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Abstract Robotics technology has made progress
on a number of important issues in the last decade.
However many challenges remain when it comes to
the development of systems for human-robot inter-
action. This paper presents a case study featuring
a robust dialogue interface for human-robot com-
munication onboard an intelligent wheelchair. Un-
derlying this interface is a sophisticated software
architecture which allows the chair to perform real-
time, robust tracking of the dialogue state, as well
as select appropriate responses using rich proba-
bilistic representations. The paper also examines
the question of rigorous validation of complex human-
robot interfaces by evaluating the proposed inter-
face in the context of a standardized rehabilitation
task domain.

Keywords Intelligent wheelchair · Dialogue
management · Service robotics · Human-robot
interaction

1 Introduction

For many people suffering from chronic mobility
impairments, such as spinal cord injuries or multi-
ple sclerosis, using a powered wheelchair to move
around their environment can be difficult. Accord-
ing to a recent survey, 40% of patients found daily
steering and maneuvering tasks to be difficult or
impossible [7], and clinicians believe that between
61% and 91% of all wheelchair users would benefit
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from a smart wheelchair [29]. Such numbers sug-
gest that the deployment of intelligent wheelchairs
catering to those patients’ needs could have a deep
societal impact.

Over the last decade, robotics technology has
made progress on a number of important issues
pertaining to mobility. Many of these developments
can be transfered to the design of intelligent wheelchairs.
Yet many challenges remain—both technical and
practical—when it comes to the development of
the human-robot interaction components. A recent
survey of the literature on smart wheelchairs sug-
gests that while voice control has often been used
to control smart wheelchairs, it remains difficult to
implement successfully [28].

Our work addresses two main challenges per-
taining to the development of voice-controlled as-
sistive robots. First, we tackle the problem of ro-
bust processing of speech commands. In support of
this goal, we propose a complete architecture for
handling speech signals, which includes not only
signal processing, but also syntactic and semantic
processing, as well as probabilistic decision-making
for response production. Many of these compo-
nents have been exploited separately in human-
machine speech interfaces, but to the best of our
knowledge, this is the first system to incorporate
all components in a coherent architecture for speech-
based robot control.

Second, the paper tackles the issue of devel-
oping tools and standards for the formal testing
of assistive robots. The use of standard testing
has been common currency in some sub-tasks per-
taining to human-robot interaction, most notably
speech recognition. However few tools are avail-
able for the rigorous and standardized testing of



fully integrated systems. Here we propose a novel
methodology and environment for the standard-
ized testing of smart wheelchairs. The procedure is
inspired from one commonly used in the evaluation
of conventional (non-intelligent) wheelchairs. We
demonstrate, through careful user experiments, how
it can be adapted to formally evaluate voice-controlled
smart wheelchairs. Results described below show
that the coupling of speech input, grammatical
inference, and probabilistic decision-making pro-
vides a robust architecture to process natural in-
teractions from untrained users.

The cognitive architecture described in this pa-
per for handling speech interaction is appropriate
for a wide spectrum of human-robot interaction
tasks. As such, the work should be of interest to
researchers working on a variety of social robot
platforms, not only smart wheelchairs. The test-
ing procedure we describe however is specifically
targeted at the evaluation of smart wheelchairs.
Nonetheless this case study may provide ideas and
motivation for the development of standardized
evaluation tools for other social robot interaction
domains.

2 The SmartWheeler Platform

The SmartWheeler project aims at developing—
in collaboration with engineers and rehabilitation
clinicians—a prototype of a multi-functional intel-
ligent wheelchair to assist individuals with mobil-
ity impairments in their daily locomotion, while
minimizing physical and cognitive loads [23] .

Figure 1 shows a picture of the SmartWheeler
platform. The intelligent wheelchair is built on top
of a commercially available Sunrise Quickie Freestyle
wheelchair. The intelligent sensing and computing
components were designed and installed in-house
at McGill University’s Centre for Intelligent Ma-
chines. These include two (one forward-facing, one
backward-facing) SICK laser range-finders, custom-
made wheel odometers, a Lilliput 8” touch-sensitive
LCD, a two-way voice interface, and an onboard
1.4 GHz Pentium M Processor. The laser range-
finders and odometers are used for mapping, nav-
igation and obstacle avoidance. The display, voice
interface, and wheelchair joystick are the main modes
of communication with the user. The onboard com-
puter interfaces with the wheelchair’s motor con-
trol board to provide autonomous navigational com-
mands.

Fig. 1 The robotic wheelchair platform.

3 Cognitive Architecture

Figure 2 presents an overview of the software ar-
chitecture underlying the communication modules.
This includes the modules handling the various
communication modalities (Speech Recognizer, Speech
Synthesis, Visuo-Tactile Unit), a module handling
grammatical parsing of the speech signal (Seman-
tic Grammar), a core decision-making unit (Inter-
action Manager), a module to translate the de-
cision into low-level output functions (Behavior
Manager), and a module to handle the robot’s low-
level navigation components (Robot Control Sys-
tem).

Integration of the software architecture is done
using the Acropolis framework [40]. In this frame-
work, components are integrated as plug-ins that
execute within the architecture. Plug-ins are de-
fined in terms of what inputs they require and
what outputs they produce; a so-called circuit file
specifies which plug-ins are connected. This “loosely
coupled” scheme allows for rapid prototyping through
the switching of components on the fly. To con-
nect components, Acropolis provides its own com-
munication channel, making it easy and efficient
to transfer data between components. Our cur-
rent implementation includes only the components
shown in Figure 2, however Acropolis is well suited
to a variety of other robotic components, and is
particularly suitable for quick testing of different
configurations, since new components can be easily
added, removed, or replaced.

