain, such as Tag,
PBVI’s belief-selection is an important factor in the algorithm’s performance.

New approaches building directly on the PBVI framework have been proposed, subse-
quent to publication of the first PBVI-class algorithms (Pineau et al., 2003b). This includes
the Perseus algorithm (Vlassis & Spaan, 2004) in which point-based value updates are not
systematically applied to all points at each iteration. Instead, points are sampled randomly
(and updated) until the value of all points has been improved; updating the α-vector at one
point often also improves the value estimate of other nearby points.

The HSVI (Smith & Simmons, 2004) algorithm also uses a different approach to ordering
value updates: whenever a belief point is expanded from the belief tree, HSVI updates only
the value of its direct ancestors (parents, grand-parents, etc., all the way back to the initial
belief in the head node). This is in contrast to PBVI which performs a batch of belief point
expansions, followed by a batch of value updates over all points. HSVI also uses both a
lower and an upper bound to select belief points (while PBVI in principle also uses both
a lower and upper, its upper bound is very loose, i. e. Rmax

1−γ
). In other respects, HSVI

and PBVI share many similarities: both offer anytime performance, theoretical guarantees,
scalability.

7. Discussion

The main contributions pertaining to the PBVI framework are summarized in this section.

Scalability. The primary contribution of the PBVI framework is to provide scalable
POMDP solutions. This is achieved by bounding the policy size.

40

Anytime planning. PBVI-class algorithms alternates between steps of value updating
and steps of belief point selection. As new points are added, the solution improves, at the
expense of increased computational time. The trade-off can be controlled by adjusting the
number of points. The algorithm can be terminated either when a satisfactory solution is
found, or when planning time is elapsed.

Bounded error. An important contribution of the PBVI framework is the theoretical
guarantees it provides: the theoretical properties described in Section 3.2 are more widely
applicable and provide stronger error bounds than what was available prior to this work.
Furthermore, these theoretical results are important because they directly lead to the devel-
opment of the most powerful PBVI-type algorithm to date: PBVI+GER, where estimates
of the error bound are used directly to select belief points.

Exploration. We proposed a set of new point selection heuristics, which explore over
the tree of reachable beliefs to select useful belief points. The most successful technique
described, Greedy Error Reduction (GER), uses an estimate of the error bound on candidate
belief points to select the most useful points.

Improved empirical performance. PBVI has demonstrated the ability to reduce
planning time for a number of well-known POMDP problems, including Tiger-grid, Hallway,
and Hallway2. By operating on a set of discrete points, PBVI algorithms can perform
polynomial-time value updates, thereby overcoming the curse of history that paralyzes exact
algorithms. The GER technique used to select points allows us to solve large problems with
fewer belief points than alternative approaches.

New problem domain. PBVI was applied to a new POMDP planning domain (Tag),
for which it generated an approximate solution that outperformed baseline algorithms
QMDP and Incremental Pruning. This new domain has since been adopted as a test
case for other algorithms (Vlassis & Spaan, 2004; Smith & Simmons, 2004; Braziunas &
Boutilier, 2004; Poupart & Boutilier, 2004). This fosters an increased ease of comparison
between new techniques.

Demonstrated performance. PBVI was used in the context of a robotic search-
and-rescue type scenario, where a mobile robot is required to search its environment and
find a non-stationary individual. PBVI’s performance was evaluated using a realistic,
independently-developed, robot simulator.

Extensions to the PBVI framework discussed here, whereby value updates are applied
to groups of belief points according to their spatial distribution, are described in (Pineau,
Gordon, & Thrun, 2003a).

7.1 Future work

This paper describes a new class of POMDP algorithms which features both good empirical
performance, in simulation and robotic tasks, as well as solid theoretical guarantees.

While we have demonstrated the ability to solve problems on the order of 103 states,
many real-world domains far exceed this. In particular, it is not unusual for a problem to
be expressed through a number of multi-valued state features, in which case the number of
states grows exponentially with the number of features. This is of concern because each
belief point and each α-vector has dimensionality |S| (where |S| is the number of states)

41

and all dimensions are updated simultaneously. This is an important issue to address to
improve the scalability of point-based value approaches.