Acropolis usually includes a plug-in to a stan-
dard Robot Control System. Good options for this
module include the popular Player application [5],
or the Carmen navigation toolkit [22]. The SmartWheeler’s
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Fig. 2 Interaction Architecture

sensors and actuators can then be accessed di-
rectly through these navigation tools. As a result,
the interaction architecture we present in this pa-
per is relatively independent of the physical robot
platform, and could be used for a wide variety of
human-robot interaction systems.

3.1 Speech Recognition

A speech interface provides a comfortable and nat-
ural input modality for users with limited mobil-
ity. In general, speech requires little training, and
is relatively high-bandwidth, thus allowing for rich
communication between the robot and human. The
performance of speech recognition systems are in-
fluenced by many aspects, including the vocabu-
lary, language and acoustic models, speaking mode
(isolated words vs. continuous speech), etc. Some
of these aspects have to be taken into account when
designing the speech interface.

Selecting a speech recognizer that performs well
for the task at hand is important. To preserve
flexibility in the development process, we consid-
ered two open source speech recognition systems:
HTK [12] and CMU’s Sphinx-4 [4]. Both of these
systems are speaker-independent, continuous speech,
recognition systems, which typically require less
customization than commercial systems. Because
customization is minimal, it is important that the
system be pre-trained on a large speech corpus
such that appropriate acoustic models can be pre-
computed. Such corpora usually falls under one of
two categories: those developed for acoustic pho-
netic research and those developed for very spe-
cific tasks. Since SmartWheeler is still at an early
stage of development, and domain-specific data is

not available, we use a general purpose acoustic
model, such as the Wall Street Journal Acoustic
Model [36].

A small vocabulary makes speech recognition
more accurate but requires the user to learn which
words or phrases are allowed. And while our cur-
rent focus is on building and validating an inter-
action platform for a specific set of tasks (defined
below), we also want the user to be able to interact
with the system in the same way s/he would, when
interacting with any caregiver, and with very little
prior training. Thus a fixed set of tasks is con-
sidered, but several possible commands for each
task are allowed. For example, if a user wants to
drive forward two meters, possible commands in-
clude (amongst others):

– Roll two meters forward

– Drive forward two meters.

– Roll forward two meters fast.

– Drive fast two meters forward.

The specific vocabulary allowed by the speech rec-
ognizer is extracted from a set of preliminary in-
teractions recorded between users and the chair,
based on the specific tasks selected. We provide
more detail on our current implementation below.

Both Sphinx-4 and HTK allow the designer
to specify a set of syntactic rules (or grammar)
which specifies constraints on the ordering of words
within a sentence. This grammar can be useful to
enhance speech recognition quality by constraining
the hypothesis space. In the SmartWheeler archi-
tecture, we have a separate module to handle both
semantic and syntactic grammatical constraints (see
the next section), therefore it suffices to use a very
loose grammar in the speech recognition system.
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The dictionary and grammar files used for both
Sphinx-4 and HTK are available online [31].

We conducted a series of preliminary tests us-
ing both Sphinx-4 and HTK. Three male and one
female university students in their early twenties
recorded 179-183 commands each (723 speech com-
mands in total). Subjects were presented with a
script of commands, corresponding to each task,
and instructed to read them in order.

We analyzed the results in terms of substitu-
tions (when the speech recognizer fails to recognize
a word and substitutes another incorrect word),
deletions (words that were spoken but missed by
the recognizer), insertions (words that were not
spoken but added by the recognizer), word error
rate (proportion of incorrectly recognized words,
including substitutions, deletions and insertions),
and sentence error rate (proportion of sentences
in which one or more words are incorrectly recog-
nized).

Both speech recognition packages showed equiv-
alent performance across the board. Note that the
results indicated rather high error rates. The mean
sentence error rate was 45.2% when using Sphinx-4
and 46.7% when using HTK, while the mean word
error rate was 16.1% with Sphinx-4 and 16.6%
for HTK. This analysis suggests that performance
of the two candidate speech recognition systems
is equivalent. We chose to integrate Sphinx-4 on-
board the SmartWheeler simply because it is slightly
easier to handle in terms of software integration
within Acropolis.

While the error rates are quite high, upon closer
analysis the situation is not as discouraging as it
would seem. Observed errors can be classified into
one of three types: design errors, syntax errors, and
semantic errors.

Design errors

Errors of this type are introduced because of errors
in the design of the task vocabulary. For example,
a number of substitutions occurred when Sphinx
recognized meter as meters. The task grammar
within the speech recognizer was modified to avoid
such minor errors.

Syntax errors

Errors of this type are introduced because the task
grammar contains many ways to say the same thing.
For example, when subject 1 said, roll back one

meter, HTK recognized it as roll backward

one meter. This is counted as one substitution

error. However, even though the commands do not
match, they do have the same semantic meaning
in this particular task domain. The natural lan-
guage processing module described in Section 3.2
is specifically designed to handle this type of error.

Semantic errors

Errors of this type are introduced when the speech
recognition system fails to recognize the correct
command. For example, when subject 3 said, de-

scend the curb, Sphinx recognized it as ascend

the curb. In order to handle this type of er-
ror, it is necessary to reason about the environ-
ment and the user’s intents. A more severe error
of this type occurred when subject 3 said drive

slowly two meters back and Sphinx recog-
nized ascend ridge. This error is harder to de-
tect, but not impossible. Handling this type of er-
ror involves reasoning about the user’s intentions
and the robot’s physical context. This is the main
motivation for adopting a rich probabilistic frame-
work for the Interaction Manager, as described in
Section 3.7.

Evidence from these preliminary experiments
strongly supports the integration of the diverse
components included in the cognitive architecture.

3.2 Semantic Grammar

The output of the speech recognizer is processed
by a natural language parser, which extracts syn-
tactic and semantic information from the string
of words. The primary role of the grammar is to
constrain the output space of the speech interface.
The framework we use for natural language pars-
ing is that of Combinatory Categorical Grammars
(CCG) [33], for which an open-source implemen-
tation is freely available [37].

It is worth noting that the grammatical anal-
ysis carried out in the NLP parser replaces the
grammatical analysis that could be performed within
the speech recognition system. The main advan-
tage of using a separate NLP processing unit is
that the CCG parser considers both syntactic and
semantic constraints (as opposed to only consid-
ering syntactic constraints). Thus different words
with identical semantic meaning can be mapped to
each other. This can reduce the per-sentence error
rate.

The semantic component of the parser is ex-
pressed in logical form, with logical predicates rep-
resenting the meaning of the input sentence. The
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set of these outputs forms the basis for the state
space of the Interaction Manager. The set of pos-
sible outputs can grow quickly, depending on the
space of logical predicates. The NLP parser keeps
this to a manageable size by abstracting away all
syntactical components for the later processing.
The semantic logical form, which could take a hier-
archical form (e.g. two meters is the distance ar-
gument of roll two meters forward, and two

is the number argument of the distance argument),
is flattened into a fixed-size feature vector with
pre-specified slots (e.g. 〈Action: roll, DistanceU-
nit: meter, DistanceValue: 2, Direction: undefined,
...〉). One can think of this representation as lying
between the overly complex logical form common
to full NLP systems, and the overly simple bag-of-
words assumption used by many machine learning
applications.

To conclude this section, it is worth emphasiz-
ing the advantages of using the CCG grammar as
a separate module, over using the grammar offered
in the Sphinx (or HTK) speech recognition system.
First, the CCG grammar is more expressive than
the simple Backus-Naur-Form context-free gram-
mar framework used in Sphinx. Another important
advantage of CCG is that it provides support for
the construction of a logical-form semantic repre-
sentation during the parsing process, which then
forms the basic state representation for the Inter-
action Manager. Since the Interaction Manager’s
state space is based directly on the output space of
the grammatical unit, substantial compression in
the state space (and decision space) of the Interac-
tion Manager is achieved through the application
of the CCG parser’s syntactic and semantic con-
straints. This significantly improves the scalability
of the interaction system.

In cases where the CCG parser does not return
a valid parse, we can still recuperate the set of
words produced by the speech recognition system
and pass them directly to the Interaction Man-
ager to be processed as a bag-of-words, without
any syntactic or semantic structure. This is the
standard approach in dialogue management sys-
tems that do not include grammatical parsing [6,
27]. In some cases, this can help guide the selection
of appropriate clarification queries can be prefer-
able to having the speech recognition system go
to unnecessary lengths to fit the observed speech
signal into a valid (but incorrect) parse.

3.3 Speech Synthesis

In order to provide speech feedback, the Festival [9]
speech synthesis system is used. This system is
freely available, and does not require customiza-
tion, therefore we do not discuss it further. The
list of speech output sentences is set by hand and
stored in the Behavior Manager.

3.4 Visuo-Tactile Unit

A graphical user interface (GUI) complements the
speech interface by providing immediate visual feed-
back to the user, as well as a secondary mode of
input through the tactile interface. Note that the
screen-based interaction and speech-based interac-
tion modes are thoroughly complementary. At any
point during the interaction, the user can enter
commands either through the speech interface, or
through the touch-sensitive display. Additionally,
there is in fact a third mode of input, which is to se-
lect the buttons of the visuo-tactile display using a
joystick (or equivalent device). The screen changes
reactively whenever instructions are issued using
any of the three input modalities.

The primary motivation behind the GUI de-
sign is to provide an alternative to the speech in-
terface for users who are not able to reliably con-
trol the wheelchair using voice. Some people may
have disabilities which interfere with their vocal
abilities; others may find the speech interface too
error-prone and prefer more reliable alternatives.
The relative level of reliability of course will be
affected by the user’s fine motor control.

Another motivation for the GUI design is to
provide context and support to facilitate the use
of the speech interface. The display can be used to
inform of the current state of the wheelchair (e.g.
moving, stopped), as well as the set of commands
that can be used in that particular situation. The
user is always free to voice commands that do not
appear on the screen (this can lead to “short-cuts”
through the menu system).

We do not formally evaluate the GUI design in
experiments reported below, therefore we do not
describe this module in detail. Design and valida-
tion of this component will be the subject of future
work, since they require a substantial involvement
from the disabled user population.
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3.5 Behavior Manager

The role of the behavior manager is to provide
an interface layer between the high-level decision-
making and the low-level robot control. As ex-
plained below, the Interaction Manager chooses
high-level action in response to the received pro-
cessed sensory input. These actions are either robot
control actions, such as movement or hardware
configuration, or response actions to be communi-
cated to the user. The Interaction Manager passes
the selected action to the Behavior Manager, which
then translates the high-level action into lower-
level robot specific instructions. This allows the
hardware specific aspects to be abstracted away
from the interaction and decision-making modules.
The Behavior Manager is implemented as a sim-
ple look-up table, in which the decomposition of
a high-level action is detailed as a sequence of
low-level commands for the appropriate modules
(speech generation and/or robot navigation).