There are various existing attempts at overcoming the curse of dimensionality in POMDPs.
Some of these—e. g. the belief compression techniques of Roy and Gordon (2003)—cannot
be incorporated within the PBVI framework without compromising its theoretical proper-
ties (as discussed in Section 3.2). Others, in particular the exact compression algorithm
of (Poupart & Boutilier, 2003), can be combined with PBVI. However, preliminary ex-
periments in this direction have yielded little performance improvement. There is reason
to believe that approximate value compression would yield better results, but again at
the expense of forgoing PBVI’s theoretical properties. The challenge therefore is to devise
function-approximation techniques that both reduce the dimensionality effectively, while
maintaining the convexity properties of the solution.

A secondary (but no less important) issue concerning the scalability of PBVI pertains to
the number of belief points necessary to obtain a good solution. While problems addressed
thus far can usually be solved with O(|S|) number of belief points, this need not be true. In
the worse case, the number of belief points necessary may be exponential in the plan length.
The PBVI framework can accommodate a wide variety of strategies for generating belief
points, and the Greedy Error Reduction technique seems particularly effective. However
this is unlikely to be the definitive answer to belief point selection. In more general terms,
this relates closely to the well-known issue of exploration versus exploitation, which arises
across a wide array of problem-solving techniques.

Acknowledgments

The authors wish to thank Craig Boutilier, Michael Littman, Andrew Moore and Matthew
Mason for many thoughtful comments and discussions regarding this work. We also thank
Darius Braziunas, Pascal Poupart, Trey Smith and Nikos Vlassis, for conversations regard-
ing their algorithms and results. The contributions of Michael Montemerlo and Nicholas
Roy in conducting the empirical robot evaluations are gratefully acknowledged. This work
was funded through the DARPA MARS program and NSF’s ITR program.

References

Ästrom, K. J. (1965). Optimal control of markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications, 10, 174–205.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90 (1-2), 281–300.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Research,
11, 1–94.

42

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. In Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 33–42.

Brafman, R. I. (1997). A heuristic variable grid solution method for POMDPs. In Pro-
ceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI), pp.
727–733.

Braziunas, D., & Boutilier, C. (2004). Stochastic local search for POMDP controllers. In
Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI),
pp. 690–696.

Burgard, W., Cremers, A. B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner,
W., & Thrun, S. (1999). Experiences with an interactive museum tour-guide robot.
Artificial Intelligence, 114, 3–55.

Cassandra, A. (1999). Tony’s POMDP page. http://www.cs.brown.edu/ re-
search/ai/pomdp/code/index.html.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes. In Proceedings of
the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 54–61.

Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence, 32 (3), 333–377.

Cheng, H.-T. (1988). Algorithms for Partially Observable Markov Decision Processes. Ph.D.
thesis, University of British Columbia.

Dean, T., & Kanazawa, K. (1988). Probabilistic temporal reasoning. In Proceedings of the
Seventh National Conference on Artificial Intelligence (AAAI), pp. 524–528.

Engelberger, G. (1999). Handbook of Industrial Robotics. John Wiley and Sons.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189–208.

Hauskrecht, M. (2000). Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research, 13, 33–94.

Jazwinski, A. M. (1970). Stochastic Processes and Filtering Theory. Academic, New York.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101, 99–134.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans-
actions of the ASME, Journal of Basic Engineering, 82, 35–45.

Lacey, G., & Dawson-Howe, K. M. (1998). The application of robotics to a mobility aid for
the elderly blind. Robotics and Autonomous Systems, 23, 245–252.

Littman, M. L. (1996). Algorithms for Sequential Decision Making. Ph.D. thesis, Brown
University.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995a). Learning policies for par-
tially obsevable environments: Scaling up. Tech. rep. CS-95-11, Brown University,
Department of Computer Science.

43

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995b). Learning policies for par-
tially obsevable environments: Scaling up. In Proceedings of Twelfth International
Conference on Machine Learning, pp. 362–370.