3.6 Robot Control System

The Robot Control System can be implemented
using different publicly available software packages,
for example the popular Player application [5] or
the Carmen robot navigation toolkit [22]. We have
used both throughout our preliminary experiments.
The goal of this component is to handle tasks such
as mapping, localization and path planning. We do
not discuss this component further as it is some-
what orthogonal to the main focus of this paper.

3.7 Interaction Manager

The Interaction Manager acts as the core decision-
making unit in the robot architecture. This module
is ultimately responsible for selecting the behavior
of the robot throughout the interaction with the
user.

In this context, the Interaction Manager can
be seen as an Input-Ouput device, where informa-
tion about the world is received via the grammar
system and the low-level robot navigation system.
The unit then outputs actions in the form of speech
and display responses, or issuing of control com-
mands to the navigation unit. These actions are
processed through the Behavior manager, to ex-
tract a pre-set sequence of low-level operations, be-
fore being sent to the respective modules (speech
synthesis, visuo-tactile unit, robot control system).

The goal of the Interaction Manager is to pro-
vide a robust decision-making mechanism capable
of handling the complexity of the environment.
This is a challenging goal due to the high degree
of noise in the environment. While the semantic
grammar can help handle some of the noise, even
properly transcribed speech can contain ambigui-
ties. Accounting for the set of possible outcomes
can be crucial in providing robust action selec-
tion. Therefore we favor a probabilistic approach
to decision-making.

The Partially Observable Markov Decision Pro-
cess (POMDP) paradigm has been shown to be a
powerful tool for modeling a wide range of robot-
related applications featuring uncertainty, includ-
ing robot navigation [18], dialogue management [30,
27,38,6], and behavior tracking [11]. One of the ad-
vantages of the POMDP model is its ability to cap-
ture the idea of partial observability, namely that
the state of the world cannot be directly observed,
but instead must be inferred through noisy obser-
vations [32]. In the case of our Interaction Man-
ager, the user’s intention must be inferred though
observations coming from verbal commands, as well
as contextual information inferred through the phys-
ical state of the robot in its environment.

Each state in the POMDP represents a discrete
user intention, such as moving forward, turning the
chair, or reaching a specific target. The states are
defined using a pre-defined set of semantic slots,
and a finite domain for each slot.

The output of the Interaction Manager is de-
fined by a set of actions. Because each state repre-
sents a different user intention, there is one “cor-
rect” action for each state. This includes robot
control actions and interaction response actions. If
the agent selects and executes the correct action,
a positive reward is given. If the incorrect action is
selected, a high cost is inflicted. In addition, there
is a set of query actions, in the form of clarification
questions, which can be emitted in situations that
warrant additional information. All query actions
incur a small cost. The goal of the decision-making
engine is to select actions so as to maximize this
reward function.

Observations occur when there is input from
the sensor-processing modules. Most of the time,
these appear as an output of the grammatical parser,
and consist of assignments to the various semantic
slots. Given the observation, the goal is to deter-
mine the likelihood of each state, si, given this as-
signment, z = (CommandV alue = v1, CommandType =
v2,
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DirectionV alue = v3, ...), written as z = (v1, v2, v3, ...)
for readability. We assume that assignments of val-
ues to the slots is independent:

P (si|v1, v2, v3, ...) =
P (v1, v2, v3, ...|si)P (si)

P (v1, v2, v3, ...)
(1)

=
P (v1|si)P (v2|si)P (v3|si)...P (si)

P (v1)P (v2)P (v3)...
These values, P (vj |si), P (vj), and P (si) can be
calculated from collected data.

In cases where there was no valid parse, the
phrase is sent directly from the Speech Recognizer
to the Interaction Manager as a bag-of-words. The
state probability update is done in similar fashion,
but considering the probability of each word, given
the state. Again, these can be learned from data.

Ideally, the transition from state-to-state should
be estimated from training data, to reflect patterns
in daily activities. In cases where such data is not
available, one can assume a uniform transition to
any other state following execution of a non-query
action (i.e. we don’t know what task the user is go-
ing to tackle next) and assume the system remains
in the same state (with slight noise) following ex-
ecution of a query action.

Once the model is created, a POMDP solving
algorithm is applied to determine a proper pol-
icy. A policy is a mapping from distributions over
states (as defined in Equation 1) to actions. A typ-
ical policy might be as follows: When the system
is confident about the user’s intention, the system
executes the corresponding action. If there is some
degree of ambiguity, such as the system believing
the action is a move command, but lacking the
parameters, the system can then execute a specific
query, such as request move parameters. If
there is sufficient noise and the system is unsure of
the state, it can execute the more general repeat

query. This policy is optimized using dynamic pro-
gramming methods based on the transition, ob-
servation, and reward parameters. As the cost of
queries decreases, or the penalty for an incorrect
action increases, the system will become more cau-
tious and inclined to present multiple queries be-
fore committing to an action. Several techniques
exist for determining a policy from a model. We
use a standard point-based approximation tech-
nique [24].

4 A Standardized Evaluation Tool for
Smart Wheelchairs

In his survey of smart wheelchairs, Simpson [28]
comments that: ”While there has been a signifi-

cant amount of effort devoted to the development
of smart wheelchairs, scant attention has been paid
to evaluating their performance. (...) Furthermore,
no smart wheelchair has been subjected to a rig-
orous, controlled evaluation”. His comments are
made mostly in the context of highlighting the
need for better experiments with the target popu-
lation, in real-world settings. However, before we—
as a community—are in a position to achieve this
full goal, a necessary step is to develop the tools
and methods for achieving such rigorous, controlled
evaluation. This section describes one such tool.

4.1 Target population

The target population for our smart wheelchair
platform is those users who require powered wheelchair
to get around their environment on a daily ba-
sis, yet find the use of a wheelchair problematic,
whether due to fatigue, limited motor skills, or sen-
sory impairment. This can include individuals suf-
fering from spinal cord injuries, multiple sclerosis,
or other mobility disorders.

The experiment described in the latter section
of this paper do not include disabled users; all re-
sults reported below were obtained with healthy
subjects. The primary goal of the experiment pre-
sented below is to serve as a pilot study for the
project. This is an important step towards acquir-
ing ethical approval for the experiments with the
disabled population.

Before conducting the pilot study, we consulted
at length with clinical experts to define the selec-
tion criteria for the target population which will be
included in later phases of experimentation. This
selection criteria includes: a reduced mobility com-
ponent (i.e. verifying the subject’s need for a mo-
torized wheelchair), a communication fluency com-
ponent (i.e. verifying the subject’s ability to use a
two-way speech interface), as well as other criteria
ensuring the safety and well-being of the test sub-
jects. In the context of the pilot study, the reduced
mobility criterion was ignored, but all other crite-
ria were applied without modification. Given that
our primary goal in this paper is to evaluate the
effectiveness and robustness of the human-robot
interface, and in particular robust speech interac-
tion, we believe that the results obtained in the
pilot study with healthy subjects will be reason-
ably indicative of results for the target population,
assuming similar communication abilities.
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4.2 A Standardized Rehabilitation Environment

The long-term goal of this project is to increase
the autonomy and safety of individuals with se-
vere mobility impairments by developing a robotic
wheelchair that is adapted to their needs. This is a
reasonably ambitious goal, which can entail a wide
spectrum of tasks and activities.

While the long-term goal is to deploy our plat-
form in natural indoor/outdoor living environments
adapted for wheelchair users, there is a need in
the earlier stages of the project to formally as-
sess the effectiveness and safety of the platform in
a more controlled task domain and environment.
In seeking such a testing methodology, we have
come across a standard wheelchair training proto-
col called the Wheelchair Skills Test (WST). The
WST was developed to assess and train wheelchair
users through a representative set of wheelchair
skills [15]. Extensive information about the test
can be found on the WST website1. The test is
currently being used in clinical settings to identify
skills that should be addressed during training, as
well as to compare a subject’s performance before
and after rehabilitation.

There are many reasons why we believe this
testing methodology is useful for the validation of
smart wheelchairs. The WST includes 39 skills, di-
vided into 18 skills groups, and representing mul-
tiple levels of difficulty ranging from simple tasks
(such as moving forward short distances) to more
complex tasks (such as performing turning ma-
noeuvres in constrained spaces). The set of skills
can be thought of as an “obstacle-course” for wheelchairs,
and is considered representative for general wheelchair
performance. The assumption is that a person do-
ing well on the 39 tasks included in the WST can
be considered a skilled wheelchair user because
the abilities tested are sufficiently rich to resem-
ble situations encountered on a daily basis. The
choice of tasks is based on realistic scenarios, but
is still standardized enough to allow for precise
performance measurements. As one would expect,
most tasks test navigation skills (e.g. Roll for-

ward 10 m in 30 s, Get over 15-cm pot-

hole), but there are some other actions as well,
e.g. those concerning the wheelchair configuration,
like Controls recline function. Accomplish-
ing all tasks takes roughly 30 minutes [16]. The
test does require some environment infrastructure
(e.g. a ramp, a few walls) but the space require-

1 http://www.wheelchairskillsprogram.ca

ments are not excessive and typical of the space
required for standard mobile robotics research.

Other wheelchair skills tests have been pro-
posed in the occupational therapy literature. See [14]
and [26] for comprehensive overviews of existing
tests. Kilkens et al. concluded that out of the 24
tests they reviewed, only the Wheelchair Skills Test
has been “adequately tested on both validity and re-
liability”. It is also one of the few tests which was
designed for powered wheelchairs. Furthermore, it
has not been designed for a specific target group
(e.g. stroke patients), but for wheelchair users in
general. This is a useful aspect since our aim in de-
signing the SmartWheeler platform is to improve
mobility for a large spectrum of mobility-impaired
individuals.

For our use of the WST, it is particularly inter-
esting to note that a version of this test was explic-
itly conceived to provide a means of evaluating the
wheelchair+user+caregiver as a team. The goal is
not to rate the performance of the wheelchair user,
but rather that of this team. In the case of an intel-
ligent system, we view the added robot technology
as playing a role similar to that of a caregiver and
we use the WST in the version ‘powered wheelchair
with caregiver’ (WST-P/CG in [15]). The WST
manual specifies that a caregiver need not be a
human: “An animal (e.g. a service dog) that as-
sists with the performance of a skill is considered
a caregiver, not an aid.” [15] We are extending this
notion even further by introducing the intelligent
system as a caregiver. Although the WST manual
does not explicitly define a caregiver, this is justi-
fied because the purpose of our intelligent software
system is in fact to cooperate with the wheelchair
user in order to accomplish the target activities.