Lovejoy, W. S. (1991a). Computationally feasible bounds for partially observed Markov
decision processes. Operations Research, 39 (1), 162–175.

Lovejoy, W. S. (1991b). A survey of algorithmic methods for partially observable Markov
decision processes. Annals of Operations Research, 28, 47–66.

McAllester, D., & Roseblitt, D. (1991). Systematic nonlinear planning. In Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI), pp. 634–639.

Monahan, G. E. (1982). A survey of partially observable Markov decision processes: Theory,
models, and algorithms. Management Science, 28 (1), 1–16.

Montemerlo, M., Roy, N., & Thrun, S. (2003). Perspectives on standardization in mobile
robot programming: The Carnegie Mellon navigation (CARMEN) toolkit. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vol. 3, pp. pp 2436–2441.

Penberthy, J. S., & Weld, D. (1992). UCPOP: A sound, complete, partial order planning
for ADL. In Proceedings of the Third International Conference on Knowledge Repre-
sentation and Reasoning, pp. 103–114.

Pineau, J., Gordon, G., & Thrun, S. (2003a). Applying metric-trees to belief-point
POMDPs. In Neural Information Processing Systems (NIPS), Vol. 16.

Pineau, J., Gordon, G., & Thrun, S. (2003b). Point-based value iteration: An anytime
algorithm for POMDPs. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1025–1032.

Pineau, J., Montermerlo, M., Pollack, M., Roy, N., & Thrun, S. (2003c). Towards robotic
assistants in nursing homes: challenges and results. Robotics and Autonomous Systems,
42 (3-4), 271–281.

Pollack, M. (2002). Planning technology for intelligent cognifitve orthotics. In Proceedings
of the 6th International Conference on AI Planning & Scheduling (AIPS).

Poon, K.-M. (2001). A fast heuristic algorithm for decision-theoretic planning. Master’s
thesis, The Hong-Kong University of Science and Technology.

Poupart, P., & Boutilier, C. (2000). Value-directed belief state approximation for POMDPs.
In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 409–416.

Poupart, P., & Boutilier, C. (2003). Value-directed compression of POMDPs. In Advances
in Neural Information Processing Systems (NIPS), Vol. 15.

Poupart, P., & Boutilier, C. (2004). Bounded finite state controllers. In Advances in Neural
Information Processing Systems (NIPS), Vol. 16.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77 (2), 257–285.

44

Rosencrantz, M., Gordon, G., & Thrun, S. (2003). Locating moving entities in dynamic
indoor environments with teams of mobile robots. In Second International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 233–240.

Roy, N. (2003). Finding approximate POMDP solutions through belief compression. Ph.D.
thesis, Carnegie Mellon University.

Roy, N., & Gordon, G. (2003). Exponential family PCA for belief compression in POMDPs.
In Advances in Neural Information Processing Systems (NIPS), Vol. 15, pp. 1043–
1049.

Smith, T., & Simmons, R. (2004). Heuristic search value iteration for POMDPs. In Pro-
ceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence (UAI).

Sondik, E. J. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D.
thesis, Stanford University.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2000). Robust Monte Carlo localization
for mobile robots. Artificial Intelligence, 128 (1-2), 99–141.

Vlassis, N., & Spaan, M. T. J. (2004). A fast point-based algorithm for POMDPs. In
Proceedings of the Belgian-Dutch Conference on Machine Learning.

White, C. C. (1991). A survey of solution techniques for the partially observed Markov
decision process. Annals of Operations Research, 32, 215–230.

Zhang, N. L., & Liu, W. (1996). Planning in stochastic domains: Problem characteristics
and approximation. Tech. rep. HKUST-CS96-31, Dept. of Computer Science, Hong
Kong University of Science and Technology.

Zhang, N. L., & Zhang, W. (2001). Speeding up the convergence of value iteration in par-
tially observable Markov decision processes. Journal of Artificial Intelligence Research,
14, 29–51.

Zhou, R., & Hansen, E. A. (2001). An improved grid-based approximation algorithm for
POMDPs. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 707–716.

45