Finally, it is worth emphasizing that the WST
evaluates skill proficiency, as well as safety. The
WST includes a formal evaluation protocol, whereby
performance on each of the tasks is graded in terms
of these two criteria in a binary manner: a person
either passes or fails a task, and he/she does so
either in a safe or in an unsafe way. The pass/fail
grading method makes the evaluation simple and
as objective as possible. This is reflected in the
high test-retest, intra- and inter-rater reliabilities
achieved by the WST [16,17]. Because the set of
tasks and the testing environment is precisely de-
fined, it is easier to provide strong guarantees re-
garding the safety and security of the wheelchair
in this constrained domain, compared to natural
living environments. Thus it is also easier to en-
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sure we meet ethical requirements for testing with
the target population.

4.3 Customization of the Cognitive Architecture
for the WST

The description of the cognitive architecture in
Section 3 was done in reasonably general terms to
emphasize that it is appropriate for a large spec-
trum of human-robot interaction tasks. In this sec-
tion we outline a few of the design decisions that
were made to deploy this architecture onboard our
robot platform and in the context of the Wheelchair
Skills Test.

The vocabulary used by the speech recognizer
was designed to include 61 words, which were de-
termined by going through sample interactions be-
tween users and the chair, based on the specific
tasks of the WST. The dictionary and grammar
files used for both Sphinx and HTK are available
online [31]. Throughout our experiments, the speech
recognition system was used in press-to-speak mode,
requiring the subjects to press a button while speak-
ing to the robot. This could be an obstacle for
severely disabled individuals, however given that
one of our selection criteria is that the person cur-
rently uses a powered wheelchair (which s/he con-
trols through a joystick or other pressure sensor),
this poses no problem at this time in our investi-
gations.

Regarding the design of the logical rules in the
semantic grammar, obviously the goal is not to
equip the robot with a full-fledged English gram-
mar at this stage of the project. The current gram-
mar is based on the tasks of the Wheelchair Skills
Test. Our CCG grammar file is also available on-
line [31]. In cases where an input sentence has mul-
tiple correct parses, we have to make a choice on
which parse to pass on to the Interaction Man-
ager. Currently we pick the first parse from the
list. In the future we will investigate methods to
learn from experience which parse is most informa-
tive, or consider extending the Interaction Man-
ager such that it accepts multiple parses.

To realize the interface for the WST, the set
of semantic slots produced by the grammar and
used as the state representation for the interaction
manager are presented in Table 1. In reality, we use
a slightly larger set, generated based on data. Each
state represents one set of assignments to each of
the semantic slots. Typically, a state has 3 to 6
semantic slots assigned, with the remainder being
set to null.

Semantic Slot Possible Value Assignments

CommandValue move, switch, activate, deactivate,
select, set, drive, turn, NULL

CommandType move-action, hardware-action,

config-action, NULL
DirectionValue away, back, forward, backward, right,

left, NULL

DirectionType direction, vector-direction, angle-
direction, NULL

PatientType controller, speed, drive-mode, seat,
motor, NULL

PatientValue on, off, fast, medium, slow, cautious,

indoor, outdoor, NULL

Table 1 Semantic Slots and Possible Value Assignments

The POMDP domain file implementing the In-
teraction Manager is available online [31]. Statis-
tics for the observation probabilities in the case of
bag-of-words were calculated from data gathered
during our preliminary study of the speech recog-
nition system (see Section 3.1). We assume uni-
form transition from state-to-state after executing
any non-query action, and stationary transitions
(with slight noise) after executing query actions.
This is adequate to capture the Wheelchair Skills
Test, where the sequence of tasks is not meaning-
ful.

In addition to the evaluation metrics included
in the WST, to better characterize our interface,
we consider other metrics such as: the speech recog-
nition accuracy, the proportion of sentences that
are correctly parsed, and the number of correct
action choices by the Interaction Manager.

5 Empirical Evaluation

We conducted experiments to evaluate the perfor-
mance of our cognitive architecture in the context
of the WST task domain. The evaluation was con-
ducted in our laboratory. Seven healthy subjects
were involved. Five male and two female university
students in their early twenties were recruited for
the evaluation. All were healthy subjects, without
physical disabilities. None of the subjects were di-
rectly involved in the development of the SmartWheeler
robot.

Subjects were given a brief (5 minutes) intro-
duction to the robot, including a high-level de-
scription of the Wheelchair Skills Test task do-
main, and interface modalities. Unlike in the pre-
liminary evaluation (Section 3.1), where subjects
were given a script of commands, in this latter
evaluation subjects were only give a description
of each task (as precisely scripted in the WST),
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and chose themselves the words to communicate
with the robot. While the wheelchair did not move
during these experiments (such that the perfor-
mance of the interface could be studied indepen-
dently from any navigation issue), the users were
provided with feedback about the robot’s (simu-
lated) current state through the screen-based in-
terface.

Throughout the interactions, the time required
to compute the robot’s response, for each interac-
tion, was on the order of 1 second (and in some
cases much less). In general, most of the compu-
tation time is taken by the speech recognition; the
grammatical analysis, POMDP decision-making,
and behavior selection are comparatively much faster.

Most of the subjects tackled 21 of the tasks in
the Wheelchair Skills Test (version WST-P/CG),
except subject 3, who tackled 22 tasks (due to a
protocol error on the part of the tester) and sub-
ject 4, who did 19 (due to recording issues). Tasks
were presented to the test subjects using instruc-
tions specified in the WST manual. E.g. Navigate

your chair over the finish line one meter

ahead of you, Put your chair into the fast

speed setting, and Turn the wheelchair to

your right about 90 degrees. The phrasing
used to present tasks to the test subjects was such
as to allow flexibility in the actual phrases used to
issue the commands to the chair, as opposed to the
subjects simply repeating the task description.

Table 2 shows results for this set of test sub-
jects. First, we notice that the speech recognition
rates are very poor (much worse than the prelim-
inary study described in Section 3.1). This is ex-
plained by the fact that in this case, subjects were
free to formulate sentences as they wished, rather
than reading off a script. Furthermore, they were
not even informed of the vocabulary accepted by
the speech recognizer. The number of sentences
parsed by the CCG module is also quite low, though
this is not necessarily a problem, as we demon-
strate through an example below. The number of
correctly identified tasks shows substantial vari-
ance between subjects, with five of the subjects
achieving high performance on the overall task, de-
spite the poor recognition accuracy.

The number of speech commands per tasks cap-
tures the frequency of queries issued to help resolve
the task at hand. If we consider subject 7, 2.10
commands were required for each task on average,
meaning one command for the task itself and with
an additional 1.10 queries (on average) for each

task. Subject 3 required significantly fewer queries
per tasks, with only one query for every third ac-
tion, due to a higher recognition accuracy. In most
cases, whenever the task was incorrectly identified,
a very similar task was selected. Prior to starting
the experiments, subjects were instructed that if
at any point in time they were unsatisfied with
the interface’s behavior (e.g. wrong task was se-
lected, or repetitive queries), they could use a spe-
cific command (Stop) to end the task and move
on to the next one. This rarely happened, and re-
sults for these trials are included as incorrect tasks
in column 5 of Table 2. More flexible methods of
error recovery will be investigated in future phases
of the project.

We now consider a few illustrative interactions
transcribed from the experiment.

Example 1: Figure 3 shows a recorded dia-
logue sequence. This example shows the flexibility
that is afforded by the modularity of our archi-
tecture. In the first steps of the interaction, the
sentence is correctly parsed by the NLP gram-
mar. The Interaction Manager nonetheless chooses
a clarification query because the information pro-
vided is insufficient to select a task. In the lat-
ter steps, the user provides very succinct answers,
which cannot be parsed by the grammar, yet the
Interaction Manager is able to use these (under
the bag-of-word assumption) to correctly update
its state distribution and eventually produce the
correct action.

Example 2: Looking at the subjects who had
low task correctness rates yields useful insight into
weaknesses of the current system. Test subject 5
was extremely verbose while issuing commands,
saying for example (Figure 4) Let’s move to-

wards the wall and end up parallel to

the wall in an attempt to align the wheelchair
to the wall, whereas most other subjects simply
said align the chair to the wall. The system
was often able to infer the task based on informa-
tive words such as wall, though in some cases
the system was unable to compensate. The op-
posite effect was observed in test subject 2, who
used extremely terse language, issuing commands
such as back and fast to capture tasks such as
move backwards one meter and move for-

ward quickly.
For some subjects, the task recognition rate is

high, but the number of queries used is also rel-
atively high. This generally indicates poor speech
recognition. In our study, subjects 1 and 6 are non-
native English speakers, with residual accents, for
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Subject Word Sentence % Sentence % Task # Commands
Id Err. Rate Err. Rate Parsed Correct per Task
1 99.2 95.8 3 76 1.81
2 51.3 74.5 29 43 1.75
3 39.4 67.5 38 95 1.38
4 51.2 63.6 34 79 1.68
5 93.4 97.3 0 29 1.62
6 62.0 71.4 14 76 2.43
7 48.9 54.9 41 76 2.10

Mean 63.6 75.0 22 67 1.82
Table 2 Results from Test Subject Interaction.

Command 1:

<SentenceRecognized value=‘‘true" />

<Phrase value=‘‘move backward" />

<AllPhrases value=‘‘[move backward]" />

Actual: ‘‘Move backward"

<Action value=‘‘move" type=‘‘move-action" />

<SpeechAct value=‘‘command" />

<Direction value=‘‘backward"

type=‘‘vector-direction" />

Best Action: MOVE_QUERY

Command 2:

<SentenceRecognized value=‘‘false" />

<Phrase value=‘‘backward" />

<AllPhrases value=‘‘[backward]" />

Actual: ‘‘Backward"

Best Action: MOVE_QUERY

Command 3:

<SentenceRecognized value=‘‘false" />

<Phrase value=‘‘ "/>

<AllPhrases value=‘‘[backward set]" />

Actual: ‘‘Backwards"

Best Action: drive backward

Fig. 3 A typical sequence including queries and goal task.

For each speech command, lines 2 and 3 indicate whether

the sentence could be parsed. Line 4 is the output of the
speech recognizer. Line 5 is a hand-labeled transcription.

The last line shows the action selected by the Interaction

Manager.

Command 1:

<SentenceRecognized value=‘‘false" />

<Phrase value=‘‘ " />

<AllPhrases value=‘‘[the move to wall to wall and

and and up veer overcome wall on]" />

Actual: ‘‘Let’s move towards the wall and end up

parallel to the wall"

Best Action: 21 : align to wall

Fig. 4 Example of verbose user input. Lines 2 and 3 in-
dicate that the sentence could not be parsed by the gram-

mar. Line 4 is the output of the speech recognizer. Line 5

(“Actual:”) is a hand-labeled transcription added for clari-
fication. Line 6 shows the action selected by the Interaction
Manager.

which the speech recognition system is not trained.
Subject 7 also had poor recognition accuracy, pos-
sibly due to a high speech volume. In each case,
speaker-customization could substantially reduce
the number of queries. It is nonetheless encour-
aging to see that even though the recognition ac-
curacy was low, the number of correct tasks was
substantially better.

6 Related Work on Intelligent Wheelchair
Platforms

Wheelchairs are a challenging platform for intelli-
gent agents and are being explored by many groups
as a way to help disabled and elderly individu-
als. There is an excellent, and fairly recent, review
of intelligent wheelchair platforms [28], which pro-
vides a summary of research in this area over the
last 20 years. It classifies existing systems in terms
of their form factor, input methods, onboard sen-
sors, and control software.

Much of the most recent work on intelligent
wheelchairs focuses on the navigation behavior of
the chair, for instance providing smooth motion to
improve user comfort and investigating sophisti-
cated representations of the physical environment [10,
2]. We do not review this work in detail as it tack-
les issues that are orthogonal to the focus of this
paper.

Many of the earlier intelligent wheelchairs pro-
totypes used a voice interface, as does the SmartWheeler
platform, to allow the user to provide commands
to the robot [25,19,13,20,1,21,3]. Earlier systems
were often prone to errors in the speech recogni-
tion, which was an impediment to robust inter-
action. It is worth noting that most of these sys-
tems preceded the latest statistical methods for
language understanding and dialogue management.
It is an important contribution of this paper to
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show how this recent technology can be used to
improve the robustness of the interaction.

We are aware of one instance of an autonomous
wheelchair which has a focus on human-robot in-
teraction and uses probabilistic decision-making
in the dialogue manager [6], similar to the ap-
proach proposed here. However, this system is lim-
ited to speech-to-speech interactions, and does not
include grammatical inference. It also has not yet
been validated in the context of clinically-relevant
task domains.

More recently, researchers have investigated the
development of methods of simplified interfaces for
human-robot communication. This includes for ex-
ample mounting a robotic arm on a wheelchair to
provide assistance for patients who have difficulty
manipulating objects in their environment [35]. An-
other interesting example is the work on provid-
ing a concise communication protocol for entering
text commands into the wheelchair using joysticks
or touch-pads [39]. Finally, other researchers have
investigated the use of EEG signals to control a
powered wheelchair [8]. Such work is useful for pa-
tients with limited vocal abilities, but may be less
preferred due to the lower communication band-
width and the longer training time.

There is a large body of work on rehabilitation
robotics, whereby robots aim to provide instruc-
tions and/or physical assistance to help individuals
with disabilities to regain some of their mobility.
Some of this work considers ideas of robustness and
adaptation, by providing learning mechanisms to
improve the robot’s performance [34]. Such meth-
ods may be useful at a later stage in our work, even
though the application is fundamentally different.

7 Conclusion

The aims of this paper are two-fold. First, we present
a cognitive architecture for voice-driven human-
robot interaction. The emphasis is on achieving
robust interaction through a number of key compo-
nents: Speech Recognition, Natural Language Pro-
cessing, Interaction Manager, and Behavior Man-
ager. All of these components have been used in
human-robot interfaces previously, but not alto-
gether. To the best of our knowledge, this is the
first system to integrate both grammatical parsing
and probabilistic decision-making. This is an im-
portant step towards achieving robust, yet flexible,
human-robot interaction in complex task domain.
The primary interface modality has been speech,
but the architecture is well equipped to handle in-

put from other modalities, such as a joystick or
touch-sensitive display. This is the topic of ongo-
ing work.

The second important aspect of this work is the
emphasis on evaluating the robot platform in the
context of a standardized, clinically relevant, do-
main. The lack of formal evaluation has been iden-
tified as one of the key challenges for researchers
developing intelligent wheelchair platforms. In this
paper, we argue that the Wheelchair Skills Test do-
main is a useful and well-specified instrument for
such a purpose. While its applicability is limited to
wheelchair-type devices, many of its characteristics
should provide inspiration for developing similar
tools for other assistive robotic platforms. It is im-
portant to remember that evaluation on standard
environments is an important step towards demon-
strating safety and security of robot platforms, and
this is especially crucial for human-robot applica-
tions as we prepare to move towards more natural
living environments.

One of the risks of focusing evaluation on highly
standardized test environment is that it may lead
to over-specialization of the robot interface and
platform to this precise environment. It is certainly
the case that certain components (e.g. the vocab-
ulary of the Speech Recognizer, the logical rules in
the grammar, and the state and action sets used
in the Interaction Manager) were designed to be
task specific. Nonetheless the overall cognitive ar-
chitecture we proposed could be re-used without
modification for a wide array of task domains. In
fact, we have used the architecture and platform
for a number of experiments unrelated to those de-
scribed in this paper without much effort.

In conclusion, the work presented here offers
useful insights into the design and evaluation of
voice-controlled interfaces for intelligent robots. The
main focus is on the integration of components
such as grammatical parsing and probabilistic decision-
making, which offer robust processing of the inter-
face data. While the success rate is still far from
perfect, we show that the integration of these com-
ponents contributes to improving the robustness of
the system, compared to using only speech recogni-
tion as an input to select behaviors. An important
next step is to validate these results with the tar-
get population. We anticipate that the results will
be similar, especially for subjects whose communi-
cation abilities are intact, despite having mobility
impairments.

In the longer term, we also aim to improve the
task success rate, as well as tackle a larger set of
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tasks, such that the system can be effective in a
rich set of situations. One important direction for
improving the rate of success is in customizing the
interface for each user. This can be achieved in a
number of ways, for example by exploiting a user-
specific acoustic model for the speech recognition,
or by learning the grammatical inference rules au-
tomatically from user data, as well as by adapting
the reward function of the POMDP-based inter-
action manager based on user preferences. There
exist good algorithmic methods for realizing these
improvements, however these are often data-expensive.
There are important research opportunities in find-
ing ways to achieve user customization without re-
quiring excessive amounts of data.
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